Datasets:
Languages:
English
ArXiv:
Tags:
query-by-example-spoken-term-detection
audio-slot-filling
speaker-diarization
automatic-speaker-verification
License:
File size: 18,614 Bytes
64cab28 cb0e6fc 64cab28 cf54b2f 64cab28 cb0e6fc 64cab28 cb0e6fc 64cab28 cb0e6fc 64cab28 cb0e6fc cf54b2f cb0e6fc 64cab28 cf54b2f 64cab28 cf54b2f 64cab28 cb0e6fc 64cab28 cb0e6fc 64cab28 cb0e6fc cf54b2f 64cab28 cf54b2f 64cab28 cf54b2f 64cab28 cb0e6fc 64cab28 cf54b2f 64cab28 cb0e6fc 64cab28 cf54b2f 64cab28 cf54b2f 64cab28 cb0e6fc 64cab28 cb0e6fc 64cab28 cf54b2f 64cab28 cb0e6fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 |
---
annotations_creators:
- other
language_creators:
- other
languages:
- en
licenses:
- unknown
multilinguality:
- monolingual
pretty_name: SUPERB
size_categories:
- unknown
source_datasets:
- original
- extended|librispeech_asr
- extended|other-librimix
- extended|other-speech_commands
task_categories:
- speech-processing
task_ids:
- automatic-speech-recognition
- phoneme-recognition
- keyword-spotting
- query-by-example-spoken-term-detection
- speaker-identification
- automatic-speaker-verification
- speaker-diarization
- intent-classification
- slot-filling
- emotion-recognition
---
# Dataset Card for SUPERB
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [http://superbbenchmark.org](http://superbbenchmark.org)
- **Repository:** [https://github.com/s3prl/s3prl](https://github.com/s3prl/s3prl)
- **Paper:** [SUPERB: Speech processing Universal PERformance Benchmark](https://arxiv.org/abs/2105.01051)
- **Leaderboard:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Point of Contact:** [Lewis Tunstall](mailto:[email protected]) and [Albert Villanova](mailto:[email protected])
### Dataset Summary
SUPERB is a leaderboard to benchmark the performance of a shared model across a wide range of speech processing tasks with minimal architecture changes and labeled data.
### Supported Tasks and Leaderboards
The SUPERB leaderboard can be found here **ADD LINK WHEN LIVE** and consists of the following tasks:
#### pr
Phoneme Recognition (PR) transcribes an utterance into the smallest content units. This task includes alignment modeling to avoid potentially inaccurate forced alignment. [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) train-clean-100/dev-clean/test-clean subsets are adopted in SUPERB for training/validation/testing. Phoneme transcriptions are obtained from the LibriSpeech official g2p-model-5 and the conversion script in Kaldi librispeech s5 recipe. The evaluation metric is phone error rate (PER).
#### asr
Automatic Speech Recognition (ASR) transcribes utterances into words. While PR analyzes the improvement in modeling phonetics, ASR reflects the significance of the improvement in a real-world scenario. [LibriSpeech](https://huggingface.co/datasets/librispeech_asr) train-clean-100/devclean/test-clean subsets are used for training/validation/testing. The evaluation metric is word error rate (WER).
#### ks
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and inference time are all crucial. SUPERB uses the widely used [Speech Commands dataset v1.0](https://www.tensorflow.org/datasets/catalog/speech_commands) for the task. The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the false positive. The evaluation metric is accuracy (ACC)
##### Example of usage:
Use these auxillary functions to:
- load the audio file into an audio data array
- sample from long `_silence_` audio clips
For other examples of handling long `_silence_` clips see the [S3PRL](https://github.com/s3prl/s3prl/blob/099ce807a6ffa6bf2482ceecfcaf83dea23da355/s3prl/downstream/speech_commands/dataset.py#L80)
or [TFDS](https://github.com/tensorflow/datasets/blob/6b8cfdb7c3c0a04e731caaa8660ce948d0a67b1e/tensorflow_datasets/audio/speech_commands.py#L143) implementations.
```python
def map_to_array(example):
import soundfile as sf
speech_array, sample_rate = sf.read(example["file"])
example["speech"] = speech_array
example["sample_rate"] = sample_rate
return example
def sample_noise(example):
# Use this function to extract random 1 sec slices of each _silence_ utterance,
# e.g. inside `torch.utils.data.Dataset.__getitem__()`
from random import randint
if example["label"] == "_silence_":
random_offset = randint(0, len(example["speech"]) - example["sample_rate"] - 1)
example["speech"] = example["speech"][random_offset : random_offset + example["sample_rate"]]
return example
```
#### qbe
Query by Example Spoken Term Detection (QbE) detects a spoken term (query) in an audio database (documents) by binary discriminating a given pair of query and document into a match or not. The English subset in [QUESST 2014 challenge](https://github.com/s3prl/s3prl/tree/master/downstream#qbe-query-by-example-spoken-term-detection) is adopted since we focus on investigating English as the first step. The evaluation metric is maximum term weighted value (MTWV) which balances misses and false alarms.
