picocreator
commited on
Commit
·
b512822
1
Parent(s):
059e0f0
result sync
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- lm-eval-output/m8than/Finch-14B-Final2/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +132 -0
- lm-eval-output/m8than/Finch-14B-Final2/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +161 -0
- lm-eval-output/m8than/Finch-14B-Final2/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +2249 -0
- lm-eval-output/m8than/Finch-14B-Final2/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -0
- lm-eval-output/m8than/Finch-14B-Final2/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +58 -0
- lm-eval-output/m8than/Finch-14B-Final2/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +374 -0
- lm-eval-output/m8than/Finch-14B-Final2/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +67 -0
- lm-eval-output/m8than/Finch-14B-Final2/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +126 -0
- lm-eval-output/m8than/Finch-14B-Final2/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +252 -0
- lm-eval-output/m8than/Finch-14B-Final2/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +66 -0
- lm-eval-output/m8than/Finch-14B-Final2/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +2594 -0
- lm-eval-output/m8than/Finch-14B-Final2/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +66 -0
- lm-eval-output/m8than/Finch-14B-Final2/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +283 -0
- lm-eval-output/m8than/Finch-14B-Final2/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +64 -0
- lm-eval-output/m8than/Finch-14B-Final2/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +0 -0
- lm-eval-output/m8than/Finch-14B-Final2/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +67 -0
- lm-eval-output/m8than/Finch-14B-Final2/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/sciq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
- lm-eval-output/m8than/Finch-14B-Final2/sciq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +65 -0
lm-eval-output/m8than/Finch-14B-Final2/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8bb5bc44bab37639c4a1ee51eafa5876828d63a9d93f8f9bc4406331e2d02cc
|
3 |
+
size 683113
|
lm-eval-output/m8than/Finch-14B-Final2/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"ai2_arc": {
|
4 |
+
"acc,none": 0.6719278466741826,
|
5 |
+
"acc_stderr,none": 0.09913737186863376,
|
6 |
+
"acc_norm,none": 0.673618940248027,
|
7 |
+
"acc_norm_stderr,none": 0.08479828648913161,
|
8 |
+
"alias": "ai2_arc"
|
9 |
+
},
|
10 |
+
"arc_challenge": {
|
11 |
+
"acc,none": 0.46245733788395904,
|
12 |
+
"acc_stderr,none": 0.014570144495075576,
|
13 |
+
"acc_norm,none": 0.4948805460750853,
|
14 |
+
"acc_norm_stderr,none": 0.01461062489030916,
|
15 |
+
"alias": " - arc_challenge"
|
16 |
+
},
|
17 |
+
"arc_easy": {
|
18 |
+
"acc,none": 0.7752525252525253,
|
19 |
+
"acc_stderr,none": 0.00856519388276215,
|
20 |
+
"acc_norm,none": 0.7617845117845118,
|
21 |
+
"acc_norm_stderr,none": 0.008741163824469185,
|
22 |
+
"alias": " - arc_easy"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"groups": {
|
26 |
+
"ai2_arc": {
|
27 |
+
"acc,none": 0.6719278466741826,
|
28 |
+
"acc_stderr,none": 0.09913737186863376,
|
29 |
+
"acc_norm,none": 0.673618940248027,
|
30 |
+
"acc_norm_stderr,none": 0.08479828648913161,
|
31 |
+
"alias": "ai2_arc"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"configs": {
|
35 |
+
"arc_challenge": {
|
36 |
+
"task": "arc_challenge",
|
37 |
+
"group": [
|
38 |
+
"ai2_arc"
|
39 |
+
],
|
40 |
+
"dataset_path": "allenai/ai2_arc",
|
41 |
+
"dataset_name": "ARC-Challenge",
|
42 |
+
"training_split": "train",
|
43 |
+
"validation_split": "validation",
|
44 |
+
"test_split": "test",
|
45 |
+
"doc_to_text": "Question: {{question}}\nAnswer:",
|
46 |
+
"doc_to_target": "{{choices.label.index(answerKey)}}",
|
47 |
+
"doc_to_choice": "{{choices.text}}",
|
48 |
+
"description": "",
|
49 |
+
"target_delimiter": " ",
|
50 |
+
"fewshot_delimiter": "\n\n",
|
51 |
+
"metric_list": [
|
52 |
+
{
|
53 |
+
"metric": "acc",
|
54 |
+
"aggregation": "mean",
|
55 |
+
"higher_is_better": true
|
56 |
+
},
|
57 |
+
{
|
58 |
+
"metric": "acc_norm",
|
59 |
+
"aggregation": "mean",
|
60 |
+
"higher_is_better": true
|
61 |
+
}
|
62 |
+
],
|
63 |
+
"output_type": "multiple_choice",
|
64 |
+
"repeats": 1,
|
65 |
+
"should_decontaminate": true,
|
66 |
+
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
|
67 |
+
"metadata": {
|
68 |
+
"version": 1.0
|
69 |
+
}
|
70 |
+
},
|
71 |
+
"arc_easy": {
|
72 |
+
"task": "arc_easy",
|
73 |
+
"group": [
|
74 |
+
"ai2_arc"
|
75 |
+
],
|
76 |
+
"dataset_path": "allenai/ai2_arc",
|
77 |
+
"dataset_name": "ARC-Easy",
|
78 |
+
"training_split": "train",
|
79 |
+
"validation_split": "validation",
|
80 |
+
"test_split": "test",
|
81 |
+
"doc_to_text": "Question: {{question}}\nAnswer:",
|
82 |
+
"doc_to_target": "{{choices.label.index(answerKey)}}",
|
83 |
+
"doc_to_choice": "{{choices.text}}",
|
84 |
+
"description": "",
|
85 |
+
"target_delimiter": " ",
|
86 |
+
"fewshot_delimiter": "\n\n",
|
87 |
+
"metric_list": [
|
88 |
+
{
|
89 |
+
"metric": "acc",
|
90 |
+
"aggregation": "mean",
|
91 |
+
"higher_is_better": true
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"metric": "acc_norm",
|
95 |
+
"aggregation": "mean",
|
96 |
+
"higher_is_better": true
|
97 |
+
}
|
98 |
+
],
|
99 |
+
"output_type": "multiple_choice",
|
100 |
+
"repeats": 1,
|
101 |
+
"should_decontaminate": true,
|
102 |
+
"doc_to_decontamination_query": "Question: {{question}}\nAnswer:",
|
103 |
+
"metadata": {
|
104 |
+
"version": 1.0
|
105 |
+
}
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"versions": {
|
109 |
+
"ai2_arc": "N/A",
|
110 |
+
"arc_challenge": 1.0,
|
111 |
+
"arc_easy": 1.0
|
112 |
+
},
|
113 |
+
"n-shot": {
|
114 |
+
"ai2_arc": 0,
|
115 |
+
"arc_challenge": 0,
|
116 |
+
"arc_easy": 0
|
117 |
+
},
|
118 |
+
"config": {
|
119 |
+
"model": "hf",
|
120 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
121 |
+
"batch_size": "auto",
|
122 |
+
"batch_sizes": [
|
123 |
+
64
|
124 |
+
],
|
125 |
+
"device": null,
|
126 |
+
"use_cache": null,
|
127 |
+
"limit": null,
|
128 |
+
"bootstrap_iters": 100000,
|
129 |
+
"gen_kwargs": null
|
130 |
+
},
|
131 |
+
"git_hash": "97a2520"
|
132 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/ai2_arc/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:77217198bc876c5df1eb0341f49d2a19ae829c5ea26b4b63998f688e3b2ecb3c
|
3 |
+
size 16850
|
lm-eval-output/m8than/Finch-14B-Final2/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:179bcaf15e2011ae465f7791336b6cf8796dc366568de2f24b3f42502458950d
|
3 |
+
size 1075088
|
lm-eval-output/m8than/Finch-14B-Final2/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"anli": {
|
4 |
+
"acc,none": 0.52875,
|
5 |
+
"acc_stderr,none": 0.05343419822726108,
|
6 |
+
"alias": "anli"
|
7 |
+
},
|
8 |
+
"anli_r1": {
|
9 |
+
"acc,none": 0.638,
|
10 |
+
"acc_stderr,none": 0.015204840912919501,
|
11 |
+
"alias": " - anli_r1"
|
12 |
+
},
|
13 |
+
"anli_r2": {
|
14 |
+
"acc,none": 0.46,
|
15 |
+
"acc_stderr,none": 0.015768596914394382,
|
16 |
+
"alias": " - anli_r2"
|
17 |
+
},
|
18 |
+
"anli_r3": {
|
19 |
+
"acc,none": 0.495,
|
20 |
+
"acc_stderr,none": 0.014439052549669151,
|
21 |
+
"alias": " - anli_r3"
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"groups": {
|
25 |
+
"anli": {
|
26 |
+
"acc,none": 0.52875,
|
27 |
+
"acc_stderr,none": 0.05343419822726108,
|
28 |
+
"alias": "anli"
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"configs": {
|
32 |
+
"anli_r1": {
|
33 |
+
"task": "anli_r1",
|
34 |
+
"group": [
|
35 |
+
"anli"
|
36 |
+
],
|
37 |
+
"dataset_path": "anli",
|
38 |
+
"training_split": "train_r1",
|
39 |
+
"validation_split": "dev_r1",
|
40 |
+
"test_split": "test_r1",
|
41 |
+
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
|
42 |
+
"doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
|
43 |
+
"doc_to_choice": [
|
44 |
+
"True",
|
45 |
+
"Neither",
|
46 |
+
"False"
|
47 |
+
],
|
48 |
+
"description": "",
|
49 |
+
"target_delimiter": " ",
|
50 |
+
"fewshot_delimiter": "\n\n",
|
51 |
+
"metric_list": [
|
52 |
+
{
|
53 |
+
"metric": "acc",
|
54 |
+
"aggregation": "mean",
|
55 |
+
"higher_is_better": true
|
56 |
+
}
|
57 |
+
],
|
58 |
+
"output_type": "multiple_choice",
|
59 |
+
"repeats": 1,
|
60 |
+
"should_decontaminate": true,
|
61 |
+
"doc_to_decontamination_query": "premise",
|
62 |
+
"metadata": {
|
63 |
+
"version": 1.0
|
64 |
+
}
|
65 |
+
},
|
66 |
+
"anli_r2": {
|
67 |
+
"task": "anli_r2",
|
68 |
+
"group": [
|
69 |
+
"anli"
|
70 |
+
],
|
71 |
+
"dataset_path": "anli",
|
72 |
+
"training_split": "train_r2",
|
73 |
+
"validation_split": "dev_r2",
|
74 |
+
"test_split": "test_r2",
|
75 |
+
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
|
76 |
+
"doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
|
77 |
+
"doc_to_choice": [
|
78 |
+
"True",
|
79 |
+
"Neither",
|
80 |
+
"False"
|
81 |
+
],
|
82 |
+
"description": "",
|
83 |
+
"target_delimiter": " ",
|
84 |
+
"fewshot_delimiter": "\n\n",
|
85 |
+
"metric_list": [
|
86 |
+
{
|
87 |
+
"metric": "acc",
|
88 |
+
"aggregation": "mean",
|
89 |
+
"higher_is_better": true
|
90 |
+
}
|
91 |
+
],
|
92 |
+
"output_type": "multiple_choice",
|
93 |
+
"repeats": 1,
|
94 |
+
"should_decontaminate": true,
|
95 |
+
"doc_to_decontamination_query": "premise",
|
96 |
+
"metadata": {
|
97 |
+
"version": 1.0
|
98 |
+
}
|
99 |
+
},
|
100 |
+
"anli_r3": {
|
101 |
+
"task": "anli_r3",
|
102 |
+
"group": [
|
103 |
+
"anli"
|
104 |
+
],
|
105 |
+
"dataset_path": "anli",
|
106 |
+
"training_split": "train_r3",
|
107 |
+
"validation_split": "dev_r3",
|
108 |
+
"test_split": "test_r3",
|
109 |
+
"doc_to_text": "{{premise}}\nQuestion: {{hypothesis}} True, False, or Neither?\nAnswer:",
|
110 |
+
"doc_to_target": "{{['True', 'Neither', 'False'][label]}}",
|
111 |
+
"doc_to_choice": [
|
112 |
+
"True",
|
113 |
+
"Neither",
|
114 |
+
"False"
|
115 |
+
],
|
116 |
+
"description": "",
|
117 |
+
"target_delimiter": " ",
|
118 |
+
"fewshot_delimiter": "\n\n",
|
119 |
+
"metric_list": [
|
120 |
+
{
|
121 |
+
"metric": "acc",
|
122 |
+
"aggregation": "mean",
|
123 |
+
"higher_is_better": true
|
124 |
+
}
|
125 |
+
],
|
126 |
+
"output_type": "multiple_choice",
|
127 |
+
"repeats": 1,
|
128 |
+
"should_decontaminate": true,
|
129 |
+
"doc_to_decontamination_query": "premise",
|
130 |
+
"metadata": {
|
131 |
+
"version": 1.0
|
132 |
+
}
|
133 |
+
}
|
134 |
+
},
|
135 |
+
"versions": {
|
136 |
+
"anli": "N/A",
|
137 |
+
"anli_r1": 1.0,
|
138 |
+
"anli_r2": 1.0,
|
139 |
+
"anli_r3": 1.0
|
140 |
+
},
|
141 |
+
"n-shot": {
|
142 |
+
"anli": 0,
|
143 |
+
"anli_r1": 0,
|
144 |
+
"anli_r2": 0,
|
145 |
+
"anli_r3": 0
|
146 |
+
},
|
147 |
+
"config": {
|
148 |
+
"model": "hf",
|
149 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
150 |
+
"batch_size": "auto",
|
151 |
+
"batch_sizes": [
|
152 |
+
64
|
153 |
+
],
|
154 |
+
"device": null,
|
155 |
+
"use_cache": null,
|
156 |
+
"limit": null,
|
157 |
+
"bootstrap_iters": 100000,
|
158 |
+
"gen_kwargs": null
|
159 |
+
},
|
160 |
+
"git_hash": "97a2520"
|
161 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/anli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:67f4574da0448bf7adfd4ca4688e46accb91c348c1ab93dd9b3a11fdff202580
|
3 |
+
size 11875
|
lm-eval-output/m8than/Finch-14B-Final2/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f6b653fa6f520d2ede70fda30ae1fbf831940d4a153ba32a79cff82dec866aa
|
3 |
+
size 4208896
|
lm-eval-output/m8than/Finch-14B-Final2/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,2249 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"blimp": {
|
4 |
+
"acc,none": 0.8471641791044776,
|
5 |
+
"acc_stderr,none": 0.13643998503642368,
|
6 |
+
"alias": "blimp"
|
7 |
+
},
|
8 |
+
"blimp_adjunct_island": {
|
9 |
+
"acc,none": 0.907,
|
10 |
+
"acc_stderr,none": 0.009188875634996672,
|
11 |
+
"alias": " - blimp_adjunct_island"
|
12 |
+
},
|
13 |
+
"blimp_anaphor_gender_agreement": {
|
14 |
+
"acc,none": 0.994,
|
15 |
+
"acc_stderr,none": 0.002443352199329855,
|
16 |
+
"alias": " - blimp_anaphor_gender_agreement"
|
17 |
+
},
|
18 |
+
"blimp_anaphor_number_agreement": {
|
19 |
+
"acc,none": 0.994,
|
20 |
+
"acc_stderr,none": 0.0024433521993298176,
|
21 |
+
"alias": " - blimp_anaphor_number_agreement"
|
22 |
+
},
|
23 |
+
"blimp_animate_subject_passive": {
|
24 |
+
