sea_wiki / sea_loader_batched /concat_data.py
sabilmakbar's picture
Add New Lang (#5)
a91c8a9
import os
import argparse
import logging
import pandas as pd
def set_logger():
# Set up the logger
logging.basicConfig(
level=logging.INFO, # Set the desired logging level (DEBUG, INFO, WARNING, ERROR, CRITICAL)
format='%(asctime)s [%(levelname)s]: %(message)s', # Customize the log message format
datefmt='%Y-%m-%d %H:%M:%S' # Customize the date/time format
)
# Create a file handler to write logs into a file
file_handler = logging.FileHandler('app.log')
# Set the log level for the file handler
file_handler.setLevel(logging.INFO)
# Create a formatter for the file handler (customize the log format for the file)
file_formatter = logging.Formatter('%(asctime)s [%(levelname)s]: %(message)s', datefmt='%Y-%m-%d %H:%M:%S')
file_handler.setFormatter(file_formatter)
logger = logging.getLogger("Wiki Dataset Generation")
logger.addHandler(file_handler)
return logger
#only executed if called directly
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--load-dir-path", help="""Relative load dir path of saved batch Wikipedia CSV data
to the `concat_data.py` script dir""",
default=os.path.dirname(os.path.abspath(__file__)))
parser.add_argument("--save-dir-path", help="""Relative save dir path of concatted Wikipedia CSV data
to the `concat_data.py` script dir""",
default=os.path.dirname(os.path.abspath(__file__)))
args = parser.parse_args()
logger = set_logger()
logger.info("Parsing arguments...")
load_dir = args.load_dir_path
save_dir = args.save_dir_path
csv_list_files = [os.path.join(load_dir, _filename) for _filename in os.listdir(load_dir) if _filename.endswith(".csv")]
for idx, path in enumerate(csv_list_files):
logger.info(f"Processinng data {idx+1} out of {len(csv_list_files)}")
if idx == 0:
df = pd.read_csv(path)
else:
df = pd.concat([df, pd.read_csv(path)], ignore_index=True)
logger.info("Loading done!")
logger.info(f"#Data collected: {df.shape[0]}")
logger.info("Saving dataset raw form after concatted...")
df.to_csv(f"{save_dir}.csv", index=False)