#### ic
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of speakers. SUPERB uses the [Fluent Speech Commands dataset](https://github.com/s3prl/s3prl/tree/master/downstream#ic-intent-classification---fluent-speech-commands), where each utterance is tagged with three intent labels: action, object, and location. The evaluation metric is accuracy (ACC).
#### sf
Slot Filling (SF) predicts a sequence of semantic slot-types from an utterance, like a slot-type FromLocation for a spoken word Taipei, which is known as a slot-value. Both slot-types and slot-values are essential for an SLU system to function. The evaluation metrics thus include slot-type F1 score and slotvalue CER. [Audio SNIPS](https://github.com/s3prl/s3prl/tree/master/downstream#sf-end-to-end-slot-filling) is adopted, which synthesized multi-speaker utterances for SNIPS. Following the standard split in SNIPS, US-accent speakers are further selected for training, and others are for validation/testing.
#### si
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class classification, where speakers are in the same predefined set for both training and testing. The widely used [VoxCeleb1 dataset](https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html) is adopted, and the evaluation metric is accuracy (ACC).
#### asv
Automatic Speaker Verification (ASV) verifies whether the speakers of a pair of utterances match as a binary classification, and speakers in the testing set may not appear in the training set. Thus, ASV is more challenging than SID. VoxCeleb1 is used without VoxCeleb2 training data and noise augmentation. The evaluation metric is equal error rate (EER).
#### sd
Speaker Diarization (SD) predicts *who is speaking when* for each timestamp, and multiple speakers can speak simultaneously. The model has to encode rich speaker characteristics for each frame and should be able to represent mixtures of signals. [LibriMix](https://github.com/s3prl/s3prl/tree/master/downstream#sd-speaker-diarization) is adopted where LibriSpeech train-clean-100/dev-clean/test-clean are used to generate mixtures for training/validation/testing. We focus on the two-speaker scenario as the first step. The time-coded speaker labels were generated using alignments from Kaldi LibriSpeech ASR model. The evaluation metric is diarization error rate (DER).
##### Example of usage
Use these auxiliary functions to:
- load the audio file into an audio data array
- generate the label array
```python
def load_audio_file(example, frame_shift=160):
import soundfile as sf
example["array"], example["sample_rate"] = sf.read(
example["file"], start=example["start"] * frame_shift, stop=example["end"] * frame_shift
)
return example
def generate_label(example, frame_shift=160, num_speakers=2, rate=16000):
import numpy as np
start = example["start"]
end = example["end"]
frame_num = end - start
speakers = sorted({speaker["speaker_id"] for speaker in example["speakers"]})
label = np.zeros((frame_num, num_speakers), dtype=np.int32)
for speaker in example["speakers"]:
speaker_index = speakers.index(speaker["speaker_id"])
start_frame = np.rint(speaker["start"] * rate / frame_shift).astype(int)
end_frame = np.rint(speaker["end"] * rate / frame_shift).astype(int)
rel_start = rel_end = None
if start <= start_frame < end:
rel_start = start_frame - start
if start < end_frame <= end:
rel_end = end_frame - start
if rel_start is not None or rel_end is not None:
label[rel_start:rel_end, speaker_index] = 1
example["label"] = label
return example
```
#### er
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset [IEMOCAP](https://github.com/s3prl/s3prl/tree/master/downstream#er-emotion-recognition) is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion classes to leave the final four classes with a similar amount of data points and cross-validates on five folds of the standard splits. The evaluation metric is accuracy (ACC).
### Languages
The language data in SUPERB is in English (BCP-47 `en`)
## Dataset Structure
### Data Instances
#### pr
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### asr
An example from each split looks like:
```python
{'chapter_id': 1240,
'file': 'path/to/file.flac',
'id': '103-1240-0000',
'speaker_id': 103,
'text': 'CHAPTER ONE MISSUS RACHEL LYNDE IS SURPRISED MISSUS RACHEL LYNDE '
'LIVED JUST WHERE THE AVONLEA MAIN ROAD DIPPED DOWN INTO A LITTLE '
'HOLLOW FRINGED WITH ALDERS AND LADIES EARDROPS AND TRAVERSED BY A '
'BROOK'}
```
#### ks
An example from each split looks like:
```python
{
'file': '/path/yes/af7a8296_nohash_1.wav',
'label': 0 # 'yes'
}
```
#### qbe
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### ic
```python
{
'file': "/path/wavs/speakers/2BqVo8kVB2Skwgyb/063aa8f0-4479-11e9-a9a5-5dbec3b8816a.wav",
'speaker_id': '2BqVo8kVB2Skwgyb',
'text': 'Turn the bedroom lights off',
'action': 3, # 'deactivate'
'object': 7, # 'lights'
'location': 0 # 'bedroom'
}
```
#### sf
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### si
```python
{
'file': '/path/wav/id10003/na8-QEFmj44/00003.wav',
'label': 2 # 'id10003'
}
```
#### asv
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### sd
An example from each split looks like:
```python
{
'record_id': '1578-6379-0038_6415-111615-0009',
'file': 'path/to/file.wav',
'start': 0,
'end': 1590,
'speakers': [
{'speaker_id': '1578', 'start': 28, 'end': 657},
{'speaker_id': '6415', 'start': 28, 'end': 1576}
]
}
```
#### er
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Data Fields
#### pr
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### asr
- `file`: a `string` feature.