"acc,none": 0.851,
|
25 |
+
"acc_stderr,none": 0.011266140684632156,
|
26 |
+
"alias": " - blimp_animate_subject_passive"
|
27 |
+
},
|
28 |
+
"blimp_animate_subject_trans": {
|
29 |
+
"acc,none": 0.929,
|
30 |
+
"acc_stderr,none": 0.00812557844248792,
|
31 |
+
"alias": " - blimp_animate_subject_trans"
|
32 |
+
},
|
33 |
+
"blimp_causative": {
|
34 |
+
"acc,none": 0.801,
|
35 |
+
"acc_stderr,none": 0.012631649083099175,
|
36 |
+
"alias": " - blimp_causative"
|
37 |
+
},
|
38 |
+
"blimp_complex_NP_island": {
|
39 |
+
"acc,none": 0.63,
|
40 |
+
"acc_stderr,none": 0.01527525231651936,
|
41 |
+
"alias": " - blimp_complex_NP_island"
|
42 |
+
},
|
43 |
+
"blimp_coordinate_structure_constraint_complex_left_branch": {
|
44 |
+
"acc,none": 0.81,
|
45 |
+
"acc_stderr,none": 0.012411851354816332,
|
46 |
+
"alias": " - blimp_coordinate_structure_constraint_complex_left_branch"
|
47 |
+
},
|
48 |
+
"blimp_coordinate_structure_constraint_object_extraction": {
|
49 |
+
"acc,none": 0.897,
|
50 |
+
"acc_stderr,none": 0.00961683333969579,
|
51 |
+
"alias": " - blimp_coordinate_structure_constraint_object_extraction"
|
52 |
+
},
|
53 |
+
"blimp_determiner_noun_agreement_1": {
|
54 |
+
"acc,none": 0.995,
|
55 |
+
"acc_stderr,none": 0.002231586874844882,
|
56 |
+
"alias": " - blimp_determiner_noun_agreement_1"
|
57 |
+
},
|
58 |
+
"blimp_determiner_noun_agreement_2": {
|
59 |
+
"acc,none": 0.987,
|
60 |
+
"acc_stderr,none": 0.0035838308894036368,
|
61 |
+
"alias": " - blimp_determiner_noun_agreement_2"
|
62 |
+
},
|
63 |
+
"blimp_determiner_noun_agreement_irregular_1": {
|
64 |
+
"acc,none": 0.95,
|
65 |
+
"acc_stderr,none": 0.006895472974897898,
|
66 |
+
"alias": " - blimp_determiner_noun_agreement_irregular_1"
|
67 |
+
},
|
68 |
+
"blimp_determiner_noun_agreement_irregular_2": {
|
69 |
+
"acc,none": 0.962,
|
70 |
+
"acc_stderr,none": 0.006049181150584936,
|
71 |
+
"alias": " - blimp_determiner_noun_agreement_irregular_2"
|
72 |
+
},
|
73 |
+
"blimp_determiner_noun_agreement_with_adj_2": {
|
74 |
+
"acc,none": 0.974,
|
75 |
+
"acc_stderr,none": 0.005034813735318205,
|
76 |
+
"alias": " - blimp_determiner_noun_agreement_with_adj_2"
|
77 |
+
},
|
78 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_1": {
|
79 |
+
"acc,none": 0.95,
|
80 |
+
"acc_stderr,none": 0.0068954729748978835,
|
81 |
+
"alias": " - blimp_determiner_noun_agreement_with_adj_irregular_1"
|
82 |
+
},
|
83 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_2": {
|
84 |
+
"acc,none": 0.93,
|
85 |
+
"acc_stderr,none": 0.008072494358323492,
|
86 |
+
"alias": " - blimp_determiner_noun_agreement_with_adj_irregular_2"
|
87 |
+
},
|
88 |
+
"blimp_determiner_noun_agreement_with_adjective_1": {
|
89 |
+
"acc,none": 0.987,
|
90 |
+
"acc_stderr,none": 0.003583830889403635,
|
91 |
+
"alias": " - blimp_determiner_noun_agreement_with_adjective_1"
|
92 |
+
},
|
93 |
+
"blimp_distractor_agreement_relational_noun": {
|
94 |
+
"acc,none": 0.962,
|
95 |
+
"acc_stderr,none": 0.006049181150584946,
|
96 |
+
"alias": " - blimp_distractor_agreement_relational_noun"
|
97 |
+
},
|
98 |
+
"blimp_distractor_agreement_relative_clause": {
|
99 |
+
"acc,none": 0.903,
|
100 |
+
"acc_stderr,none": 0.009363689373248104,
|
101 |
+
"alias": " - blimp_distractor_agreement_relative_clause"
|
102 |
+
},
|
103 |
+
"blimp_drop_argument": {
|
104 |
+
"acc,none": 0.78,
|
105 |
+
"acc_stderr,none": 0.013106173040661768,
|
106 |
+
"alias": " - blimp_drop_argument"
|
107 |
+
},
|
108 |
+
"blimp_ellipsis_n_bar_1": {
|
109 |
+
"acc,none": 0.816,
|
110 |
+
"acc_stderr,none": 0.012259457340938577,
|
111 |
+
"alias": " - blimp_ellipsis_n_bar_1"
|
112 |
+
},
|
113 |
+
"blimp_ellipsis_n_bar_2": {
|
114 |
+
"acc,none": 0.965,
|
115 |
+
"acc_stderr,none": 0.0058145342727349576,
|
116 |
+
"alias": " - blimp_ellipsis_n_bar_2"
|
117 |
+
},
|
118 |
+
"blimp_existential_there_object_raising": {
|
119 |
+
"acc,none": 0.84,
|
120 |
+
"acc_stderr,none": 0.011598902298689004,
|
121 |
+
"alias": " - blimp_existential_there_object_raising"
|
122 |
+
},
|
123 |
+
"blimp_existential_there_quantifiers_1": {
|
124 |
+
"acc,none": 0.999,
|
125 |
+
"acc_stderr,none": 0.0010000000000000098,
|
126 |
+
"alias": " - blimp_existential_there_quantifiers_1"
|
127 |
+
},
|
128 |
+
"blimp_existential_there_quantifiers_2": {
|
129 |
+
"acc,none": 0.363,
|
130 |
+
"acc_stderr,none": 0.015213890444671287,
|
131 |
+
"alias": " - blimp_existential_there_quantifiers_2"
|
132 |
+
},
|
133 |
+
"blimp_existential_there_subject_raising": {
|
134 |
+
"acc,none": 0.896,
|
135 |
+
"acc_stderr,none": 0.00965801621852429,
|
136 |
+
"alias": " - blimp_existential_there_subject_raising"
|
137 |
+
},
|
138 |
+
"blimp_expletive_it_object_raising": {
|
139 |
+
"acc,none": 0.809,
|
140 |
+
"acc_stderr,none": 0.012436787112179508,
|
141 |
+
"alias": " - blimp_expletive_it_object_raising"
|
142 |
+
},
|
143 |
+
"blimp_inchoative": {
|
144 |
+
"acc,none": 0.728,
|
145 |
+
"acc_stderr,none": 0.014078856992462621,
|
146 |
+
"alias": " - blimp_inchoative"
|
147 |
+
},
|
148 |
+
"blimp_intransitive": {
|
149 |
+
"acc,none": 0.849,
|
150 |
+
"acc_stderr,none": 0.011328165223341681,
|
151 |
+
"alias": " - blimp_intransitive"
|
152 |
+
},
|
153 |
+
"blimp_irregular_past_participle_adjectives": {
|
154 |
+
"acc,none": 0.878,
|
155 |
+
"acc_stderr,none": 0.010354864712936703,
|
156 |
+
"alias": " - blimp_irregular_past_participle_adjectives"
|
157 |
+
},
|
158 |
+
"blimp_irregular_past_participle_verbs": {
|
159 |
+
"acc,none": 0.928,
|
160 |
+
"acc_stderr,none": 0.008178195576218681,
|
161 |
+
"alias": " - blimp_irregular_past_participle_verbs"
|
162 |
+
},
|
163 |
+
"blimp_irregular_plural_subject_verb_agreement_1": {
|
164 |
+
"acc,none": 0.945,
|
165 |
+
"acc_stderr,none": 0.007212976294639238,
|
166 |
+
"alias": " - blimp_irregular_plural_subject_verb_agreement_1"
|
167 |
+
},
|
168 |
+
"blimp_irregular_plural_subject_verb_agreement_2": {
|
169 |
+
"acc,none": 0.953,
|
170 |
+
"acc_stderr,none": 0.00669595667816304,
|
171 |
+
"alias": " - blimp_irregular_plural_subject_verb_agreement_2"
|
172 |
+
},
|
173 |
+
"blimp_left_branch_island_echo_question": {
|
174 |
+
"acc,none": 0.708,
|
175 |
+
"acc_stderr,none": 0.014385511563477347,
|
176 |
+
"alias": " - blimp_left_branch_island_echo_question"
|
177 |
+
},
|
178 |
+
"blimp_left_branch_island_simple_question": {
|
179 |
+
"acc,none": 0.898,
|
180 |
+
"acc_stderr,none": 0.009575368801653886,
|
181 |
+
"alias": " - blimp_left_branch_island_simple_question"
|
182 |
+
},
|
183 |
+
"blimp_matrix_question_npi_licensor_present": {
|
184 |
+
"acc,none": 0.527,
|
185 |
+
"acc_stderr,none": 0.015796218551302615,
|
186 |
+
"alias": " - blimp_matrix_question_npi_licensor_present"
|
187 |
+
},
|
188 |
+
"blimp_npi_present_1": {
|
189 |
+
"acc,none": 0.683,
|
190 |
+
"acc_stderr,none": 0.014721675438880219,
|
191 |
+
"alias": " - blimp_npi_present_1"
|
192 |
+
},
|
193 |
+
"blimp_npi_present_2": {
|
194 |
+
"acc,none": 0.719,
|
195 |
+
"acc_stderr,none": 0.01422115470843494,
|
196 |
+
"alias": " - blimp_npi_present_2"
|
197 |
+
},
|
198 |
+
"blimp_only_npi_licensor_present": {
|
199 |
+
"acc,none": 0.907,
|
200 |
+
"acc_stderr,none": 0.009188875634996695,
|
201 |
+
"alias": " - blimp_only_npi_licensor_present"
|
202 |
+
},
|
203 |
+
"blimp_only_npi_scope": {
|
204 |
+
"acc,none": 0.813,
|
205 |
+
"acc_stderr,none": 0.01233625482807414,
|
206 |
+
"alias": " - blimp_only_npi_scope"
|
207 |
+
},
|
208 |
+
"blimp_passive_1": {
|
209 |
+
"acc,none": 0.914,
|
210 |
+
"acc_stderr,none": 0.008870325962594766,
|
211 |
+
"alias": " - blimp_passive_1"
|
212 |
+
},
|
213 |
+
"blimp_passive_2": {
|
214 |
+
"acc,none": 0.925,
|
215 |
+
"acc_stderr,none": 0.008333333333333354,
|
216 |
+
"alias": " - blimp_passive_2"
|
217 |
+
},
|
218 |
+
"blimp_principle_A_c_command": {
|
219 |
+
"acc,none": 0.794,
|
220 |
+
"acc_stderr,none": 0.012795613612786551,
|
221 |
+
"alias": " - blimp_principle_A_c_command"
|
222 |
+
},
|
223 |
+
"blimp_principle_A_case_1": {
|
224 |
+
"acc,none": 0.996,
|
225 |
+
"acc_stderr,none": 0.0019969947390987295,
|
226 |
+
"alias": " - blimp_principle_A_case_1"
|
227 |
+
},
|
228 |
+
"blimp_principle_A_case_2": {
|
229 |
+
"acc,none": 0.963,
|
230 |
+
"acc_stderr,none": 0.005972157622389639,
|
231 |
+
"alias": " - blimp_principle_A_case_2"
|
232 |
+
},
|
233 |
+
"blimp_principle_A_domain_1": {
|
234 |
+
"acc,none": 0.922,
|
235 |
+
"acc_stderr,none": 0.008484573530118585,
|
236 |
+
"alias": " - blimp_principle_A_domain_1"
|
237 |
+
},
|
238 |
+
"blimp_principle_A_domain_2": {
|
239 |
+
"acc,none": 0.854,
|
240 |
+
"acc_stderr,none": 0.011171786285496496,
|
241 |
+
"alias": " - blimp_principle_A_domain_2"
|
242 |
+
},
|
243 |
+
"blimp_principle_A_domain_3": {
|
244 |
+
"acc,none": 0.726,
|
245 |
+
"acc_stderr,none": 0.01411109928825959,
|
246 |
+
"alias": " - blimp_principle_A_domain_3"
|
247 |
+
},
|
248 |
+
"blimp_principle_A_reconstruction": {
|
249 |
+
"acc,none": 0.705,
|
250 |
+
"acc_stderr,none": 0.01442855443844551,
|
251 |
+
"alias": " - blimp_principle_A_reconstruction"
|
252 |
+
},
|
253 |
+
"blimp_regular_plural_subject_verb_agreement_1": {
|
254 |
+
"acc,none": 0.971,
|
255 |
+
"acc_stderr,none": 0.005309160685756987,
|
256 |
+
"alias": " - blimp_regular_plural_subject_verb_agreement_1"
|
257 |
+
},
|
258 |
+
"blimp_regular_plural_subject_verb_agreement_2": {
|
259 |
+
"acc,none": 0.944,
|
260 |
+
"acc_stderr,none": 0.007274401481697064,
|
261 |
+
"alias": " - blimp_regular_plural_subject_verb_agreement_2"
|
262 |
+
},
|
263 |
+
"blimp_sentential_negation_npi_licensor_present": {
|
264 |
+
"acc,none": 0.999,
|
265 |
+
"acc_stderr,none": 0.0010000000000000065,
|
266 |
+
"alias": " - blimp_sentential_negation_npi_licensor_present"
|
267 |
+
},
|
268 |
+
"blimp_sentential_negation_npi_scope": {
|
269 |
+
"acc,none": 0.677,
|
270 |
+
"acc_stderr,none": 0.014794927843348632,
|
271 |
+
"alias": " - blimp_sentential_negation_npi_scope"
|
272 |
+
},
|
273 |
+
"blimp_sentential_subject_island": {
|
274 |
+
"acc,none": 0.508,
|
275 |
+
"acc_stderr,none": 0.015817274929209008,
|
276 |
+
"alias": " - blimp_sentential_subject_island"
|
277 |
+
},
|
278 |
+
"blimp_superlative_quantifiers_1": {
|
279 |
+
"acc,none": 0.711,
|
280 |
+
"acc_stderr,none": 0.014341711358296183,
|
281 |
+
"alias": " - blimp_superlative_quantifiers_1"
|
282 |
+
},
|
283 |
+
"blimp_superlative_quantifiers_2": {
|
284 |
+
"acc,none": 0.899,
|
285 |
+
"acc_stderr,none": 0.009533618929340975,
|
286 |
+
"alias": " - blimp_superlative_quantifiers_2"
|
287 |
+
},
|
288 |
+
"blimp_tough_vs_raising_1": {
|
289 |
+
"acc,none": 0.718,
|
290 |
+
"acc_stderr,none": 0.014236526215291336,
|
291 |
+
"alias": " - blimp_tough_vs_raising_1"
|
292 |
+
},
|
293 |
+
"blimp_tough_vs_raising_2": {
|
294 |
+
"acc,none": 0.897,
|
295 |
+
"acc_stderr,none": 0.009616833339695792,
|
296 |
+
"alias": " - blimp_tough_vs_raising_2"
|
297 |
+
},
|
298 |
+
"blimp_transitive": {
|
299 |
+
"acc,none": 0.93,
|
300 |
+
"acc_stderr,none": 0.008072494358323492,
|
301 |
+
"alias": " - blimp_transitive"
|
302 |
+
},
|
303 |
+
"blimp_wh_island": {
|
304 |
+
"acc,none": 0.745,
|
305 |
+
"acc_stderr,none": 0.013790038620872832,
|
306 |
+
"alias": " - blimp_wh_island"
|
307 |
+
},
|
308 |
+
"blimp_wh_questions_object_gap": {
|
309 |
+
"acc,none": 0.863,
|
310 |
+
"acc_stderr,none": 0.010878848714333303,
|
311 |
+
"alias": " - blimp_wh_questions_object_gap"
|
312 |
+
},
|
313 |
+
"blimp_wh_questions_subject_gap": {
|
314 |
+
"acc,none": 0.953,
|
315 |
+
"acc_stderr,none": 0.006695956678163038,
|
316 |
+
"alias": " - blimp_wh_questions_subject_gap"
|
317 |
+
},
|
318 |
+
"blimp_wh_questions_subject_gap_long_distance": {
|
319 |
+
"acc,none": 0.939,
|
320 |
+
"acc_stderr,none": 0.007572076091557433,
|
321 |
+
"alias": " - blimp_wh_questions_subject_gap_long_distance"
|
322 |
+
},
|
323 |
+
"blimp_wh_vs_that_no_gap": {
|
324 |
+
"acc,none": 0.986,
|
325 |
+
"acc_stderr,none": 0.0037172325482565578,
|
326 |
+
"alias": " - blimp_wh_vs_that_no_gap"
|
327 |
+
},
|
328 |
+
"blimp_wh_vs_that_no_gap_long_distance": {
|
329 |
+
"acc,none": 0.985,
|
330 |
+
"acc_stderr,none": 0.003845749574503,
|
331 |
+
"alias": " - blimp_wh_vs_that_no_gap_long_distance"
|
332 |
+
},
|
333 |
+
"blimp_wh_vs_that_with_gap": {
|
334 |
+
"acc,none": 0.431,
|
335 |
+
"acc_stderr,none": 0.0156679444881735,
|
336 |
+
"alias": " - blimp_wh_vs_that_with_gap"
