|
import multiprocessing as mp |
|
|
|
import numpy as np |
|
from datasets import load_dataset |
|
|
|
import tiktoken |
|
|
|
def num_tokens_from_string(string: str): |
|
"""Returns the number of tokens in a text string.""" |
|
num_tokens = len(encoding.encode(string)) |
|
return num_tokens |
|
|
|
def cnt_token_in_hf_wiki_dset(data): |
|
data["token_cnt"] = num_tokens_from_string(data["text"]) |
|
return data |
|
|
|
if __name__ == "__main__": |
|
|
|
dataset = load_dataset("sabilmakbar/sea_wiki") |
|
|
|
encoding = tiktoken.encoding_for_model('gpt-4') |
|
|
|
stat_dict = {} |
|
for split, dset in dataset.items(): |
|
dset_text = dset.select_columns(['text']) |
|
print(f"Counting total token in split lang: {split}") |
|
dset_text = dset_text.map(cnt_token_in_hf_wiki_dset, num_proc=max(mp.cpu_count()-2,1)) |
|
token_data = list(dset_text["token_cnt"]) |
|
total_token = sum(token_data) |
|
avg_token = sum(token_data)/len(token_data) |
|
min_token = min(token_data) |
|
max_token = max(token_data) |
|
deciles = np.percentile(token_data, np.arange(10, 100, 10)).tolist() |
|
stat_dict[split] = {"total": total_token, "avg": avg_token, "min": min_token, "max": max_token, "deciles": deciles} |
|
|
|
|
|
print("| Lang Code | Total Token | Avg Token per Article | Min Token | Max Token | Token Deciles List |") |
|
print("| :---: | ---: | ---: | ---: | ---: | :--- |") |
|
for key, data in stat_dict.items(): |
|
print(f"| {key} | {data['total']:,} | {data['avg']:,} | {data['min']:,} | {data['max']:,} | {[round(num,2) for num in data['deciles']]} |") |
|
|