--- annotations_creators: - no-annotation language_creators: - crowdsourced language: - ace - ban - bjn - bug - gor - km - id - jv - lo - mad - mnw - min - ms - my - nia - shn - su - tet - th - vi license: - cc-by-sa-3.0 - gfdl multilinguality: - multilingual source_datasets: - Wikipedia task_categories: - text-generation - fill-mask task_ids: - language-modeling - masked-language-modeling pretty_name: Wikipedia Archive for SEA Languages tags: - Wikipedia - Southeast Asia (SEA) - Dialect - Banyumasan Dialect of Javanese (Ngapak) - SEA-related Languages - SEA Local Languages dataset_info: - config_name: seawiki_all features: - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: ace num_bytes: 4952102 num_examples: 13003 - name: ban num_bytes: 18198909 num_examples: 20987 - name: bjn num_bytes: 6792259 num_examples: 10519 - name: bug num_bytes: 3298561 num_examples: 15880 - name: gor num_bytes: 6239133 num_examples: 15359 - name: id num_bytes: 1118834498 num_examples: 665622 - name: jv num_bytes: 72101470 num_examples: 73380 - name: km num_bytes: 103146669 num_examples: 11994 - name: lo num_bytes: 15240262 num_examples: 5014 - name: mad num_bytes: 1612542 num_examples: 1192 - name: map_bms num_bytes: 5221506 num_examples: 13580 - name: min num_bytes: 116824020 num_examples: 227143 - name: mnw num_bytes: 47321734 num_examples: 3296 - name: ms num_bytes: 419662356 num_examples: 368628 - name: my num_bytes: 313370839 num_examples: 109310 - name: nia num_bytes: 2153274 num_examples: 1714 - name: shn num_bytes: 33754296 num_examples: 13945 - name: su num_bytes: 47516268 num_examples: 61555 - name: tet num_bytes: 1454499 num_examples: 1468 - name: th num_bytes: 1012930269 num_examples: 159719 - name: vi num_bytes: 1603057632 num_examples: 1288680 download_size: 4959860254 dataset_size: 4953683098 - config_name: seawiki_dedup_all features: - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: ace num_bytes: 4944916 num_examples: 12979 - name: ban num_bytes: 18025267 num_examples: 20611 - name: bjn num_bytes: 6786207 num_examples: 10503 - name: bug num_bytes: 2182435 num_examples: 9969 - name: gor num_bytes: 6217480 num_examples: 15290 - name: id num_bytes: 1117891512 num_examples: 662443 - name: jv num_bytes: 71997517 num_examples: 73080 - name: km num_bytes: 102698901 num_examples: 11466 - name: lo num_bytes: 14908444 num_examples: 4897 - name: mad num_bytes: 1612542 num_examples: 1192 - name: map_bms num_bytes: 5067489 num_examples: 11839 - name: min num_bytes: 116721269 num_examples: 225972 - name: mnw num_bytes: 47243333 num_examples: 3271 - name: ms num_bytes: 414783365 num_examples: 348045 - name: my num_bytes: 312990457 num_examples: 108819 - name: nia num_bytes: 2153274 num_examples: 1714 - name: shn num_bytes: 33616591 num_examples: 13662 - name: su num_bytes: 47512744 num_examples: 61529 - name: tet num_bytes: 1452151 num_examples: 1464 - name: th num_bytes: 1012868861 num_examples: 159666 - name: vi num_bytes: 1602828123 num_examples: 1287910 download_size: 4950689052 dataset_size: 4944502878 - config_name: seawiki_with_countries_all features: - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: idn_ace num_bytes: 4952102 num_examples: 13003 - name: idn_ban num_bytes: 18198909 num_examples: 20987 - name: idn_bjn num_bytes: 6792259 num_examples: 10519 - name: idn_bug num_bytes: 3298561 num_examples: 15880 - name: idn_gor num_bytes: 6239133 num_examples: 15359 - name: idn_id num_bytes: 1118834498 num_examples: 665622 - name: idn_jv num_bytes: 72101470 num_examples: 73380 - name: idn_mad num_bytes: 1612542 num_examples: 1192 - name: idn_map_bms num_bytes: 5221506 num_examples: 13580 - name: idn_min num_bytes: 116824020 num_examples: 227143 - name: idn_ms num_bytes: 419662356 num_examples: 368628 - name: idn_nia num_bytes: 2153274 num_examples: 1714 - name: idn_su num_bytes: 47516268 num_examples: 61555 - name: idn_tet num_bytes: 1454499 num_examples: 1468 - name: sgp_ms num_bytes: 419662356 num_examples: 368628 - name: mys_ms num_bytes: 419662356 num_examples: 368628 - name: brn_ms num_bytes: 419662356 num_examples: 368628 - name: tha_th num_bytes: 1012930269 num_examples: 159719 - name: mmr_my num_bytes: 313370839 num_examples: 109310 - name: mmr_shn num_bytes: 33754296 num_examples: 13945 - name: mmr_mnw num_bytes: 47321734 num_examples: 3296 - name: lao_lo num_bytes: 15240262 num_examples: 5014 - name: vnm_vi num_bytes: 1603057632 num_examples: 1288680 - name: khm_km num_bytes: 103146669 num_examples: 11994 - name: tls_tet num_bytes: 1454499 num_examples: 1468 download_size: 4959860254 dataset_size: 6214124665 - config_name: seawiki_with_countries_dedup_all features: - name: url dtype: string - name: title dtype: string - name: text dtype: string splits: - name: idn_ace num_bytes: 4944916 num_examples: 12979 - name: idn_ban num_bytes: 18025267 num_examples: 20611 - name: idn_bjn num_bytes: 6786207 num_examples: 10503 - name: idn_bug num_bytes: 2182435 num_examples: 9969 - name: idn_gor num_bytes: 6217480 num_examples: 15290 - name: idn_id num_bytes: 1117891512 num_examples: 662443 - name: idn_jv num_bytes: 71997517 num_examples: 73080 - name: idn_mad num_bytes: 1612542 num_examples: 1192 - name: idn_map_bms num_bytes: 5067489 num_examples: 11839 - name: idn_min num_bytes: 116721269 num_examples: 225972 - name: idn_ms num_bytes: 414783365 num_examples: 348045 - name: idn_nia num_bytes: 2153274 num_examples: 1714 - name: idn_su num_bytes: 47512744 num_examples: 61529 - name: idn_tet num_bytes: 1452151 num_examples: 1464 - name: sgp_ms num_bytes: 414783365 num_examples: 348045 - name: mys_ms num_bytes: 414783365 num_examples: 348045 - name: brn_ms num_bytes: 414783365 num_examples: 348045 - name: tha_th num_bytes: 1012868861 num_examples: 159666 - name: mmr_my num_bytes: 312990457 num_examples: 108819 - name: mmr_shn num_bytes: 33616591 num_examples: 13662 - name: mmr_mnw num_bytes: 47243333 num_examples: 3271 - name: lao_lo num_bytes: 14908444 num_examples: 4897 - name: vnm_vi num_bytes: 1602828123 num_examples: 1287910 - name: khm_km num_bytes: 102698901 num_examples: 11466 - name: tls_tet num_bytes: 1452151 num_examples: 1464 download_size: 4950689052 dataset_size: 6190305124 --- # **SEA Wikipedia Data Repository** --- license: cc-by-sa-3.0 --- Welcome to SEA Wikipedia Data Repository. The datasets are extracted from [Wikipedia HF](https://huggingface.co/datasets/wikipedia) and processed using the scripts available in this repository for reproducibility purpose. # Getting Started # ### To read the datasets directly ### Use one of the following code chunks to load it from HuggingFace Hub: You can refer to the 2nd args of ```config name``` using the following script ``` dataset = load_dataset( "sabilmakbar/sea_wiki", "seawiki_dedup_all" # a config name, can be "seawiki_dedup_all" or "seawiki_with_countries_all", or "seawiki_with_countries_dedup_all" , defaults to "seawiki_dedup_all" ) ``` Or you can provide both ```lang``` and ```date_stamp``` (or just lang only by assuming the ```date_stamp``` will take the newest one) ``` dataset = load_dataset( "sabilmakbar/sea_wiki", lang = "id", # see README for complete lang choices date_stamp="20230901" ) ``` Or you can provide a ```country``` params with similar fashion to ```lang``` args (providing both ```country``` and ```lang``` will prioritize the ```lang``` kwarg) ``` dataset = load_dataset( "sabilmakbar/sea_wiki", lang = "id", # see the splits for complete lang choices date_stamp="20230901" ) ``` # **FAQS** ### What are the available languages provided in dataset and from which country? You may check the following tables to understand the current coverage of this dataset (languages, countries, data size & volume). #### 1. Table of Countries and its Country Code | Country Code | Country Name | Wiki Info | | :---: | :---: | :---: | | brn | Brunei | [Wiki Link](https://en.wikipedia.org/wiki/Brunei) | | idn | Indonesia | [Wiki Link](https://en.wikipedia.org/wiki/Indonesia) | | khm | Cambodia | [Wiki Link](https://en.wikipedia.org/wiki/Cambodia) | | lao | Laos | [Wiki Link](https://en.wikipedia.org/wiki/Laos) | | mmr | Myanmar | [Wiki Link](https://en.wikipedia.org/wiki/Myanmar) | | mys | Malaysia | [Wiki Link](https://en.wikipedia.org/wiki/Malaysia) | | sgp | Singapore | [Wiki Link](https://en.wikipedia.org/wiki/Singapore) | | tha | Thailand | [Wiki Link](https://en.wikipedia.org/wiki/Thailand) | | tls | East Timor | [Wiki Link](https://en.wikipedia.org/wiki/East_Timor) | | vnm | Vietnam | [Wiki Link](https://en.wikipedia.org/wiki/Vietnam) | #### 2. Table of Languages and Countries of its speakers | Lang Code | Lang Name | Country Codes Spoken | Wiki Info | Total Data | Total Size (MiB rounded) | | :---: | :---: | :---: | :--- | ---: | ---: | | ace | Acehnese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Acehnese_language) | 12904 | 4.64 | | ban | Balinese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Balinese_language) | 19837 | 16.56 | | bjn | Banjarese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Banjarese_language) | 10437 | 6.35 | | bug | Buginese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Buginese_language) | 9793 | 1.98 | | gor | Gorontalo | idn | [Wiki Link](https://en.wikipedia.org/wiki/Gorontalo_language) | 14514 | 5.71 | | km | Khmer | khm | [Wiki Link](https://en.wikipedia.org/wiki/Khmer_language) | 11994 | 98.37 | | id | Indonesian | idn | [Wiki Link](https://en.wikipedia.org/wiki/Indonesian_language) | 654287 | 1049.93 | | jv | Javanese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Javanese_language) | 72667 | 66.54 | | lo | Lao | lao | [Wiki Link](https://en.wikipedia.org/wiki/Lao_language) | 5014 | 14.53 | | mad | Madurese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Madurese_language) | 1192 | 1.54 | | map_bms | Banyumasan