|
337 |
+
},
|
338 |
+
"blimp_wh_vs_that_with_gap_long_distance": {
|
339 |
+
"acc,none": 0.388,
|
340 |
+
"acc_stderr,none": 0.015417317979911077,
|
341 |
+
"alias": " - blimp_wh_vs_that_with_gap_long_distance"
|
342 |
+
}
|
343 |
+
},
|
344 |
+
"groups": {
|
345 |
+
"blimp": {
|
346 |
+
"acc,none": 0.8471641791044776,
|
347 |
+
"acc_stderr,none": 0.13643998503642368,
|
348 |
+
"alias": "blimp"
|
349 |
+
}
|
350 |
+
},
|
351 |
+
"configs": {
|
352 |
+
"blimp_adjunct_island": {
|
353 |
+
"task": "blimp_adjunct_island",
|
354 |
+
"group": "blimp",
|
355 |
+
"dataset_path": "blimp",
|
356 |
+
"dataset_name": "adjunct_island",
|
357 |
+
"validation_split": "train",
|
358 |
+
"doc_to_text": "",
|
359 |
+
"doc_to_target": 0,
|
360 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
361 |
+
"description": "",
|
362 |
+
"target_delimiter": " ",
|
363 |
+
"fewshot_delimiter": "\n\n",
|
364 |
+
"num_fewshot": 0,
|
365 |
+
"metric_list": [
|
366 |
+
{
|
367 |
+
"metric": "acc"
|
368 |
+
}
|
369 |
+
],
|
370 |
+
"output_type": "multiple_choice",
|
371 |
+
"repeats": 1,
|
372 |
+
"should_decontaminate": true,
|
373 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
374 |
+
"metadata": {
|
375 |
+
"version": 1.0
|
376 |
+
}
|
377 |
+
},
|
378 |
+
"blimp_anaphor_gender_agreement": {
|
379 |
+
"task": "blimp_anaphor_gender_agreement",
|
380 |
+
"group": "blimp",
|
381 |
+
"dataset_path": "blimp",
|
382 |
+
"dataset_name": "anaphor_gender_agreement",
|
383 |
+
"validation_split": "train",
|
384 |
+
"doc_to_text": "",
|
385 |
+
"doc_to_target": 0,
|
386 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
387 |
+
"description": "",
|
388 |
+
"target_delimiter": " ",
|
389 |
+
"fewshot_delimiter": "\n\n",
|
390 |
+
"num_fewshot": 0,
|
391 |
+
"metric_list": [
|
392 |
+
{
|
393 |
+
"metric": "acc"
|
394 |
+
}
|
395 |
+
],
|
396 |
+
"output_type": "multiple_choice",
|
397 |
+
"repeats": 1,
|
398 |
+
"should_decontaminate": true,
|
399 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
400 |
+
"metadata": {
|
401 |
+
"version": 1.0
|
402 |
+
}
|
403 |
+
},
|
404 |
+
"blimp_anaphor_number_agreement": {
|
405 |
+
"task": "blimp_anaphor_number_agreement",
|
406 |
+
"group": "blimp",
|
407 |
+
"dataset_path": "blimp",
|
408 |
+
"dataset_name": "anaphor_number_agreement",
|
409 |
+
"validation_split": "train",
|
410 |
+
"doc_to_text": "",
|
411 |
+
"doc_to_target": 0,
|
412 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
413 |
+
"description": "",
|
414 |
+
"target_delimiter": " ",
|
415 |
+
"fewshot_delimiter": "\n\n",
|
416 |
+
"num_fewshot": 0,
|
417 |
+
"metric_list": [
|
418 |
+
{
|
419 |
+
"metric": "acc"
|
420 |
+
}
|
421 |
+
],
|
422 |
+
"output_type": "multiple_choice",
|
423 |
+
"repeats": 1,
|
424 |
+
"should_decontaminate": true,
|
425 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
426 |
+
"metadata": {
|
427 |
+
"version": 1.0
|
428 |
+
}
|
429 |
+
},
|
430 |
+
"blimp_animate_subject_passive": {
|
431 |
+
"task": "blimp_animate_subject_passive",
|
432 |
+
"group": "blimp",
|
433 |
+
"dataset_path": "blimp",
|
434 |
+
"dataset_name": "animate_subject_passive",
|
435 |
+
"validation_split": "train",
|
436 |
+
"doc_to_text": "",
|
437 |
+
"doc_to_target": 0,
|
438 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
439 |
+
"description": "",
|
440 |
+
"target_delimiter": " ",
|
441 |
+
"fewshot_delimiter": "\n\n",
|
442 |
+
"num_fewshot": 0,
|
443 |
+
"metric_list": [
|
444 |
+
{
|
445 |
+
"metric": "acc"
|
446 |
+
}
|
447 |
+
],
|
448 |
+
"output_type": "multiple_choice",
|
449 |
+
"repeats": 1,
|
450 |
+
"should_decontaminate": true,
|
451 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
452 |
+
"metadata": {
|
453 |
+
"version": 1.0
|
454 |
+
}
|
455 |
+
},
|
456 |
+
"blimp_animate_subject_trans": {
|
457 |
+
"task": "blimp_animate_subject_trans",
|
458 |
+
"group": "blimp",
|
459 |
+
"dataset_path": "blimp",
|
460 |
+
"dataset_name": "animate_subject_trans",
|
461 |
+
"validation_split": "train",
|
462 |
+
"doc_to_text": "",
|
463 |
+
"doc_to_target": 0,
|
464 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
465 |
+
"description": "",
|
466 |
+
"target_delimiter": " ",
|
467 |
+
"fewshot_delimiter": "\n\n",
|
468 |
+
"num_fewshot": 0,
|
469 |
+
"metric_list": [
|
470 |
+
{
|
471 |
+
"metric": "acc"
|
472 |
+
}
|
473 |
+
],
|
474 |
+
"output_type": "multiple_choice",
|
475 |
+
"repeats": 1,
|
476 |
+
"should_decontaminate": true,
|
477 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
478 |
+
"metadata": {
|
479 |
+
"version": 1.0
|
480 |
+
}
|
481 |
+
},
|
482 |
+
"blimp_causative": {
|
483 |
+
"task": "blimp_causative",
|
484 |
+
"group": "blimp",
|
485 |
+
"dataset_path": "blimp",
|
486 |
+
"dataset_name": "causative",
|
487 |
+
"validation_split": "train",
|
488 |
+
"doc_to_text": "",
|
489 |
+
"doc_to_target": 0,
|
490 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
491 |
+
"description": "",
|
492 |
+
"target_delimiter": " ",
|
493 |
+
"fewshot_delimiter": "\n\n",
|
494 |
+
"num_fewshot": 0,
|
495 |
+
"metric_list": [
|
496 |
+
{
|
497 |
+
"metric": "acc"
|
498 |
+
}
|
499 |
+
],
|
500 |
+
"output_type": "multiple_choice",
|
501 |
+
"repeats": 1,
|
502 |
+
"should_decontaminate": true,
|
503 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
504 |
+
"metadata": {
|
505 |
+
"version": 1.0
|
506 |
+
}
|
507 |
+
},
|
508 |
+
"blimp_complex_NP_island": {
|
509 |
+
"task": "blimp_complex_NP_island",
|
510 |
+
"group": "blimp",
|
511 |
+
"dataset_path": "blimp",
|
512 |
+
"dataset_name": "complex_NP_island",
|
513 |
+
"validation_split": "train",
|
514 |
+
"doc_to_text": "",
|
515 |
+
"doc_to_target": 0,
|
516 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
517 |
+
"description": "",
|
518 |
+
"target_delimiter": " ",
|
519 |
+
"fewshot_delimiter": "\n\n",
|
520 |
+
"num_fewshot": 0,
|
521 |
+
"metric_list": [
|
522 |
+
{
|
523 |
+
"metric": "acc"
|
524 |
+
}
|
525 |
+
],
|
526 |
+
"output_type": "multiple_choice",
|
527 |
+
"repeats": 1,
|
528 |
+
"should_decontaminate": true,
|
529 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
530 |
+
"metadata": {
|
531 |
+
"version": 1.0
|
532 |
+
}
|
533 |
+
},
|
534 |
+
"blimp_coordinate_structure_constraint_complex_left_branch": {
|
535 |
+
"task": "blimp_coordinate_structure_constraint_complex_left_branch",
|
536 |
+
"group": "blimp",
|
537 |
+
"dataset_path": "blimp",
|
538 |
+
"dataset_name": "coordinate_structure_constraint_complex_left_branch",
|
539 |
+
"validation_split": "train",
|
540 |
+
"doc_to_text": "",
|
541 |
+
"doc_to_target": 0,
|
542 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
543 |
+
"description": "",
|
544 |
+
"target_delimiter": " ",
|
545 |
+
"fewshot_delimiter": "\n\n",
|
546 |
+
"num_fewshot": 0,
|
547 |
+
"metric_list": [
|
548 |
+
{
|
549 |
+
"metric": "acc"
|
550 |
+
}
|
551 |
+
],
|
552 |
+
"output_type": "multiple_choice",
|
553 |
+
"repeats": 1,
|
554 |
+
"should_decontaminate": true,
|
555 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
556 |
+
"metadata": {
|
557 |
+
"version": 1.0
|
558 |
+
}
|
559 |
+
},
|
560 |
+
"blimp_coordinate_structure_constraint_object_extraction": {
|
561 |
+
"task": "blimp_coordinate_structure_constraint_object_extraction",
|
562 |
+
"group": "blimp",
|
563 |
+
"dataset_path": "blimp",
|
564 |
+
"dataset_name": "coordinate_structure_constraint_object_extraction",
|
565 |
+
"validation_split": "train",
|
566 |
+
"doc_to_text": "",
|
567 |
+
"doc_to_target": 0,
|
568 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
569 |
+
"description": "",
|
570 |
+
"target_delimiter": " ",
|
571 |
+
"fewshot_delimiter": "\n\n",
|
572 |
+
"num_fewshot": 0,
|
573 |
+
"metric_list": [
|
574 |
+
{
|
575 |
+
"metric": "acc"
|
576 |
+
}
|
577 |
+
],
|
578 |
+
"output_type": "multiple_choice",
|
579 |
+
"repeats": 1,
|
580 |
+
"should_decontaminate": true,
|
581 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
582 |
+
"metadata": {
|
583 |
+
"version": 1.0
|
584 |
+
}
|
585 |
+
},
|
586 |
+
"blimp_determiner_noun_agreement_1": {
|
587 |
+
"task": "blimp_determiner_noun_agreement_1",
|
588 |
+
"group": "blimp",
|
589 |
+
"dataset_path": "blimp",
|
590 |
+
"dataset_name": "determiner_noun_agreement_1",
|
591 |
+
"validation_split": "train",
|
592 |
+
"doc_to_text": "",
|
593 |
+
"doc_to_target": 0,
|
594 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
595 |
+
"description": "",
|
596 |
+
"target_delimiter": " ",
|
597 |
+
"fewshot_delimiter": "\n\n",
|
598 |
+
"num_fewshot": 0,
|
599 |
+
"metric_list": [
|
600 |
+
{
|
601 |
+
"metric": "acc"
|
602 |
+
}
|
603 |
+
],
|
604 |
+
"output_type": "multiple_choice",
|
605 |
+
"repeats": 1,
|
606 |
+
"should_decontaminate": true,
|
607 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
608 |
+
"metadata": {
|
609 |
+
"version": 1.0
|
610 |
+
}
|
611 |
+
},
|
612 |
+
"blimp_determiner_noun_agreement_2": {
|
613 |
+
"task": "blimp_determiner_noun_agreement_2",
|
614 |
+
"group": "blimp",
|
615 |
+
"dataset_path": "blimp",
|
616 |
+
"dataset_name": "determiner_noun_agreement_2",
|
617 |
+
"validation_split": "train",
|
618 |
+
"doc_to_text": "",
|
619 |
+
"doc_to_target": 0,
|
620 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
621 |
+
"description": "",
|
622 |
+
"target_delimiter": " ",
|
623 |
+
"fewshot_delimiter": "\n\n",
|
624 |
+
"num_fewshot": 0,
|
625 |
+
"metric_list": [
|
626 |
+
{
|
627 |
+
"metric": "acc"
|
628 |
+
}
|
629 |
+
],
|
630 |
+
"output_type": "multiple_choice",
|
631 |
+
"repeats": 1,
|
632 |
+
"should_decontaminate": true,
|
633 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
634 |
+
"metadata": {
|
635 |
+
"version": 1.0
|
636 |
+
}
|
637 |
+
},
|
638 |
+
"blimp_determiner_noun_agreement_irregular_1": {
|
639 |
+
"task": "blimp_determiner_noun_agreement_irregular_1",
|
640 |
+
"group": "blimp",
|
641 |
+
"dataset_path": "blimp",
|
642 |
+
"dataset_name": "determiner_noun_agreement_irregular_1",
|
643 |
+
"validation_split": "train",
|
644 |
+
"doc_to_text": "",
|
645 |
+
"doc_to_target": 0,
|
646 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
647 |
+
"description": "",
|
648 |
+
"target_delimiter": " ",
|
649 |
+
"fewshot_delimiter": "\n\n",
|
650 |
+
"num_fewshot": 0,
|
651 |
+
"metric_list": [
|
652 |
+
{
|
653 |
+
"metric": "acc"
|
654 |
+
}
|
655 |
+
],
|
656 |
+
"output_type": "multiple_choice",
|
657 |
+
"repeats": 1,
|
658 |
+
"should_decontaminate": true,
|
659 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
660 |
+
"metadata": {
|
661 |
+
"version": 1.0
|
662 |
+
}
|
663 |
+
},
|
664 |
+
"blimp_determiner_noun_agreement_irregular_2": {
|
665 |
+
"task": "blimp_determiner_noun_agreement_irregular_2",
|
666 |
+
"group": "blimp",
|
667 |
+
"dataset_path": "blimp",
|
668 |
+
"dataset_name": "determiner_noun_agreement_irregular_2",
|
669 |
+
"validation_split": "train",
|
670 |
+
"doc_to_text": "",
|
671 |
+
"doc_to_target": 0,
|
672 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
673 |
+
"description": "",
|
674 |
+
"target_delimiter": " ",
|
675 |
+
"fewshot_delimiter": "\n\n",
|
676 |
+
"num_fewshot": 0,
|
677 |
+
"metric_list": [
|
678 |
+
{
|
679 |
+
"metric": "acc"
|
680 |
+
}
|
681 |
+
],
|
682 |
+
"output_type": "multiple_choice",
|
683 |
+
"repeats": 1,
|
684 |
+
"should_decontaminate": true,
|
685 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
686 |
+
"metadata": {
|
687 |
+
"version": 1.0
|
688 |
+
}
|
689 |
+
},
|
690 |
+
"blimp_determiner_noun_agreement_with_adj_2": {
|
691 |
+
"task": "blimp_determiner_noun_agreement_with_adj_2",
|
692 |
+
"group": "blimp",
|
693 |
+
"dataset_path": "blimp",
|
694 |
+
"dataset_name": "determiner_noun_agreement_with_adj_2",
|
695 |
+
"validation_split": "train",
|
696 |
+
"doc_to_text": "",
|
697 |
+
"doc_to_target": 0,
|
698 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
699 |
+
"description": "",
|
700 |
+
"target_delimiter": " ",
|
701 |
+
"fewshot_delimiter": "\n\n",
|
702 |
+
"num_fewshot": 0,
|
703 |
+
"metric_list": [
|
704 |
+
{
|
705 |
+
"metric": "acc"
|
706 |
+
}
|
707 |
+
],
|
708 |
+
"output_type": "multiple_choice",
|
709 |
+
"repeats": 1,
|
710 |
+
"should_decontaminate": true,
|
711 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
712 |
+
"metadata": {
|
713 |
+
"version": 1.0
|
714 |
+
}
|
715 |
+
},
|
716 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_1": {
|
717 |
+