- `text`: a `string` feature.
- `speaker_id`: a `int64` feature.
- `chapter_id`: a `int64` feature.
- `id`: a `string` feature.
#### ks
- `file` (`string`): Path to the WAV audio file.
- `label` (`ClassLabel`): Label of the spoken command. Possible values:
- `0: "yes", 1: "no", 2: "up", 3: "down", 4: "left", 5: "right", 6: "on", 7: "off", 8: "stop", 9: "go", 10: "_silence_", 11: "_unknown_"`
#### qbe
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### ic
- `file` (`string`): Path to the WAV audio file.
- `speaker_id` (`string`): ID of the speaker.
- `text` (`string`): Transcription of the spoken command.
- `action` (`ClassLabel`): Label of the command's action. Possible values:
- `0: "activate", 1: "bring", 2: "change language", 3: "deactivate", 4: "decrease", 5: "increase"`
- `object` (`ClassLabel`): Label of the command's object. Possible values:
- `0: "Chinese", 1: "English", 2: "German", 3: "Korean", 4: "heat", 5: "juice", 6: "lamp", 7: "lights", 8: "music", 9: "newspaper", 10: "none", 11: "shoes", 12: "socks", 13: "volume"`
- `location` (`ClassLabel`): Label of the command's location. Possible values:
- `0: "bedroom", 1: "kitchen", 2: "none", 3: "washroom"`
#### sf
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### si
- `file` (`string`): Path to the WAV audio file.
- `label` (`ClassLabel`): Label (ID) of the speaker. Possible values:
- `0: "id10001", 1: "id10002", 2: "id10003", ..., 1250: "id11251"`
#### asv
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### sd
The data fields in all splits are:
- `record_id` (`string`): ID of the record.
- `file` (`string`): Path to the WAV audio file.
- `start` (`integer`): Start frame of the audio.
- `end` (`integer`): End frame of the audio.
- `speakers` (`list` of `dict`): List of speakers in the audio. Each item contains the fields:
- `speaker_id` (`string`): ID of the speaker.
- `start` (`integer`): Frame when the speaker starts speaking.
- `end` (`integer`): Frame when the speaker stops speaking.
#### er
- `file` (`string`): Path to the WAV audio file.
- `label` (`ClassLabel`): Label of the speech emotion. Possible values:
- `0: "neu", 1: "hap", 2: "ang", 3: "sad"`
### Data Splits
#### pr
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### asr
| | train | validation | test |
|-----|------:|-----------:|-----:|
| asr | 28539 | 2703 | 2620 |
#### ks
| | train | validation | test |
|----|------:|-----------:|-----:|
| ks | 51094 | 6798 | 3081 |
#### qbe
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### ic
| | train | validation | test |
|----|------:|-----------:|-----:|
| ic | 23132 | 3118 | 3793 |
#### sf
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### si
| | train | validation | test |
|----|-------:|-----------:|-----:|
| si | 138361 | 6904 | 8251 |
#### asv
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### sd
The data is split into "train", "dev" and "test" sets, each containing the following number of examples:
| | train | dev | test |
|----|------:|-----:|-----:|
| sd | 13901 | 3014 | 3002 |
#### er
The data is split into 5 sets intended for 5-fold cross-validation:
| | session1 | session2 | session3 | session4 | session5 |
|----|---------:|---------:|---------:|---------:|---------:|
| er | 1085 | 1023 | 1151 | 1031 | 1241 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```
@article{DBLP:journals/corr/abs-2105-01051,
author = {Shu{-}Wen Yang and
Po{-}Han Chi and
Yung{-}Sung Chuang and
Cheng{-}I Jeff Lai and
Kushal Lakhotia and
Yist Y. Lin and
Andy T. Liu and
Jiatong Shi and
Xuankai Chang and
Guan{-}Ting Lin and
Tzu{-}Hsien Huang and
Wei{-}Cheng Tseng and
Ko{-}tik Lee and
Da{-}Rong Liu and
Zili Huang and
Shuyan Dong and
Shang{-}Wen Li and
Shinji Watanabe and
Abdelrahman Mohamed and
Hung{-}yi Lee},
title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
journal = {CoRR},
volume = {abs/2105.01051},
year = {2021},
url = {https://arxiv.org/abs/2105.01051},
archivePrefix = {arXiv},
eprint = {2105.01051},
timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
Note that each SUPERB dataset has its own citation. Please see the source to see
the correct citation for each contained dataset.
```
### Contributions
Thanks to [@lewtun](https://github.com/lewtun), [@albertvillanova](https://github.com/albertvillanova) and [@anton-l](https://github.com/anton-l) for adding this dataset.
|