(Dialect of Javanese) | idn | [Wiki Link](https://en.wikipedia.org/wiki/Banyumasan_dialect) | 11832 | 4.83 | | mnw | Mon | mmr | [Wiki Link](https://en.wikipedia.org/wiki/Mon_language) | 3296 | 45.13 | | min | Minangkabau | idn | [Wiki Link](https://en.wikipedia.org/wiki/Minangkabau_language) | 225858 | 110.99 | | ms | Malay | mys, sgp, brn, idn | [Wiki Link](https://en.wikipedia.org/wiki/Malay_language) | 346186 | 391.43 | | my | Burmese | mmr | [Wiki Link](https://en.wikipedia.org/wiki/Burmese_language) | 109310 | 298.85 | | nia | Nias | idn | [Wiki Link](https://en.wikipedia.org/wiki/Nias_language) | 1650 | 1.85 | | shn | Shan | mmr | [Wiki Link](https://en.wikipedia.org/wiki/Shan_language) | 13945 | 32.19 | | su | Sundanese | idn | [Wiki Link](https://en.wikipedia.org/wiki/Sundanese_language) | 61494 | 45.21 | | tet | Tetum | tls, idn | [Wiki Link](https://en.wikipedia.org/wiki/Tetum_language) | 1465 | 1.39 | | th | Thai | tha | [Wiki Link](https://en.wikipedia.org/wiki/Thai_language) | 159719 | 966.00 | | vi | Vietnamese | vnm | [Wiki Link](https://en.wikipedia.org/wiki/Vietnamese_language) | 1288680 | 1528.79 | #### 3. Table of Token Statistics for Covered Languages The token statistics is generated using ```tiktoken``` using encoder for GPT-4. | Lang Code | Total Token | Avg Token per Article | Min Token | Max Token | Token Deciles List | | :---: | ---: | ---: | ---: | ---: | :--- | | ace | 1,370,829 | 105.61899992295247 | 3 | 9,659 | [38.0, 52.0, 54.0, 69.0, 76.0, 84.0, 90.0, 123.0, 126.0] | | ban | 5,924,610 | 287.44893503469024 | 5 | 24,364 | [97.0, 144.0, 165.0, 187.0, 209.0, 245.0, 276.0, 315.0, 421.0] | | bjn | 1,935,505 | 184.28115776444827 | 2 | 30,170 | [36.0, 38.0, 39.0, 40.0, 42.0, 51.0, 82.0, 151.0, 367.0] | | bug | 553,693 | 55.54147858360919 | 1 | 13,951 | [31.0, 42.0, 43.0, 46.0, 48.0, 50.0, 52.0, 55.0, 57.0] | | gor | 1,575,766 | 103.05860039241334 | 2 | 5,525 | [55.0, 58.0, 60.0, 62.0, 64.0, 66.0, 69.0, 75.0, 96.0] | | id | 325,411,713 | 491.22975561670967 | 1 | 198,597 | [54.0, 93.0, 123.0, 145.0, 180.0, 226.0, 332.0, 543.0, 1068.0] | | jv | 23,528,314 | 321.95284619594963 | 2 | 342,156 | [48.0, 60.0, 75.0, 88.0, 117.0, 175.0, 270.0, 420.0, 772.0] | | km | 54,559,721 | 4,758.391854177568 | 1 | 1,110,771 | [160.0, 293.0, 452.0, 693.0, 1032.0, 1609.0, 2644.0, 4745.0, 9607.0] | | lo | 9,395,636 | 1,918.6514192362672 | 3 | 107,154 | [134.0, 184.2, 285.0, 494.0, 658.0, 894.6, 1258.0, 1971.2, 4153.8] | | mad | 611,736 | 513.2013422818792 | 14 | 17,093 | [80.1, 110.2, 135.0, 161.0, 194.0, 242.0, 302.7, 531.4, 1167.1] | | map_bms | 1,307,244 | 110.41844750401216 | 1 | 20,629 | [20.0, 21.0, 22.0, 24.0, 30.0, 35.0, 36.0, 38.0, 111.0] | | min | 33,114,184 | 146.54109358681606 | 3 | 58,387 | [81.0, 91.0, 96.0, 108.0, 119.0, 135.0, 156.0, 168.0, 170.0] | | mnw | 31,595,647 | 9,659.3234484867 | 6 | 1,450,765 | [425.0, 601.0, 629.0, 682.0, 763.0, 2103.0, 4255.0, 7724.0, 14517.0] | | ms | 121,343,673 | 348.64363228892813 | 1 | 68,545 | [32.0, 40.0, 49.0, 63.0, 105.0, 138.0, 216.0, 362.0, 788.0] | | my | 189,439,447 | 1,740.8673761015998 | 10 | 1,376,658 | [164.0, 269.0, 350.0, 508.0, 559.0, 578.0, 605.0, 892.4, 3369.0] | | nia | 795,527 | 464.134772462077 | 8 | 18,650 | [59.0, 61.0, 63.0, 65.0, 67.0, 86.0, 239.1, 623.4, 1249.7] | | shn | 23,125,637 | 1,692.6977748499487 | 2 | 204,094 | [460.0, 480.0, 585.0, 679.0, 715.0, 740.0, 756.0, 780.0, 1580.9] | | su | 14,710,124 | 239.07627297697022 | 1 | 99,456 | [41.0, 43.0, 45.0, 49.0, 70.0, 146.0, 216.0, 219.0, 419.0] | | tet | 487,016 | 332.6612021857924 | 4 | 24,287 | [30.3, 47.0, 66.9, 101.0, 164.0, 177.0, 187.0, 248.6, 604.4] | | th | 330,964,733 | 2,072.8566695476807 | 1 | 289,150 | [231.0, 390.0, 546.0, 727.0, 969.0, 1276.0, 1741.0, 2533.0, 4361.0] | | vi | 546,481,258 | 424.3163404275143 | 3 | 246,463 | [46.0, 64.0, 71.0, 80.0, 86.0, 92.0, 120.0, 240.0, 824.0] | Some