"task": "blimp_determiner_noun_agreement_with_adj_irregular_1",
|
718 |
+
"group": "blimp",
|
719 |
+
"dataset_path": "blimp",
|
720 |
+
"dataset_name": "determiner_noun_agreement_with_adj_irregular_1",
|
721 |
+
"validation_split": "train",
|
722 |
+
"doc_to_text": "",
|
723 |
+
"doc_to_target": 0,
|
724 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
725 |
+
"description": "",
|
726 |
+
"target_delimiter": " ",
|
727 |
+
"fewshot_delimiter": "\n\n",
|
728 |
+
"num_fewshot": 0,
|
729 |
+
"metric_list": [
|
730 |
+
{
|
731 |
+
"metric": "acc"
|
732 |
+
}
|
733 |
+
],
|
734 |
+
"output_type": "multiple_choice",
|
735 |
+
"repeats": 1,
|
736 |
+
"should_decontaminate": true,
|
737 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
738 |
+
"metadata": {
|
739 |
+
"version": 1.0
|
740 |
+
}
|
741 |
+
},
|
742 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_2": {
|
743 |
+
"task": "blimp_determiner_noun_agreement_with_adj_irregular_2",
|
744 |
+
"group": "blimp",
|
745 |
+
"dataset_path": "blimp",
|
746 |
+
"dataset_name": "determiner_noun_agreement_with_adj_irregular_2",
|
747 |
+
"validation_split": "train",
|
748 |
+
"doc_to_text": "",
|
749 |
+
"doc_to_target": 0,
|
750 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
751 |
+
"description": "",
|
752 |
+
"target_delimiter": " ",
|
753 |
+
"fewshot_delimiter": "\n\n",
|
754 |
+
"num_fewshot": 0,
|
755 |
+
"metric_list": [
|
756 |
+
{
|
757 |
+
"metric": "acc"
|
758 |
+
}
|
759 |
+
],
|
760 |
+
"output_type": "multiple_choice",
|
761 |
+
"repeats": 1,
|
762 |
+
"should_decontaminate": true,
|
763 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
764 |
+
"metadata": {
|
765 |
+
"version": 1.0
|
766 |
+
}
|
767 |
+
},
|
768 |
+
"blimp_determiner_noun_agreement_with_adjective_1": {
|
769 |
+
"task": "blimp_determiner_noun_agreement_with_adjective_1",
|
770 |
+
"group": "blimp",
|
771 |
+
"dataset_path": "blimp",
|
772 |
+
"dataset_name": "determiner_noun_agreement_with_adjective_1",
|
773 |
+
"validation_split": "train",
|
774 |
+
"doc_to_text": "",
|
775 |
+
"doc_to_target": 0,
|
776 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
777 |
+
"description": "",
|
778 |
+
"target_delimiter": " ",
|
779 |
+
"fewshot_delimiter": "\n\n",
|
780 |
+
"num_fewshot": 0,
|
781 |
+
"metric_list": [
|
782 |
+
{
|
783 |
+
"metric": "acc"
|
784 |
+
}
|
785 |
+
],
|
786 |
+
"output_type": "multiple_choice",
|
787 |
+
"repeats": 1,
|
788 |
+
"should_decontaminate": true,
|
789 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
790 |
+
"metadata": {
|
791 |
+
"version": 1.0
|
792 |
+
}
|
793 |
+
},
|
794 |
+
"blimp_distractor_agreement_relational_noun": {
|
795 |
+
"task": "blimp_distractor_agreement_relational_noun",
|
796 |
+
"group": "blimp",
|
797 |
+
"dataset_path": "blimp",
|
798 |
+
"dataset_name": "distractor_agreement_relational_noun",
|
799 |
+
"validation_split": "train",
|
800 |
+
"doc_to_text": "",
|
801 |
+
"doc_to_target": 0,
|
802 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
803 |
+
"description": "",
|
804 |
+
"target_delimiter": " ",
|
805 |
+
"fewshot_delimiter": "\n\n",
|
806 |
+
"num_fewshot": 0,
|
807 |
+
"metric_list": [
|
808 |
+
{
|
809 |
+
"metric": "acc"
|
810 |
+
}
|
811 |
+
],
|
812 |
+
"output_type": "multiple_choice",
|
813 |
+
"repeats": 1,
|
814 |
+
"should_decontaminate": true,
|
815 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
816 |
+
"metadata": {
|
817 |
+
"version": 1.0
|
818 |
+
}
|
819 |
+
},
|
820 |
+
"blimp_distractor_agreement_relative_clause": {
|
821 |
+
"task": "blimp_distractor_agreement_relative_clause",
|
822 |
+
"group": "blimp",
|
823 |
+
"dataset_path": "blimp",
|
824 |
+
"dataset_name": "distractor_agreement_relative_clause",
|
825 |
+
"validation_split": "train",
|
826 |
+
"doc_to_text": "",
|
827 |
+
"doc_to_target": 0,
|
828 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
829 |
+
"description": "",
|
830 |
+
"target_delimiter": " ",
|
831 |
+
"fewshot_delimiter": "\n\n",
|
832 |
+
"num_fewshot": 0,
|
833 |
+
"metric_list": [
|
834 |
+
{
|
835 |
+
"metric": "acc"
|
836 |
+
}
|
837 |
+
],
|
838 |
+
"output_type": "multiple_choice",
|
839 |
+
"repeats": 1,
|
840 |
+
"should_decontaminate": true,
|
841 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
842 |
+
"metadata": {
|
843 |
+
"version": 1.0
|
844 |
+
}
|
845 |
+
},
|
846 |
+
"blimp_drop_argument": {
|
847 |
+
"task": "blimp_drop_argument",
|
848 |
+
"group": "blimp",
|
849 |
+
"dataset_path": "blimp",
|
850 |
+
"dataset_name": "drop_argument",
|
851 |
+
"validation_split": "train",
|
852 |
+
"doc_to_text": "",
|
853 |
+
"doc_to_target": 0,
|
854 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
855 |
+
"description": "",
|
856 |
+
"target_delimiter": " ",
|
857 |
+
"fewshot_delimiter": "\n\n",
|
858 |
+
"num_fewshot": 0,
|
859 |
+
"metric_list": [
|
860 |
+
{
|
861 |
+
"metric": "acc"
|
862 |
+
}
|
863 |
+
],
|
864 |
+
"output_type": "multiple_choice",
|
865 |
+
"repeats": 1,
|
866 |
+
"should_decontaminate": true,
|
867 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
868 |
+
"metadata": {
|
869 |
+
"version": 1.0
|
870 |
+
}
|
871 |
+
},
|
872 |
+
"blimp_ellipsis_n_bar_1": {
|
873 |
+
"task": "blimp_ellipsis_n_bar_1",
|
874 |
+
"group": "blimp",
|
875 |
+
"dataset_path": "blimp",
|
876 |
+
"dataset_name": "ellipsis_n_bar_1",
|
877 |
+
"validation_split": "train",
|
878 |
+
"doc_to_text": "",
|
879 |
+
"doc_to_target": 0,
|
880 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
881 |
+
"description": "",
|
882 |
+
"target_delimiter": " ",
|
883 |
+
"fewshot_delimiter": "\n\n",
|
884 |
+
"num_fewshot": 0,
|
885 |
+
"metric_list": [
|
886 |
+
{
|
887 |
+
"metric": "acc"
|
888 |
+
}
|
889 |
+
],
|
890 |
+
"output_type": "multiple_choice",
|
891 |
+
"repeats": 1,
|
892 |
+
"should_decontaminate": true,
|
893 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
894 |
+
"metadata": {
|
895 |
+
"version": 1.0
|
896 |
+
}
|
897 |
+
},
|
898 |
+
"blimp_ellipsis_n_bar_2": {
|
899 |
+
"task": "blimp_ellipsis_n_bar_2",
|
900 |
+
"group": "blimp",
|
901 |
+
"dataset_path": "blimp",
|
902 |
+
"dataset_name": "ellipsis_n_bar_2",
|
903 |
+
"validation_split": "train",
|
904 |
+
"doc_to_text": "",
|
905 |
+
"doc_to_target": 0,
|
906 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
907 |
+
"description": "",
|
908 |
+
"target_delimiter": " ",
|
909 |
+
"fewshot_delimiter": "\n\n",
|
910 |
+
"num_fewshot": 0,
|
911 |
+
"metric_list": [
|
912 |
+
{
|
913 |
+
"metric": "acc"
|
914 |
+
}
|
915 |
+
],
|
916 |
+
"output_type": "multiple_choice",
|
917 |
+
"repeats": 1,
|
918 |
+
"should_decontaminate": true,
|
919 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
920 |
+
"metadata": {
|
921 |
+
"version": 1.0
|
922 |
+
}
|
923 |
+
},
|
924 |
+
"blimp_existential_there_object_raising": {
|
925 |
+
"task": "blimp_existential_there_object_raising",
|
926 |
+
"group": "blimp",
|
927 |
+
"dataset_path": "blimp",
|
928 |
+
"dataset_name": "existential_there_object_raising",
|
929 |
+
"validation_split": "train",
|
930 |
+
"doc_to_text": "",
|
931 |
+
"doc_to_target": 0,
|
932 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
933 |
+
"description": "",
|
934 |
+
"target_delimiter": " ",
|
935 |
+
"fewshot_delimiter": "\n\n",
|
936 |
+
"num_fewshot": 0,
|
937 |
+
"metric_list": [
|
938 |
+
{
|
939 |
+
"metric": "acc"
|
940 |
+
}
|
941 |
+
],
|
942 |
+
"output_type": "multiple_choice",
|
943 |
+
"repeats": 1,
|
944 |
+
"should_decontaminate": true,
|
945 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
946 |
+
"metadata": {
|
947 |
+
"version": 1.0
|
948 |
+
}
|
949 |
+
},
|
950 |
+
"blimp_existential_there_quantifiers_1": {
|
951 |
+
"task": "blimp_existential_there_quantifiers_1",
|
952 |
+
"group": "blimp",
|
953 |
+
"dataset_path": "blimp",
|
954 |
+
"dataset_name": "existential_there_quantifiers_1",
|
955 |
+
"validation_split": "train",
|
956 |
+
"doc_to_text": "",
|
957 |
+
"doc_to_target": 0,
|
958 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
959 |
+
"description": "",
|
960 |
+
"target_delimiter": " ",
|
961 |
+
"fewshot_delimiter": "\n\n",
|
962 |
+
"num_fewshot": 0,
|
963 |
+
"metric_list": [
|
964 |
+
{
|
965 |
+
"metric": "acc"
|
966 |
+
}
|
967 |
+
],
|
968 |
+
"output_type": "multiple_choice",
|
969 |
+
"repeats": 1,
|
970 |
+
"should_decontaminate": true,
|
971 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
972 |
+
"metadata": {
|
973 |
+
"version": 1.0
|
974 |
+
}
|
975 |
+
},
|
976 |
+
"blimp_existential_there_quantifiers_2": {
|
977 |
+
"task": "blimp_existential_there_quantifiers_2",
|
978 |
+
"group": "blimp",
|
979 |
+
"dataset_path": "blimp",
|
980 |
+
"dataset_name": "existential_there_quantifiers_2",
|
981 |
+
"validation_split": "train",
|
982 |
+
"doc_to_text": "",
|
983 |
+
"doc_to_target": 0,
|
984 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
985 |
+
"description": "",
|
986 |
+
"target_delimiter": " ",
|
987 |
+
"fewshot_delimiter": "\n\n",
|
988 |
+
"num_fewshot": 0,
|
989 |
+
"metric_list": [
|
990 |
+
{
|
991 |
+
"metric": "acc"
|
992 |
+
}
|
993 |
+
],
|
994 |
+
"output_type": "multiple_choice",
|
995 |
+
"repeats": 1,
|
996 |
+
"should_decontaminate": true,
|
997 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
998 |
+
"metadata": {
|
999 |
+
"version": 1.0
|
1000 |
+
}
|
1001 |
+
},
|
1002 |
+
"blimp_existential_there_subject_raising": {
|
1003 |
+
"task": "blimp_existential_there_subject_raising",
|
1004 |
+
"group": "blimp",
|
1005 |
+
"dataset_path": "blimp",
|
1006 |
+
"dataset_name": "existential_there_subject_raising",
|
1007 |
+
"validation_split": "train",
|
1008 |
+
"doc_to_text": "",
|
1009 |
+
"doc_to_target": 0,
|
1010 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1011 |
+
"description": "",
|
1012 |
+
"target_delimiter": " ",
|
1013 |
+
"fewshot_delimiter": "\n\n",
|
1014 |
+
"num_fewshot": 0,
|
1015 |
+
"metric_list": [
|
1016 |
+
{
|
1017 |
+
"metric": "acc"
|
1018 |
+
}
|
1019 |
+
],
|
1020 |
+
"output_type": "multiple_choice",
|
1021 |
+
"repeats": 1,
|
1022 |
+
"should_decontaminate": true,
|
1023 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1024 |
+
"metadata": {
|
1025 |
+
"version": 1.0
|
1026 |
+
}
|
1027 |
+
},
|
1028 |
+
"blimp_expletive_it_object_raising": {
|
1029 |
+
"task": "blimp_expletive_it_object_raising",
|
1030 |
+
"group": "blimp",
|
1031 |
+
"dataset_path": "blimp",
|
1032 |
+
"dataset_name": "expletive_it_object_raising",
|
1033 |
+
"validation_split": "train",
|
1034 |
+
"doc_to_text": "",
|
1035 |
+
"doc_to_target": 0,
|
1036 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1037 |
+
"description": "",
|
1038 |
+
"target_delimiter": " ",
|
1039 |
+
"fewshot_delimiter": "\n\n",
|
1040 |
+
"num_fewshot": 0,
|
1041 |
+
"metric_list": [
|
1042 |
+
{
|
1043 |
+
"metric": "acc"
|
1044 |
+
}
|
1045 |
+
],
|
1046 |
+
"output_type": "multiple_choice",
|
1047 |
+
"repeats": 1,
|
1048 |
+
"should_decontaminate": true,
|
1049 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1050 |
+
"metadata": {
|
1051 |
+
"version": 1.0
|
1052 |
+
}
|
1053 |
+
},
|
1054 |
+
"blimp_inchoative": {
|
1055 |
+
"task": "blimp_inchoative",
|
1056 |
+
"group": "blimp",
|
1057 |
+
"dataset_path": "blimp",
|
1058 |
+
"dataset_name": "inchoative",
|
1059 |
+
"validation_split": "train",
|
1060 |
+
"doc_to_text": "",
|
1061 |
+
"doc_to_target": 0,
|
1062 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1063 |
+
"description": "",
|
1064 |
+
"target_delimiter": " ",
|
1065 |
+
"fewshot_delimiter": "\n\n",
|
1066 |
+
"num_fewshot": 0,
|
1067 |
+
"metric_list": [
|
1068 |
+
{
|
1069 |
+
"metric": "acc"
|
1070 |
+
}
|
1071 |
+
],
|
1072 |
+
"output_type": "multiple_choice",
|
1073 |
+
"repeats": 1,
|
1074 |
+
"should_decontaminate": true,
|
1075 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1076 |
+
"metadata": {
|
1077 |
+
"version": 1.0
|
1078 |
+
}
|
1079 |
+
},
|
1080 |
+
"blimp_intransitive": {
|
1081 |
+
"task": "blimp_intransitive",
|
1082 |
+
"group": "blimp",
|
1083 |
+
"dataset_path": "blimp",
|
1084 |
+
"dataset_name": "intransitive",
|
1085 |
+
"validation_split": "train",
|
1086 |
+
"doc_to_text": "",
|
1087 |
+
"doc_to_target": 0,
|
1088 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1089 |
+
"description": "",
|
1090 |
+
"target_delimiter": " ",
|
1091 |
+
"fewshot_delimiter": "\n\n",
|
1092 |
+
"num_fewshot": 0,
|
1093 |
+
"metric_list": [
|
1094 |
+
{
|
1095 |
+
"metric": "acc"
|
1096 |
+
}
|
1097 |
+
],
|
1098 |
+
"output_type": "multiple_choice",
|
1099 |
+
"repeats": 1,
|
1100 |
+
"should_decontaminate": true,
|
1101 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1102 |
+
"metadata": {
|
1103 |
+
"version": 1.0
|
1104 |
+
}
|
1105 |
+
},
|
1106 |
+
"blimp_irregular_past_participle_adjectives": {
|
1107 |
+
"task": "blimp_irregular_past_participle_adjectives",
|
1108 |
+
"group": "blimp",
|
1109 |
+
"dataset_path": "blimp",
|
1110 |
+
"dataset_name": "irregular_past_participle_adjectives",
|
1111 |
+
"validation_split": "train",
|
1112 |
+
"doc_to_text": "",
|
1113 |
+
"doc_to_target": 0,
|
1114 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1115 |
+
"description": "",
|
1116 |
+
"target_delimiter": " ",
|
1117 |
+
"fewshot_delimiter": "\n\n",
|
1118 |
+
"num_fewshot": 0,
|
1119 |
+
"metric_list": [
|
1120 |
+
{
|
1121 |
+
"metric": "acc"
|
1122 |
+
}
|
1123 |
+
],
|
1124 |
+
"output_type": "multiple_choice",
|
1125 |
+
"repeats": 1,
|
1126 |
+
"should_decontaminate": true,
|
1127 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1128 |
+
"metadata": {
|
1129 |
+
"version": 1.0
|
1130 |
+
}
|
1131 |
+
},
|
1132 |
+
"blimp_irregular_past_participle_verbs": {
|
1133 |
+
"task": "blimp_irregular_past_participle_verbs",
|
1134 |
+
"group": "blimp",
|
1135 |
+
"dataset_path": "blimp",
|
1136 |
+
"dataset_name": "irregular_past_participle_verbs",
|
1137 |
+
"validation_split": "train",
|
1138 |
+
"doc_to_text": "",
|
1139 |
+
"doc_to_target": 0,
|
1140 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1141 |
+
"description": "",
|
1142 |
+
"target_delimiter": " ",
|
1143 |
+
"fewshot_delimiter": "\n\n",
|
1144 |
+
"num_fewshot": 0,
|
1145 |
+
"metric_list": [
|
1146 |
+
{
|
1147 |
+
"metric": "acc"
|
1148 |
+
}
|
1149 |
+
],
|
1150 |
+
"output_type": "multiple_choice",
|
1151 |
+
"repeats": 1,
|
1152 |
+
"should_decontaminate": true,
|
1153 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1154 |
+
"metadata": {
|
1155 |
+
"version": 1.0
|
1156 |
+
}
|
1157 |
+
},
|
1158 |
+
"blimp_irregular_plural_subject_verb_agreement_1": {
|
1159 |
+
"task": "blimp_irregular_plural_subject_verb_agreement_1",
|
1160 |
+
"group": "blimp",
|
1161 |
+
"dataset_path": "blimp",
|
1162 |
+
"dataset_name": "irregular_plural_subject_verb_agreement_1",
|
1163 |
+
"validation_split": "train",
|
1164 |
+
"doc_to_text": "",
|
1165 |
+
"doc_to_target": 0,
|
1166 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1167 |
+
"description": "",
|
1168 |
+
"target_delimiter": " ",
|
1169 |
+
"fewshot_delimiter": "\n\n",
|
1170 |
+
"num_fewshot": 0,
|
1171 |
+
"metric_list": [
|
1172 |
+
{
|
1173 |
+
"metric": "acc"
|
1174 |
+
}
|
1175 |
+
],
|
1176 |
+
"output_type": "multiple_choice",
|
1177 |
+
"repeats": 1,
|
1178 |
+
"should_decontaminate": true,
|
1179 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1180 |
+
"metadata": {
|
1181 |
+
"version": 1.0
|
1182 |
+
}
|
1183 |
+
},
|
1184 |
+
"blimp_irregular_plural_subject_verb_agreement_2": {
|
1185 |
+
"task": "blimp_irregular_plural_subject_verb_agreement_2",
|
1186 |
+
"group": "blimp",
|
1187 |
+
"dataset_path": "blimp",
|
1188 |
+
"dataset_name": "irregular_plural_subject_verb_agreement_2",
|
1189 |
+
"validation_split": "train",
|
1190 |
+
"doc_to_text": "",
|
1191 |
+
"doc_to_target": 0,
|
1192 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1193 |
+
"description": "",
|
1194 |
+
"target_delimiter": " ",
|
1195 |
+
"fewshot_delimiter": "\n\n",
|
1196 |
+
"num_fewshot": 0,
|
1197 |
+
"metric_list": [
|
1198 |
+
{
|
1199 |
+
"metric": "acc"
|
1200 |
+
}
|
1201 |
+
],
|
1202 |
+
"output_type": "multiple_choice",
|
1203 |
+
"repeats": 1,
|
1204 |
+
"should_decontaminate": true,
|
1205 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1206 |
+
"metadata": {
|
1207 |
+
"version": 1.0
|
1208 |
+
}
|
1209 |
+
},
|
1210 |
+
"blimp_left_branch_island_echo_question": {
|
1211 |
+
"task": "blimp_left_branch_island_echo_question",
|
1212 |
+
"group": "blimp",
|
1213 |
+
"dataset_path": "blimp",
|
1214 |
+
"dataset_name": "left_branch_island_echo_question",
|
1215 |
+
"validation_split": "train",
|
1216 |
+
"doc_to_text": "",
|
1217 |
+
"doc_to_target": 0,
|
1218 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1219 |
+
"description": "",
|
1220 |
+
"target_delimiter": " ",
|
1221 |
+
"fewshot_delimiter": "\n\n",
|
1222 |
+
"num_fewshot": 0,
|
1223 |
+
"metric_list": [
|
1224 |
+
{
|
1225 |
+
"metric": "acc"
|
1226 |
+
}
|
1227 |
+
],
|
1228 |
+
"output_type": "multiple_choice",
|
1229 |
+
"repeats": 1,
|
1230 |
+
"should_decontaminate": true,
|
1231 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1232 |
+
"metadata": {
|
1233 |
+
"version": 1.0
|
1234 |
+
}
|
1235 |
+
},
|
1236 |
+
"blimp_left_branch_island_simple_question": {
|
1237 |
+
"task": "blimp_left_branch_island_simple_question",
|
1238 |
+
"group": "blimp",
|
1239 |
+
"dataset_path": "blimp",
|
1240 |
+
"dataset_name": "left_branch_island_simple_question",
|
1241 |
+
"validation_split": "train",
|
1242 |
+
"doc_to_text": "",
|
1243 |
+
"doc_to_target": 0,
|
1244 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1245 |
+
"description": "",
|
1246 |
+
"target_delimiter": " ",
|
1247 |
+
"fewshot_delimiter": "\n\n",
|
1248 |
+
"num_fewshot": 0,
|
1249 |
+
"metric_list": [
|
1250 |
+
{
|
1251 |
+
"metric": "acc"
|
1252 |
+
}
|
1253 |
+
],
|
1254 |
+
"output_type": "multiple_choice",
|
1255 |
+
"repeats": 1,
|
1256 |
+
"should_decontaminate": true,
|
1257 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1258 |
+
"metadata": {
|
1259 |
+
"version": 1.0
|
1260 |
+
}
|
1261 |
+
},
|
1262 |
+
"blimp_matrix_question_npi_licensor_present": {
|
1263 |
+
"task": "blimp_matrix_question_npi_licensor_present",
|
1264 |
+
"group": "blimp",
|
1265 |
+
"dataset_path": "blimp",
|
1266 |
+
"dataset_name": "matrix_question_npi_licensor_present",
|
1267 |
+
"validation_split": "train",
|
1268 |
+
"doc_to_text": "",
|
1269 |
+
"doc_to_target": 0,
|
1270 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1271 |
+
"description": "",
|
1272 |
+
"target_delimiter": " ",
|
1273 |
+
"fewshot_delimiter": "\n\n",
|
1274 |
+
"num_fewshot": 0,
|
1275 |
+
"metric_list": [
|
1276 |
+
{
|
1277 |
+
"metric": "acc"
|
1278 |
+
}
|
1279 |
+
],
|
1280 |
+
"output_type": "multiple_choice",
|
1281 |
+
"repeats": 1,
|
1282 |
+
"should_decontaminate": true,
|
1283 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1284 |
+
"metadata": {
|
1285 |
+
"version": 1.0
|
1286 |
+
}
|
1287 |
+
},
|
1288 |
+
"blimp_npi_present_1": {
|
1289 |
+
"task": "blimp_npi_present_1",
|
1290 |
+
"group": "blimp",
|
1291 |
+
"dataset_path": "blimp",
|
1292 |
+
"dataset_name": "npi_present_1",
|
1293 |
+
"validation_split": "train",
|
1294 |
+
"doc_to_text": "",
|
1295 |
+
"doc_to_target": 0,
|
1296 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1297 |
+
"description": "",
|
1298 |
+
"target_delimiter": " ",
|
1299 |
+
"fewshot_delimiter": "\n\n",
|
1300 |
+
"num_fewshot": 0,
|
1301 |
+
"metric_list": [
|
1302 |
+
{
|
1303 |
+
"metric": "acc"
|
1304 |
+
}
|
1305 |
+
],
|
1306 |
+
"output_type": "multiple_choice",
|
1307 |
+
"repeats": 1,
|
1308 |
+
"should_decontaminate": true,
|
1309 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1310 |
+
"metadata": {
|
1311 |
+
"version": 1.0
|
1312 |
+
}
|
1313 |
+
},
|
1314 |
+
"blimp_npi_present_2": {
|
1315 |
+
"task": "blimp_npi_present_2",
|
1316 |
+
"group": "blimp",
|
1317 |
+
"dataset_path": "blimp",
|
1318 |
+
"dataset_name": "npi_present_2",
|
1319 |
+
"validation_split": "train",
|
1320 |
+
"doc_to_text": "",
|
1321 |
+
"doc_to_target": 0,
|
1322 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1323 |
+
"description": "",
|
1324 |
+
"target_delimiter": " ",
|
1325 |
+
"fewshot_delimiter": "\n\n",
|
1326 |
+
"num_fewshot": 0,
|
1327 |
+
"metric_list": [
|
1328 |
+
{
|
1329 |
+
"metric": "acc"
|
1330 |
+
}
|
1331 |
+
],
|
1332 |
+
"output_type": "multiple_choice",
|
1333 |
+
"repeats": 1,
|
1334 |
+
"should_decontaminate": true,
|
1335 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1336 |
+
"metadata": {
|
1337 |
+
"version": 1.0
|
1338 |
+
}
|
1339 |
+
},
|
1340 |
+
"blimp_only_npi_licensor_present": {
|
1341 |
+
"task": "blimp_only_npi_licensor_present",
|
1342 |
+
"group": "blimp",
|
1343 |
+
"dataset_path": "blimp",
|
1344 |
+
"dataset_name": "only_npi_licensor_present",
|
1345 |
+
"validation_split": "train",
|
1346 |
+
"doc_to_text": "",
|
1347 |
+
"doc_to_target": 0,
|
1348 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1349 |
+
"description": "",
|
1350 |
+
"target_delimiter": " ",
|
1351 |
+
"fewshot_delimiter": "\n\n",
|
1352 |
+
"num_fewshot": 0,
|
1353 |
+
"metric_list": [
|
1354 |
+
{
|
1355 |
+
"metric": "acc"
|
1356 |
+
}
|
1357 |
+
],
|
1358 |
+
"output_type": "multiple_choice",
|
1359 |
+
"repeats": 1,
|
1360 |
+
"should_decontaminate": true,
|
1361 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1362 |
+
"metadata": {
|
1363 |
+
"version": 1.0
|
1364 |
+
}
|
1365 |
+
},
|
1366 |
+
"blimp_only_npi_scope": {
|
1367 |
+
"task": "blimp_only_npi_scope",
|
1368 |
+
"group": "blimp",
|
1369 |
+
"dataset_path": "blimp",
|
1370 |
+
"dataset_name": "only_npi_scope",
|
1371 |
+
"validation_split": "train",
|
1372 |
+
"doc_to_text": "",
|
1373 |
+
"doc_to_target": 0,
|
1374 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1375 |
+
"description": "",
|
1376 |
+
"target_delimiter": " ",
|
1377 |
+
"fewshot_delimiter": "\n\n",
|
1378 |
+
"num_fewshot": 0,
|
1379 |
+
"metric_list": [
|
1380 |
+
{
|
1381 |
+
"metric": "acc"
|
1382 |
+
}
|
1383 |
+
],
|
1384 |
+
"output_type": "multiple_choice",
|
1385 |
+
"repeats": 1,
|
1386 |
+
"should_decontaminate": true,
|
1387 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1388 |
+
"metadata": {
|
1389 |
+
"version": 1.0
|
1390 |
+
}
|
1391 |
+
},
|
1392 |
+
"blimp_passive_1": {
|
1393 |
+
"task": "blimp_passive_1",
|
1394 |
+
"group": "blimp",
|
1395 |
+
"dataset_path": "blimp",
|
1396 |
+
"dataset_name": "passive_1",
|
1397 |
+
"validation_split": "train",
|
1398 |
+
"doc_to_text": "",
|
1399 |
+
"doc_to_target": 0,
|
1400 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1401 |
+
"description": "",
|
1402 |
+
"target_delimiter": " ",
|
1403 |
+
"fewshot_delimiter": "\n\n",
|
1404 |
+
"num_fewshot": 0,
|
1405 |
+
"metric_list": [
|
1406 |
+
{
|
1407 |
+
"metric": "acc"
|
1408 |
+
}
|
1409 |
+
],
|
1410 |
+
"output_type": "multiple_choice",
|
1411 |
+
"repeats": 1,
|
1412 |
+
"should_decontaminate": true,
|
1413 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1414 |
+
"metadata": {
|
1415 |
+
"version": 1.0
|
1416 |
+
}
|
1417 |
+
},
|
1418 |
+
"blimp_passive_2": {
|
1419 |
+
"task": "blimp_passive_2",
|
1420 |
+
"group": "blimp",
|
1421 |
+
"dataset_path": "blimp",
|
1422 |
+
"dataset_name": "passive_2",
|
1423 |
+
"validation_split": "train",
|
1424 |
+
"doc_to_text": "",
|
1425 |
+
"doc_to_target": 0,
|
1426 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1427 |
+
"description": "",
|
1428 |
+
"target_delimiter": " ",
|
1429 |
+
"fewshot_delimiter": "\n\n",
|
1430 |
+
"num_fewshot": 0,
|
1431 |
+
"metric_list": [
|
1432 |
+
{
|
1433 |
+
"metric": "acc"
|
1434 |
+
}
|
1435 |
+
],
|
1436 |
+
"output_type": "multiple_choice",
|
1437 |
+
"repeats": 1,
|
1438 |
+
"should_decontaminate": true,
|
1439 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1440 |
+
"metadata": {
|
1441 |
+
"version": 1.0
|
1442 |
+
}
|
1443 |
+
},
|
1444 |
+
"blimp_principle_A_c_command": {
|
1445 |
+
"task": "blimp_principle_A_c_command",
|
1446 |
+
"group": "blimp",
|
1447 |
+
"dataset_path": "blimp",
|
1448 |
+
"dataset_name": "principle_A_c_command",
|
1449 |
+
"validation_split": "train",
|
1450 |
+
"doc_to_text": "",
|
1451 |
+
"doc_to_target": 0,
|
1452 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1453 |
+
"description": "",
|
1454 |
+
"target_delimiter": " ",
|
1455 |
+
"fewshot_delimiter": "\n\n",
|
1456 |
+
"num_fewshot": 0,
|
1457 |
+
"metric_list": [
|
1458 |
+
{
|
1459 |
+
"metric": "acc"
|
1460 |
+
}
|
1461 |
+
],
|
1462 |
+
"output_type": "multiple_choice",
|
1463 |
+
"repeats": 1,
|
1464 |
+
"should_decontaminate": true,
|
1465 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1466 |
+
"metadata": {
|
1467 |
+
"version": 1.0
|