other languages in SEA that are already exists its Wiki Index at Wikimedia might be missing from this list. Any lang update PR is greatly appreciated! ### How does the data being preprocessed? What makes it different from loading it directly from Wikipedia HF? The data available in here are processed with following flows: 1. Raw data is being deduplicated on ```title``` and ```text``` (text-content from a given article), to remove articles containing boilerplate text (template text that are used usually for unavailable informations or asking for contributions of content in that article), which usually deemed noisy for NLP data. 2. Furthermore, the ```title``` and ```text``` data are being checked for string-matching duplication (duplication of text that are being pre-processed, i.e symbols removed, HTML tags striped, or ASCII-chars/UTF-8 chars validated). You may check this [ ```dedup_raw_wiki_data.py```](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/dedup_raw_wiki_data.py) script to understand its implementation. ### How do I extract new Wikipedia Dataset of SEA languages? You may check to the script [_```extract_raw_wiki_data.py```_](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/extract_raw_wiki_data.py) to understand its implementations, or you can adjust the bash provided in [_```extract_raw_wiki_data_sea.sh```_](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/extract_raw_wiki_data_sea.sh) to extract it on your own. ### How do I extract new Wikipedia Dataset of SEA languages? You may visit this [Wikipedia Dump Index](https://dumps.wikimedia.org/backup-index.html) to check any latest available data and this link [Wikipedia Language Coverage](https://meta.wikimedia.org/wiki/List_of_Wikipedias#All_Wikipedias_ordered_by_number_of_articles) to map into any languages that you're wanting to extract. Please note that this dataset is extensible to any languages of your choice. ### To replicate the whole dataset generation process ### 1. Set-up a new Python/Conda Environment (recommended Python version: 3.9.6 to 3.9.18 or 3.10.0 to 3.10.13) and install the requirements on ```requirements.txt``` use this codebase via ```pip install -r requirements.txt```. 2. Activate the chosen Python/Conda environment which the requirements are being installed. 3. Force install ```multiprocess==0.70.15``` by using ```pip install multiprocess==0.70.15``` to avoid [this issue](https://github.com/huggingface/datasets/issues/5613#issuecomment-1703169594) (there's no other workaround for now) 4. Run this ```sh``` script for extractions from Wikiedia HF using ```sh extract_raw_wiki_data_sea.sh```
This script will run [_```extract_raw_wiki_data.py```_](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/extract_raw_wiki_data.py) to construct the Wiki Dataset. 5. Run this ```sh``` script for deduplications from extracted data in Step 4 using ```sh dedup_raw_wiki_data_sea.sh```
This script will run [_```dedup_raw_wiki_data.py```_](https://huggingface.co/datasets/sabilmakbar/sea_wiki/blob/main/dedup_raw_wiki_data.py) to do Wiki Dataset Clenasing. Please note that the cleansing process can be language/dialect specific. ## Citation Info: ``` @ONLINE{wikidump, author = "Wikimedia Foundation", title = "Wikimedia Downloads", url = "https://dumps.wikimedia.org"} @ONLINE{wikipedia-hf, title = "Huggingface Wikipedia Dataset", url = "https://huggingface.co/datasets/wikipedia"} ```