1468 |
+
}
|
1469 |
+
},
|
1470 |
+
"blimp_principle_A_case_1": {
|
1471 |
+
"task": "blimp_principle_A_case_1",
|
1472 |
+
"group": "blimp",
|
1473 |
+
"dataset_path": "blimp",
|
1474 |
+
"dataset_name": "principle_A_case_1",
|
1475 |
+
"validation_split": "train",
|
1476 |
+
"doc_to_text": "",
|
1477 |
+
"doc_to_target": 0,
|
1478 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1479 |
+
"description": "",
|
1480 |
+
"target_delimiter": " ",
|
1481 |
+
"fewshot_delimiter": "\n\n",
|
1482 |
+
"num_fewshot": 0,
|
1483 |
+
"metric_list": [
|
1484 |
+
{
|
1485 |
+
"metric": "acc"
|
1486 |
+
}
|
1487 |
+
],
|
1488 |
+
"output_type": "multiple_choice",
|
1489 |
+
"repeats": 1,
|
1490 |
+
"should_decontaminate": true,
|
1491 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1492 |
+
"metadata": {
|
1493 |
+
"version": 1.0
|
1494 |
+
}
|
1495 |
+
},
|
1496 |
+
"blimp_principle_A_case_2": {
|
1497 |
+
"task": "blimp_principle_A_case_2",
|
1498 |
+
"group": "blimp",
|
1499 |
+
"dataset_path": "blimp",
|
1500 |
+
"dataset_name": "principle_A_case_2",
|
1501 |
+
"validation_split": "train",
|
1502 |
+
"doc_to_text": "",
|
1503 |
+
"doc_to_target": 0,
|
1504 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1505 |
+
"description": "",
|
1506 |
+
"target_delimiter": " ",
|
1507 |
+
"fewshot_delimiter": "\n\n",
|
1508 |
+
"num_fewshot": 0,
|
1509 |
+
"metric_list": [
|
1510 |
+
{
|
1511 |
+
"metric": "acc"
|
1512 |
+
}
|
1513 |
+
],
|
1514 |
+
"output_type": "multiple_choice",
|
1515 |
+
"repeats": 1,
|
1516 |
+
"should_decontaminate": true,
|
1517 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1518 |
+
"metadata": {
|
1519 |
+
"version": 1.0
|
1520 |
+
}
|
1521 |
+
},
|
1522 |
+
"blimp_principle_A_domain_1": {
|
1523 |
+
"task": "blimp_principle_A_domain_1",
|
1524 |
+
"group": "blimp",
|
1525 |
+
"dataset_path": "blimp",
|
1526 |
+
"dataset_name": "principle_A_domain_1",
|
1527 |
+
"validation_split": "train",
|
1528 |
+
"doc_to_text": "",
|
1529 |
+
"doc_to_target": 0,
|
1530 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1531 |
+
"description": "",
|
1532 |
+
"target_delimiter": " ",
|
1533 |
+
"fewshot_delimiter": "\n\n",
|
1534 |
+
"num_fewshot": 0,
|
1535 |
+
"metric_list": [
|
1536 |
+
{
|
1537 |
+
"metric": "acc"
|
1538 |
+
}
|
1539 |
+
],
|
1540 |
+
"output_type": "multiple_choice",
|
1541 |
+
"repeats": 1,
|
1542 |
+
"should_decontaminate": true,
|
1543 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1544 |
+
"metadata": {
|
1545 |
+
"version": 1.0
|
1546 |
+
}
|
1547 |
+
},
|
1548 |
+
"blimp_principle_A_domain_2": {
|
1549 |
+
"task": "blimp_principle_A_domain_2",
|
1550 |
+
"group": "blimp",
|
1551 |
+
"dataset_path": "blimp",
|
1552 |
+
"dataset_name": "principle_A_domain_2",
|
1553 |
+
"validation_split": "train",
|
1554 |
+
"doc_to_text": "",
|
1555 |
+
"doc_to_target": 0,
|
1556 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1557 |
+
"description": "",
|
1558 |
+
"target_delimiter": " ",
|
1559 |
+
"fewshot_delimiter": "\n\n",
|
1560 |
+
"num_fewshot": 0,
|
1561 |
+
"metric_list": [
|
1562 |
+
{
|
1563 |
+
"metric": "acc"
|
1564 |
+
}
|
1565 |
+
],
|
1566 |
+
"output_type": "multiple_choice",
|
1567 |
+
"repeats": 1,
|
1568 |
+
"should_decontaminate": true,
|
1569 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1570 |
+
"metadata": {
|
1571 |
+
"version": 1.0
|
1572 |
+
}
|
1573 |
+
},
|
1574 |
+
"blimp_principle_A_domain_3": {
|
1575 |
+
"task": "blimp_principle_A_domain_3",
|
1576 |
+
"group": "blimp",
|
1577 |
+
"dataset_path": "blimp",
|
1578 |
+
"dataset_name": "principle_A_domain_3",
|
1579 |
+
"validation_split": "train",
|
1580 |
+
"doc_to_text": "",
|
1581 |
+
"doc_to_target": 0,
|
1582 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1583 |
+
"description": "",
|
1584 |
+
"target_delimiter": " ",
|
1585 |
+
"fewshot_delimiter": "\n\n",
|
1586 |
+
"num_fewshot": 0,
|
1587 |
+
"metric_list": [
|
1588 |
+
{
|
1589 |
+
"metric": "acc"
|
1590 |
+
}
|
1591 |
+
],
|
1592 |
+
"output_type": "multiple_choice",
|
1593 |
+
"repeats": 1,
|
1594 |
+
"should_decontaminate": true,
|
1595 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1596 |
+
"metadata": {
|
1597 |
+
"version": 1.0
|
1598 |
+
}
|
1599 |
+
},
|
1600 |
+
"blimp_principle_A_reconstruction": {
|
1601 |
+
"task": "blimp_principle_A_reconstruction",
|
1602 |
+
"group": "blimp",
|
1603 |
+
"dataset_path": "blimp",
|
1604 |
+
"dataset_name": "principle_A_reconstruction",
|
1605 |
+
"validation_split": "train",
|
1606 |
+
"doc_to_text": "",
|
1607 |
+
"doc_to_target": 0,
|
1608 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1609 |
+
"description": "",
|
1610 |
+
"target_delimiter": " ",
|
1611 |
+
"fewshot_delimiter": "\n\n",
|
1612 |
+
"num_fewshot": 0,
|
1613 |
+
"metric_list": [
|
1614 |
+
{
|
1615 |
+
"metric": "acc"
|
1616 |
+
}
|
1617 |
+
],
|
1618 |
+
"output_type": "multiple_choice",
|
1619 |
+
"repeats": 1,
|
1620 |
+
"should_decontaminate": true,
|
1621 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1622 |
+
"metadata": {
|
1623 |
+
"version": 1.0
|
1624 |
+
}
|
1625 |
+
},
|
1626 |
+
"blimp_regular_plural_subject_verb_agreement_1": {
|
1627 |
+
"task": "blimp_regular_plural_subject_verb_agreement_1",
|
1628 |
+
"group": "blimp",
|
1629 |
+
"dataset_path": "blimp",
|
1630 |
+
"dataset_name": "regular_plural_subject_verb_agreement_1",
|
1631 |
+
"validation_split": "train",
|
1632 |
+
"doc_to_text": "",
|
1633 |
+
"doc_to_target": 0,
|
1634 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1635 |
+
"description": "",
|
1636 |
+
"target_delimiter": " ",
|
1637 |
+
"fewshot_delimiter": "\n\n",
|
1638 |
+
"num_fewshot": 0,
|
1639 |
+
"metric_list": [
|
1640 |
+
{
|
1641 |
+
"metric": "acc"
|
1642 |
+
}
|
1643 |
+
],
|
1644 |
+
"output_type": "multiple_choice",
|
1645 |
+
"repeats": 1,
|
1646 |
+
"should_decontaminate": true,
|
1647 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1648 |
+
"metadata": {
|
1649 |
+
"version": 1.0
|
1650 |
+
}
|
1651 |
+
},
|
1652 |
+
"blimp_regular_plural_subject_verb_agreement_2": {
|
1653 |
+
"task": "blimp_regular_plural_subject_verb_agreement_2",
|
1654 |
+
"group": "blimp",
|
1655 |
+
"dataset_path": "blimp",
|
1656 |
+
"dataset_name": "regular_plural_subject_verb_agreement_2",
|
1657 |
+
"validation_split": "train",
|
1658 |
+
"doc_to_text": "",
|
1659 |
+
"doc_to_target": 0,
|
1660 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1661 |
+
"description": "",
|
1662 |
+
"target_delimiter": " ",
|
1663 |
+
"fewshot_delimiter": "\n\n",
|
1664 |
+
"num_fewshot": 0,
|
1665 |
+
"metric_list": [
|
1666 |
+
{
|
1667 |
+
"metric": "acc"
|
1668 |
+
}
|
1669 |
+
],
|
1670 |
+
"output_type": "multiple_choice",
|
1671 |
+
"repeats": 1,
|
1672 |
+
"should_decontaminate": true,
|
1673 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1674 |
+
"metadata": {
|
1675 |
+
"version": 1.0
|
1676 |
+
}
|
1677 |
+
},
|
1678 |
+
"blimp_sentential_negation_npi_licensor_present": {
|
1679 |
+
"task": "blimp_sentential_negation_npi_licensor_present",
|
1680 |
+
"group": "blimp",
|
1681 |
+
"dataset_path": "blimp",
|
1682 |
+
"dataset_name": "sentential_negation_npi_licensor_present",
|
1683 |
+
"validation_split": "train",
|
1684 |
+
"doc_to_text": "",
|
1685 |
+
"doc_to_target": 0,
|
1686 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1687 |
+
"description": "",
|
1688 |
+
"target_delimiter": " ",
|
1689 |
+
"fewshot_delimiter": "\n\n",
|
1690 |
+
"num_fewshot": 0,
|
1691 |
+
"metric_list": [
|
1692 |
+
{
|
1693 |
+
"metric": "acc"
|
1694 |
+
}
|
1695 |
+
],
|
1696 |
+
"output_type": "multiple_choice",
|
1697 |
+
"repeats": 1,
|
1698 |
+
"should_decontaminate": true,
|
1699 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1700 |
+
"metadata": {
|
1701 |
+
"version": 1.0
|
1702 |
+
}
|
1703 |
+
},
|
1704 |
+
"blimp_sentential_negation_npi_scope": {
|
1705 |
+
"task": "blimp_sentential_negation_npi_scope",
|
1706 |
+
"group": "blimp",
|
1707 |
+
"dataset_path": "blimp",
|
1708 |
+
"dataset_name": "sentential_negation_npi_scope",
|
1709 |
+
"validation_split": "train",
|
1710 |
+
"doc_to_text": "",
|
1711 |
+
"doc_to_target": 0,
|
1712 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1713 |
+
"description": "",
|
1714 |
+
"target_delimiter": " ",
|
1715 |
+
"fewshot_delimiter": "\n\n",
|
1716 |
+
"num_fewshot": 0,
|
1717 |
+
"metric_list": [
|
1718 |
+
{
|
1719 |
+
"metric": "acc"
|
1720 |
+
}
|
1721 |
+
],
|
1722 |
+
"output_type": "multiple_choice",
|
1723 |
+
"repeats": 1,
|
1724 |
+
"should_decontaminate": true,
|
1725 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1726 |
+
"metadata": {
|
1727 |
+
"version": 1.0
|
1728 |
+
}
|
1729 |
+
},
|
1730 |
+
"blimp_sentential_subject_island": {
|
1731 |
+
"task": "blimp_sentential_subject_island",
|
1732 |
+
"group": "blimp",
|
1733 |
+
"dataset_path": "blimp",
|
1734 |
+
"dataset_name": "sentential_subject_island",
|
1735 |
+
"validation_split": "train",
|
1736 |
+
"doc_to_text": "",
|
1737 |
+
"doc_to_target": 0,
|
1738 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1739 |
+
"description": "",
|
1740 |
+
"target_delimiter": " ",
|
1741 |
+
"fewshot_delimiter": "\n\n",
|
1742 |
+
"num_fewshot": 0,
|
1743 |
+
"metric_list": [
|
1744 |
+
{
|
1745 |
+
"metric": "acc"
|
1746 |
+
}
|
1747 |
+
],
|
1748 |
+
"output_type": "multiple_choice",
|
1749 |
+
"repeats": 1,
|
1750 |
+
"should_decontaminate": true,
|
1751 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1752 |
+
"metadata": {
|
1753 |
+
"version": 1.0
|
1754 |
+
}
|
1755 |
+
},
|
1756 |
+
"blimp_superlative_quantifiers_1": {
|
1757 |
+
"task": "blimp_superlative_quantifiers_1",
|
1758 |
+
"group": "blimp",
|
1759 |
+
"dataset_path": "blimp",
|
1760 |
+
"dataset_name": "superlative_quantifiers_1",
|
1761 |
+
"validation_split": "train",
|
1762 |
+
"doc_to_text": "",
|
1763 |
+
"doc_to_target": 0,
|
1764 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1765 |
+
"description": "",
|
1766 |
+
"target_delimiter": " ",
|
1767 |
+
"fewshot_delimiter": "\n\n",
|
1768 |
+
"num_fewshot": 0,
|
1769 |
+
"metric_list": [
|
1770 |
+
{
|
1771 |
+
"metric": "acc"
|
1772 |
+
}
|
1773 |
+
],
|
1774 |
+
"output_type": "multiple_choice",
|
1775 |
+
"repeats": 1,
|
1776 |
+
"should_decontaminate": true,
|
1777 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1778 |
+
"metadata": {
|
1779 |
+
"version": 1.0
|
1780 |
+
}
|
1781 |
+
},
|
1782 |
+
"blimp_superlative_quantifiers_2": {
|
1783 |
+
"task": "blimp_superlative_quantifiers_2",
|
1784 |
+
"group": "blimp",
|
1785 |
+
"dataset_path": "blimp",
|
1786 |
+
"dataset_name": "superlative_quantifiers_2",
|
1787 |
+
"validation_split": "train",
|
1788 |
+
"doc_to_text": "",
|
1789 |
+
"doc_to_target": 0,
|
1790 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1791 |
+
"description": "",
|
1792 |
+
"target_delimiter": " ",
|
1793 |
+
"fewshot_delimiter": "\n\n",
|
1794 |
+
"num_fewshot": 0,
|
1795 |
+
"metric_list": [
|
1796 |
+
{
|
1797 |
+
"metric": "acc"
|
1798 |
+
}
|
1799 |
+
],
|
1800 |
+
"output_type": "multiple_choice",
|
1801 |
+
"repeats": 1,
|
1802 |
+
"should_decontaminate": true,
|
1803 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1804 |
+
"metadata": {
|
1805 |
+
"version": 1.0
|
1806 |
+
}
|
1807 |
+
},
|
1808 |
+
"blimp_tough_vs_raising_1": {
|
1809 |
+
"task": "blimp_tough_vs_raising_1",
|
1810 |
+
"group": "blimp",
|
1811 |
+
"dataset_path": "blimp",
|
1812 |
+
"dataset_name": "tough_vs_raising_1",
|
1813 |
+
"validation_split": "train",
|
1814 |
+
"doc_to_text": "",
|
1815 |
+
"doc_to_target": 0,
|
1816 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1817 |
+
"description": "",
|
1818 |
+
"target_delimiter": " ",
|
1819 |
+
"fewshot_delimiter": "\n\n",
|
1820 |
+
"num_fewshot": 0,
|
1821 |
+
"metric_list": [
|
1822 |
+
{
|
1823 |
+
"metric": "acc"
|
1824 |
+
}
|
1825 |
+
],
|
1826 |
+
"output_type": "multiple_choice",
|
1827 |
+
"repeats": 1,
|
1828 |
+
"should_decontaminate": true,
|
1829 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1830 |
+
"metadata": {
|
1831 |
+
"version": 1.0
|
1832 |
+
}
|
1833 |
+
},
|
1834 |
+
"blimp_tough_vs_raising_2": {
|
1835 |
+
"task": "blimp_tough_vs_raising_2",
|
1836 |
+
"group": "blimp",
|
1837 |
+
"dataset_path": "blimp",
|
1838 |
+
"dataset_name": "tough_vs_raising_2",
|
1839 |
+
"validation_split": "train",
|
1840 |
+
"doc_to_text": "",
|
1841 |
+
"doc_to_target": 0,
|
1842 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1843 |
+
"description": "",
|
1844 |
+
"target_delimiter": " ",
|
1845 |
+
"fewshot_delimiter": "\n\n",
|
1846 |
+
"num_fewshot": 0,
|
1847 |
+
"metric_list": [
|
1848 |
+
{
|
1849 |
+
"metric": "acc"
|
1850 |
+
}
|
1851 |
+
],
|
1852 |
+
"output_type": "multiple_choice",
|
1853 |
+
"repeats": 1,
|
1854 |
+
"should_decontaminate": true,
|
1855 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1856 |
+
"metadata": {
|
1857 |
+
"version": 1.0
|
1858 |
+
}
|
1859 |
+
},
|
1860 |
+
"blimp_transitive": {
|
1861 |
+
"task": "blimp_transitive",
|
1862 |
+
"group": "blimp",
|
1863 |
+
"dataset_path": "blimp",
|
1864 |
+
"dataset_name": "transitive",
|
1865 |
+
"validation_split": "train",
|
1866 |
+
"doc_to_text": "",
|
1867 |
+
"doc_to_target": 0,
|
1868 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1869 |
+
"description": "",
|
1870 |
+
"target_delimiter": " ",
|
1871 |
+
"fewshot_delimiter": "\n\n",
|
1872 |
+
"num_fewshot": 0,
|
1873 |
+
"metric_list": [
|
1874 |
+
{
|
1875 |
+
"metric": "acc"
|
1876 |
+
}
|
1877 |
+
],
|
1878 |
+
"output_type": "multiple_choice",
|
1879 |
+
"repeats": 1,
|
1880 |
+
"should_decontaminate": true,
|
1881 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1882 |
+
"metadata": {
|
1883 |
+
"version": 1.0
|
1884 |
+
}
|
1885 |
+
},
|
1886 |
+
"blimp_wh_island": {
|
1887 |
+
"task": "blimp_wh_island",
|
1888 |
+
"group": "blimp",
|
1889 |
+
"dataset_path": "blimp",
|
1890 |
+
"dataset_name": "wh_island",
|
1891 |
+
"validation_split": "train",
|
1892 |
+
"doc_to_text": "",
|
1893 |
+
"doc_to_target": 0,
|
1894 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1895 |
+
"description": "",
|
1896 |
+
"target_delimiter": " ",
|
1897 |
+
"fewshot_delimiter": "\n\n",
|
1898 |
+
"num_fewshot": 0,
|
1899 |
+
"metric_list": [
|
1900 |
+
{
|
1901 |
+
"metric": "acc"
|
1902 |
+
}
|
1903 |
+
],
|
1904 |
+
"output_type": "multiple_choice",
|
1905 |
+
"repeats": 1,
|
1906 |
+
"should_decontaminate": true,
|
1907 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1908 |
+
"metadata": {
|
1909 |
+
"version": 1.0
|
1910 |
+
}
|
1911 |
+
},
|
1912 |
+
"blimp_wh_questions_object_gap": {
|
1913 |
+
"task": "blimp_wh_questions_object_gap",
|
1914 |
+
"group": "blimp",
|
1915 |
+
"dataset_path": "blimp",
|
1916 |
+
"dataset_name": "wh_questions_object_gap",
|
1917 |
+
"validation_split": "train",
|
1918 |
+
"doc_to_text": "",
|
1919 |
+
"doc_to_target": 0,
|
1920 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1921 |
+
"description": "",
|
1922 |
+
"target_delimiter": " ",
|
1923 |
+
"fewshot_delimiter": "\n\n",
|
1924 |
+
"num_fewshot": 0,
|
1925 |
+
"metric_list": [
|
1926 |
+
{
|
1927 |
+
"metric": "acc"
|
1928 |
+
}
|
1929 |
+
],
|
1930 |
+
"output_type": "multiple_choice",
|
1931 |
+
"repeats": 1,
|
1932 |
+
"should_decontaminate": true,
|
1933 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1934 |
+
"metadata": {
|
1935 |
+
"version": 1.0
|
1936 |
+
}
|
1937 |
+
},
|
1938 |
+
"blimp_wh_questions_subject_gap": {
|
1939 |
+
"task": "blimp_wh_questions_subject_gap",
|
1940 |
+
"group": "blimp",
|
1941 |
+
"dataset_path": "blimp",
|
1942 |
+
"dataset_name": "wh_questions_subject_gap",
|
1943 |
+
"validation_split": "train",
|
1944 |
+
"doc_to_text": "",
|
1945 |
+
"doc_to_target": 0,
|
1946 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1947 |
+
"description": "",
|
1948 |
+
"target_delimiter": " ",
|
1949 |
+
"fewshot_delimiter": "\n\n",
|
1950 |
+
"num_fewshot": 0,
|
1951 |
+
"metric_list": [
|
1952 |
+
{
|
1953 |
+
"metric": "acc"
|
1954 |
+
}
|
1955 |
+
],
|
1956 |
+
"output_type": "multiple_choice",
|
1957 |
+
"repeats": 1,
|
1958 |
+
"should_decontaminate": true,
|
1959 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1960 |
+
"metadata": {
|
1961 |
+
"version": 1.0
|
1962 |
+
}
|
1963 |
+
},
|
1964 |
+
"blimp_wh_questions_subject_gap_long_distance": {
|
1965 |
+
"task": "blimp_wh_questions_subject_gap_long_distance",
|
1966 |
+
"group": "blimp",
|
1967 |
+
"dataset_path": "blimp",
|
1968 |
+
"dataset_name": "wh_questions_subject_gap_long_distance",
|
1969 |
+
"validation_split": "train",
|
1970 |
+
"doc_to_text": "",
|
1971 |
+
"doc_to_target": 0,
|
1972 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1973 |
+
"description": "",
|
1974 |
+
"target_delimiter": " ",
|
1975 |
+
"fewshot_delimiter": "\n\n",
|
1976 |
+
"num_fewshot": 0,
|
1977 |
+
"metric_list": [
|
1978 |
+
{
|
1979 |
+
"metric": "acc"
|
1980 |
+
}
|
1981 |
+
],
|
1982 |
+
"output_type": "multiple_choice",
|
1983 |
+
"repeats": 1,
|
1984 |
+
"should_decontaminate": true,
|
1985 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
1986 |
+
"metadata": {
|
1987 |
+
"version": 1.0
|
1988 |
+
}
|
1989 |
+
},
|
1990 |
+
"blimp_wh_vs_that_no_gap": {
|
1991 |
+
"task": "blimp_wh_vs_that_no_gap",
|
1992 |
+
"group": "blimp",
|
1993 |
+
"dataset_path": "blimp",
|
1994 |
+
"dataset_name": "wh_vs_that_no_gap",
|
1995 |
+
"validation_split": "train",
|
1996 |
+
"doc_to_text": "",
|
1997 |
+
"doc_to_target": 0,
|
1998 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
1999 |
+
"description": "",
|
2000 |
+
"target_delimiter": " ",
|
2001 |
+
"fewshot_delimiter": "\n\n",
|
2002 |
+
"num_fewshot": 0,
|
2003 |
+
"metric_list": [
|
2004 |
+
{
|
2005 |
+
"metric": "acc"
|
2006 |
+
}
|
2007 |
+
],
|
2008 |
+
"output_type": "multiple_choice",
|
2009 |
+
"repeats": 1,
|
2010 |
+
"should_decontaminate": true,
|
2011 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
2012 |
+
"metadata": {
|
2013 |
+
"version": 1.0
|
2014 |
+
}
|
2015 |
+
},
|
2016 |
+
"blimp_wh_vs_that_no_gap_long_distance": {
|
2017 |
+
"task": "blimp_wh_vs_that_no_gap_long_distance",
|
2018 |
+
"group": "blimp",
|
2019 |
+
"dataset_path": "blimp",
|
2020 |
+
"dataset_name": "wh_vs_that_no_gap_long_distance",
|
2021 |
+
"validation_split": "train",
|
2022 |
+
"doc_to_text": "",
|
2023 |
+
"doc_to_target": 0,
|
2024 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
2025 |
+
"description": "",
|
2026 |
+
"target_delimiter": " ",
|
2027 |
+
"fewshot_delimiter": "\n\n",
|
2028 |
+
"num_fewshot": 0,
|
2029 |
+
"metric_list": [
|
2030 |
+
{
|
2031 |
+
"metric": "acc"
|
2032 |
+
}
|
2033 |
+
],
|
2034 |
+
"output_type": "multiple_choice",
|
2035 |
+
"repeats": 1,
|
2036 |
+
"should_decontaminate": true,
|
2037 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
2038 |
+
"metadata": {
|
2039 |
+
"version": 1.0
|
2040 |
+
}
|
2041 |
+
},
|
2042 |
+
"blimp_wh_vs_that_with_gap": {
|
2043 |
+
"task": "blimp_wh_vs_that_with_gap",
|
2044 |
+
"group": "blimp",
|
2045 |
+
"dataset_path": "blimp",
|
2046 |
+
"dataset_name": "wh_vs_that_with_gap",
|
2047 |
+
"validation_split": "train",
|
2048 |
+
"doc_to_text": "",
|
2049 |
+
"doc_to_target": 0,
|
2050 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
2051 |
+
"description": "",
|
2052 |
+
"target_delimiter": " ",
|
2053 |
+
"fewshot_delimiter": "\n\n",
|
2054 |
+
"num_fewshot": 0,
|
2055 |
+
"metric_list": [
|
2056 |
+
{
|
2057 |
+
"metric": "acc"
|
2058 |
+
}
|
2059 |
+
],
|
2060 |
+
"output_type": "multiple_choice",
|
2061 |
+
"repeats": 1,
|
2062 |
+
"should_decontaminate": true,
|
2063 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
2064 |
+
"metadata": {
|
2065 |
+
"version": 1.0
|
2066 |
+
}
|
2067 |
+
},
|
2068 |
+
"blimp_wh_vs_that_with_gap_long_distance": {
|
2069 |
+
"task": "blimp_wh_vs_that_with_gap_long_distance",
|
2070 |
+
"group": "blimp",
|
2071 |
+
"dataset_path": "blimp",
|
2072 |
+
"dataset_name": "wh_vs_that_with_gap_long_distance",
|
2073 |
+
"validation_split": "train",
|
2074 |
+
"doc_to_text": "",
|
2075 |
+
"doc_to_target": 0,
|
2076 |
+
"doc_to_choice": "{{[sentence_good, sentence_bad]}}",
|
2077 |
+
"description": "",
|
2078 |
+
"target_delimiter": " ",
|
2079 |
+
"fewshot_delimiter": "\n\n",
|
2080 |
+
"num_fewshot": 0,
|
2081 |
+
"metric_list": [
|
2082 |
+
{
|
2083 |
+
"metric": "acc"
|
2084 |
+
}
|
2085 |
+
],
|
2086 |
+
"output_type": "multiple_choice",
|
2087 |
+
"repeats": 1,
|
2088 |
+
"should_decontaminate": true,
|
2089 |
+
"doc_to_decontamination_query": "{{sentence_good}} {{sentence_bad}}",
|
2090 |
+
"metadata": {
|
2091 |
+
"version": 1.0
|
2092 |
+
}
|
2093 |
+
}
|
2094 |
+
},
|
2095 |
+
"versions": {
|
2096 |
+
"blimp": "N/A",
|
2097 |
+
"blimp_adjunct_island": 1.0,
|
2098 |
+
"blimp_anaphor_gender_agreement": 1.0,
|
2099 |
+
"blimp_anaphor_number_agreement": 1.0,
|
2100 |
+
"blimp_animate_subject_passive": 1.0,
|
2101 |
+
"blimp_animate_subject_trans": 1.0,
|
2102 |
+
"blimp_causative": 1.0,
|
2103 |
+
"blimp_complex_NP_island": 1.0,
|
2104 |
+
"blimp_coordinate_structure_constraint_complex_left_branch": 1.0,
|
2105 |
+
"blimp_coordinate_structure_constraint_object_extraction": 1.0,
|
2106 |
+
"blimp_determiner_noun_agreement_1": 1.0,
|
2107 |
+
"blimp_determiner_noun_agreement_2": 1.0,
|
2108 |
+
"blimp_determiner_noun_agreement_irregular_1": 1.0,
|
2109 |
+
"blimp_determiner_noun_agreement_irregular_2": 1.0,
|
2110 |
+
"blimp_determiner_noun_agreement_with_adj_2": 1.0,
|
2111 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_1": 1.0,
|
2112 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_2": 1.0,
|
2113 |
+
"blimp_determiner_noun_agreement_with_adjective_1": 1.0,
|
2114 |
+
"blimp_distractor_agreement_relational_noun": 1.0,
|
2115 |
+
"blimp_distractor_agreement_relative_clause": 1.0,
|
2116 |
+
"blimp_drop_argument": 1.0,
|
2117 |
+
"blimp_ellipsis_n_bar_1": 1.0,
|
2118 |
+
"blimp_ellipsis_n_bar_2": 1.0,
|
2119 |
+
"blimp_existential_there_object_raising": 1.0,
|
2120 |
+
"blimp_existential_there_quantifiers_1": 1.0,
|
2121 |
+
"blimp_existential_there_quantifiers_2": 1.0,
|
2122 |
+
"blimp_existential_there_subject_raising": 1.0,
|
2123 |
+
"blimp_expletive_it_object_raising": 1.0,
|
2124 |
+
"blimp_inchoative": 1.0,
|
2125 |
+
"blimp_intransitive": 1.0,
|
2126 |
+
"blimp_irregular_past_participle_adjectives": 1.0,
|
2127 |
+
"blimp_irregular_past_participle_verbs": 1.0,
|
2128 |
+
"blimp_irregular_plural_subject_verb_agreement_1": 1.0,
|
2129 |
+
"blimp_irregular_plural_subject_verb_agreement_2": 1.0,
|
2130 |
+
"blimp_left_branch_island_echo_question": 1.0,
|
2131 |
+
"blimp_left_branch_island_simple_question": 1.0,
|
2132 |
+
"blimp_matrix_question_npi_licensor_present": 1.0,
|
2133 |
+
"blimp_npi_present_1": 1.0,
|
2134 |
+
"blimp_npi_present_2": 1.0,
|
2135 |
+
"blimp_only_npi_licensor_present": 1.0,
|
2136 |
+
"blimp_only_npi_scope": 1.0,
|
2137 |
+
"blimp_passive_1": 1.0,
|
2138 |
+
"blimp_passive_2": 1.0,
|
2139 |
+
"blimp_principle_A_c_command": 1.0,
|
2140 |
+
"blimp_principle_A_case_1": 1.0,
|
2141 |
+
"blimp_principle_A_case_2": 1.0,
|
2142 |
+
"blimp_principle_A_domain_1": 1.0,
|
2143 |
+
"blimp_principle_A_domain_2": 1.0,
|
2144 |
+
"blimp_principle_A_domain_3": 1.0,
|
2145 |
+
"blimp_principle_A_reconstruction": 1.0,
|
2146 |
+
"blimp_regular_plural_subject_verb_agreement_1": 1.0,
|
2147 |
+
"blimp_regular_plural_subject_verb_agreement_2": 1.0,
|
2148 |
+
"blimp_sentential_negation_npi_licensor_present": 1.0,
|
2149 |
+
"blimp_sentential_negation_npi_scope": 1.0,
|
2150 |
+
"blimp_sentential_subject_island": 1.0,
|
2151 |
+
"blimp_superlative_quantifiers_1": 1.0,
|
2152 |
+
"blimp_superlative_quantifiers_2": 1.0,
|
2153 |
+
"blimp_tough_vs_raising_1": 1.0,
|
2154 |
+
"blimp_tough_vs_raising_2": 1.0,
|
2155 |
+
"blimp_transitive": 1.0,
|
2156 |
+
"blimp_wh_island": 1.0,
|
2157 |
+
"blimp_wh_questions_object_gap": 1.0,
|
2158 |
+
"blimp_wh_questions_subject_gap": 1.0,
|
2159 |
+
"blimp_wh_questions_subject_gap_long_distance": 1.0,
|
2160 |
+
"blimp_wh_vs_that_no_gap": 1.0,
|
2161 |
+
"blimp_wh_vs_that_no_gap_long_distance": 1.0,
|
2162 |
+
"blimp_wh_vs_that_with_gap": 1.0,
|
2163 |
+
"blimp_wh_vs_that_with_gap_long_distance": 1.0
|
2164 |
+
},
|
2165 |
+
"n-shot": {
|
2166 |
+
"blimp": 0,
|
2167 |
+
"blimp_adjunct_island": 0,
|
2168 |
+
"blimp_anaphor_gender_agreement": 0,
|
2169 |
+
"blimp_anaphor_number_agreement": 0,
|
2170 |
+
"blimp_animate_subject_passive": 0,
|
2171 |
+
"blimp_animate_subject_trans": 0,
|
2172 |
+
"blimp_causative": 0,
|
2173 |
+
"blimp_complex_NP_island": 0,
|
2174 |
+
"blimp_coordinate_structure_constraint_complex_left_branch": 0,
|
2175 |
+
"blimp_coordinate_structure_constraint_object_extraction": 0,
|
2176 |
+
"blimp_determiner_noun_agreement_1": 0,
|
2177 |
+
"blimp_determiner_noun_agreement_2": 0,
|
2178 |
+
"blimp_determiner_noun_agreement_irregular_1": 0,
|
2179 |
+
"blimp_determiner_noun_agreement_irregular_2": 0,
|
2180 |
+
"blimp_determiner_noun_agreement_with_adj_2": 0,
|
2181 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_1": 0,
|
2182 |
+
"blimp_determiner_noun_agreement_with_adj_irregular_2": 0,
|
2183 |
+
"blimp_determiner_noun_agreement_with_adjective_1": 0,
|
2184 |
+
"blimp_distractor_agreement_relational_noun": 0,
|
2185 |
+
"blimp_distractor_agreement_relative_clause": 0,
|
2186 |
+
"blimp_drop_argument": 0,
|
2187 |
+
"blimp_ellipsis_n_bar_1": 0,
|
2188 |
+
"blimp_ellipsis_n_bar_2": 0,
|
2189 |
+
"blimp_existential_there_object_raising": 0,
|
2190 |
+
"blimp_existential_there_quantifiers_1": 0,
|
2191 |
+
"blimp_existential_there_quantifiers_2": 0,
|
2192 |
+
"blimp_existential_there_subject_raising": 0,
|
2193 |
+
"blimp_expletive_it_object_raising": 0,
|
2194 |
+
"blimp_inchoative": 0,
|
2195 |
+
"blimp_intransitive": 0,
|
2196 |
+
"blimp_irregular_past_participle_adjectives": 0,
|
2197 |
+
"blimp_irregular_past_participle_verbs": 0,
|
2198 |
+
"blimp_irregular_plural_subject_verb_agreement_1": 0,
|
2199 |
+
"blimp_irregular_plural_subject_verb_agreement_2": 0,
|
2200 |
+
"blimp_left_branch_island_echo_question": 0,
|
2201 |
+
"blimp_left_branch_island_simple_question": 0,
|
2202 |
+
"blimp_matrix_question_npi_licensor_present": 0,
|
2203 |
+
"blimp_npi_present_1": 0,
|
2204 |
+
"blimp_npi_present_2": 0,
|
2205 |
+
"blimp_only_npi_licensor_present": 0,
|
2206 |
+
"blimp_only_npi_scope": 0,
|
2207 |
+
"blimp_passive_1": 0,
|
2208 |
+
"blimp_passive_2": 0,
|
2209 |
+
"blimp_principle_A_c_command": 0,
|
2210 |
+
"blimp_principle_A_case_1": 0,
|
2211 |
+
"blimp_principle_A_case_2": 0,
|
2212 |
+
"blimp_principle_A_domain_1": 0,
|
2213 |
+
"blimp_principle_A_domain_2": 0,
|
2214 |
+
"blimp_principle_A_domain_3": 0,
|
2215 |
+
"blimp_principle_A_reconstruction": 0,
|
2216 |
+
"blimp_regular_plural_subject_verb_agreement_1": 0,
|
2217 |
+
"blimp_regular_plural_subject_verb_agreement_2": 0,
|
2218 |
+
"blimp_sentential_negation_npi_licensor_present": 0,
|
2219 |
+
"blimp_sentential_negation_npi_scope": 0,
|
2220 |
+
"blimp_sentential_subject_island": 0,
|
2221 |
+
"blimp_superlative_quantifiers_1": 0,
|
2222 |
+
"blimp_superlative_quantifiers_2": 0,
|
2223 |
+
"blimp_tough_vs_raising_1": 0,
|
2224 |
+
"blimp_tough_vs_raising_2": 0,
|
2225 |
+
"blimp_transitive": 0,
|
2226 |
+
"blimp_wh_island": 0,
|
2227 |
+
"blimp_wh_questions_object_gap": 0,
|
2228 |
+
"blimp_wh_questions_subject_gap": 0,
|
2229 |
+
"blimp_wh_questions_subject_gap_long_distance": 0,
|
2230 |
+
"blimp_wh_vs_that_no_gap": 0,
|
2231 |
+
"blimp_wh_vs_that_no_gap_long_distance": 0,
|
2232 |
+
"blimp_wh_vs_that_with_gap": 0,
|
2233 |
+
"blimp_wh_vs_that_with_gap_long_distance": 0
|
2234 |
+
},
|
2235 |
+
"config": {
|
2236 |
+
"model": "hf",
|
2237 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
2238 |
+
"batch_size": "auto",
|
2239 |
+
"batch_sizes": [
|
2240 |
+
64
|
2241 |
+
],
|
2242 |
+
"device": null,
|
2243 |
+
"use_cache": null,
|
2244 |
+
"limit": null,
|
2245 |
+
"bootstrap_iters": 100000,
|
2246 |
+
"gen_kwargs": null
|
2247 |
+
},
|
2248 |
+
"git_hash": "97a2520"
|
2249 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/blimp/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2a2c26f885eefe94cc67cf96289911e710e93f7a615ede56d4e45c10369eba35
|
3 |
+
size 177148
|
lm-eval-output/m8than/Finch-14B-Final2/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8b06a5560227138d8e6314e7216c9d4ece80f477e2587220ed87f5e382af482
|
3 |
+
size 2341902
|
lm-eval-output/m8than/Finch-14B-Final2/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lm-eval-output/m8than/Finch-14B-Final2/cmmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f27a46afa665e38775cbdc753cbcdef2743d8175ac1b8da61d39f99547c4336f
|
3 |
+
size 71691
|
lm-eval-output/m8than/Finch-14B-Final2/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33ab07b78b472b13bb0c2e96452fbddaa09ca129d8e2196bef2565340d1f5487
|
3 |
+
size 10091
|
lm-eval-output/m8than/Finch-14B-Final2/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"copa": {
|
4 |
+
"acc,none": 0.86,
|
5 |
+
"acc_stderr,none": 0.034873508801977704,
|
6 |
+
"alias": "copa"
|
7 |
+
}
|
8 |
+
},
|
9 |
+
"configs": {
|
10 |
+
"copa": {
|
11 |
+
"task": "copa",
|
12 |
+
"group": [
|
13 |
+
"super-glue-lm-eval-v1"
|
14 |
+
],
|
15 |
+
"dataset_path": "super_glue",
|
16 |
+
"dataset_name": "copa",
|
17 |
+
"training_split": "train",
|
18 |
+
"validation_split": "validation",
|
19 |
+
"doc_to_text": "def doc_to_text(doc):\n # Drop the period\n connector = {\n \"cause\": \"because\",\n \"effect\": \"therefore\",\n }[doc[\"question\"]]\n return doc[\"premise\"].strip()[:-1] + f\" {connector}\"\n",
|
20 |
+
"doc_to_target": "def doc_to_target(doc):\n correct_choice = doc[\"choice1\"] if doc[\"label\"] == 0 else doc[\"choice2\"]\n # Connect the sentences\n return \" \" + convert_choice(correct_choice)\n",
|
21 |
+
"doc_to_choice": "def doc_to_choice(doc):\n return [\" \" + convert_choice(doc[\"choice1\"]), \" \" + convert_choice(doc[\"choice2\"])]\n",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"metric_list": [
|
26 |
+
{
|
27 |
+
"metric": "acc"
|
28 |
+
}
|
29 |
+
],
|
30 |
+
"output_type": "multiple_choice",
|
31 |
+
"repeats": 1,
|
32 |
+
"should_decontaminate": false,
|
33 |
+
"metadata": {
|
34 |
+
"version": 1.0
|
35 |
+
}
|
36 |
+
}
|
37 |
+
},
|
38 |
+
"versions": {
|
39 |
+
"copa": 1.0
|
40 |
+
},
|
41 |
+
"n-shot": {
|
42 |
+
"copa": 0
|
43 |
+
},
|
44 |
+
"config": {
|
45 |
+
"model": "hf",
|
46 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
47 |
+
"batch_size": "auto",
|
48 |
+
"batch_sizes": [
|
49 |
+
64
|
50 |
+
],
|
51 |
+
"device": null,
|
52 |
+
"use_cache": null,
|
53 |
+
"limit": null,
|
54 |
+
"bootstrap_iters": 100000,
|
55 |
+
"gen_kwargs": null
|
56 |
+
},
|
57 |
+
"git_hash": "97a2520"
|
58 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/copa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b097c1e9c558ccb721ded99f494b224ecdf041c5b1c4a2691a5ba197f454a00e
|
3 |
+
size 2923
|
lm-eval-output/m8than/Finch-14B-Final2/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b60172353221fec114b3375217d709c480ca927ee781817c1e3367458c9b9b11
|
3 |
+
size 8252696
|
lm-eval-output/m8than/Finch-14B-Final2/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,374 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"glue": {
|
4 |
+
"acc,none": 0.6639917818008576,
|
5 |
+
"acc_stderr,none": 0.00910105549100269,
|
6 |
+
"f1,none": 0.6459843641578645,
|
7 |
+
"f1_stderr,none": 0.0002762982658319697,
|
8 |
+
"mcc,none": 0.15191153194078577,
|
9 |
+
"mcc_stderr,none": 0.033425150533706614,
|
10 |
+
"alias": "glue"
|
11 |
+
},
|
12 |
+
"cola": {
|
13 |
+
"mcc,none": 0.15191153194078577,
|
14 |
+
"mcc_stderr,none": 0.033425150533706614,
|
15 |
+
"alias": " - cola"
|
16 |
+
},
|
17 |
+
"mnli": {
|
18 |
+
"acc,none": 0.8343352012226184,
|
19 |
+
"acc_stderr,none": 0.0037528601038379914,
|
20 |
+
"alias": " - mnli"
|
21 |
+
},
|
22 |
+
"mnli_mismatch": {
|
23 |
+
"acc,none": 0.8311635475996745,
|
24 |
+
"acc_stderr,none": 0.0037781352873794936,
|
25 |
+
"alias": " - mnli_mismatch"
|
26 |
+
},
|
27 |
+
"mrpc": {
|
28 |
+
"acc,none": 0.7083333333333334,
|
29 |
+
"acc_stderr,none": 0.02253019934687401,
|
30 |
+
"f1,none": 0.8231797919762258,
|
31 |
+
"f1_stderr,none": 0.016000145387874306,
|
32 |
+
"alias": " - mrpc"
|
33 |
+
},
|
34 |
+
"qnli": {
|
35 |
+
"acc,none": 0.4946000366099213,
|
36 |
+
"acc_stderr,none": 0.006765015986877456,
|
37 |
+
"alias": " - qnli"
|
38 |
+
},
|
39 |
+
"qqp": {
|
40 |
+
"acc,none": 0.6020529309918378,
|
41 |
+
"acc_stderr,none": 0.002434352655343179,
|
42 |
+
"f1,none": 0.644449846412234,
|
43 |
+
"f1_stderr,none": 0.0026265422177656423,
|
44 |
+
"alias": " - qqp"
|
45 |
+
},
|
46 |
+
"rte": {
|
47 |
+
"acc,none": 0.7111913357400722,
|
48 |
+
"acc_stderr,none": 0.027279964226856374,
|
49 |
+
"alias": " - rte"
|
50 |
+
},
|
51 |
+
"sst2": {
|
52 |
+
"acc,none": 0.7729357798165137,
|
53 |
+
"acc_stderr,none": 0.014195051776717411,
|
54 |
+
"alias": " - sst2"
|
55 |
+
},
|
56 |
+
"wnli": {
|
57 |
+
"acc,none": 0.49295774647887325,
|
58 |
+
"acc_stderr,none": 0.059755502635482904,
|
59 |
+
"alias": " - wnli"
|
60 |
+
}
|
61 |
+
},
|
62 |
+
"groups": {
|
63 |
+
"glue": {
|
64 |
+
"acc,none": 0.6639917818008576,
|
65 |
+
"acc_stderr,none": 0.00910105549100269,
|
66 |
+
"f1,none": 0.6459843641578645,
|
67 |
+
"f1_stderr,none": 0.0002762982658319697,
|
68 |
+
"mcc,none": 0.15191153194078577,
|
69 |
+
"mcc_stderr,none": 0.033425150533706614,
|
70 |
+
"alias": "glue"
|
71 |
+
}
|
72 |
+
},
|
73 |
+
"configs": {
|
74 |
+
"cola": {
|
75 |
+
"task": "cola",
|
76 |
+
"group": "glue",
|
77 |
+
"dataset_path": "glue",
|
78 |
+
"dataset_name": "cola",
|
79 |
+
"training_split": "train",
|
80 |
+
"validation_split": "validation",
|
81 |
+
"doc_to_text": "{{sentence}}\nQuestion: Does this sentence make sense?\nAnswer:",
|
82 |
+
"doc_to_target": "label",
|
83 |
+
"doc_to_choice": [
|
84 |
+
"no",
|
85 |
+
"yes"
|
86 |
+
],
|
87 |
+
"description": "",
|
88 |
+
"target_delimiter": " ",
|
89 |
+
"fewshot_delimiter": "\n\n",
|
90 |
+
"metric_list": [
|
91 |
+
{
|
92 |
+
"metric": "mcc"
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"output_type": "multiple_choice",
|
96 |
+
"repeats": 1,
|
97 |
+
"should_decontaminate": true,
|
98 |
+
"doc_to_decontamination_query": "sentence",
|
99 |
+
"metadata": {
|
100 |
+
"version": 1.0
|
101 |
+
}
|
102 |
+
},
|
103 |
+
"mnli": {
|
104 |
+
"task": "mnli",
|
105 |
+
"group": "glue",
|
106 |
+
"dataset_path": "glue",
|
107 |
+
"dataset_name": "mnli",
|
108 |
+
"training_split": "train",
|
109 |
+
"validation_split": "validation_matched",
|
110 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n return \"{}\\nQuestion: {} True, False or Neither?\\nAnswer:\".format(\n doc[\"premise\"],\n doc[\"hypothesis\"].strip()\n + (\"\" if doc[\"hypothesis\"].strip().endswith(\".\") else \".\"),\n )\n",
|
111 |
+
"doc_to_target": "label",
|
112 |
+
"doc_to_choice": [
|
113 |
+
"True",
|
114 |
+
"Neither",
|
115 |
+
"False"
|
116 |
+
],
|
117 |
+
"description": "",
|
118 |
+
"target_delimiter": " ",
|
119 |
+
"fewshot_delimiter": "\n\n",
|
120 |
+
"metric_list": [
|
121 |
+
{
|
122 |
+
"metric": "acc"
|
123 |
+
}
|
124 |
+
],
|
125 |
+
"output_type": "multiple_choice",
|
126 |
+
"repeats": 1,
|
127 |
+
"should_decontaminate": false,
|
128 |
+
"metadata": {
|
129 |
+
"version": 1.0
|
130 |
+
}
|
131 |
+
},
|
132 |
+
"mnli_mismatch": {
|
133 |
+
"task": "mnli_mismatch",
|
134 |
+
"group": "glue",
|
135 |
+
"dataset_path": "glue",
|
136 |
+
"dataset_name": "mnli",
|
137 |
+
"training_split": "train",
|
138 |
+
"validation_split": "validation_mismatched",
|
139 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n return \"{}\\nQuestion: {} True, False or Neither?\\nAnswer:\".format(\n doc[\"premise\"],\n doc[\"hypothesis\"].strip()\n + (\"\" if doc[\"hypothesis\"].strip().endswith(\".\") else \".\"),\n )\n",
|
140 |
+
"doc_to_target": "label",
|
141 |
+
"doc_to_choice": [
|
142 |
+
"True",
|
143 |
+
"Neither",
|
144 |
+
"False"
|
145 |
+
],
|
146 |
+
"description": "",
|
147 |
+
"target_delimiter": " ",
|
148 |
+
"fewshot_delimiter": "\n\n",
|
149 |
+
"metric_list": [
|
150 |
+
{
|
151 |
+
"metric": "acc"
|
152 |
+
}
|
153 |
+
],
|
154 |
+
"output_type": "multiple_choice",
|
155 |
+
"repeats": 1,
|
156 |
+
"should_decontaminate": false,
|
157 |
+
"metadata": {
|
158 |
+
"version": 1.0
|
159 |
+
}
|
160 |
+
},
|
161 |
+
"mrpc": {
|
162 |
+
"task": "mrpc",
|
163 |
+
"group": "glue",
|
164 |
+
"dataset_path": "glue",
|
165 |
+
"dataset_name": "mrpc",
|
166 |
+
"training_split": "train",
|
167 |
+
"validation_split": "validation",
|
168 |
+
"doc_to_text": "Sentence 1: {{sentence1}}\nSentence 2: {{sentence2}}\nQuestion: Do both sentences mean the same thing?\nAnswer:",
|
169 |
+
"doc_to_target": "label",
|
170 |
+
"doc_to_choice": [
|
171 |
+
"no",
|
172 |
+
"yes"
|
173 |
+
],
|
174 |
+
"description": "",
|
175 |
+
"target_delimiter": " ",
|
176 |
+
"fewshot_delimiter": "\n\n",
|
177 |
+
"metric_list": [
|
178 |
+
{
|
179 |
+
"metric": "acc"
|
180 |
+
},
|
181 |
+
{
|
182 |
+
"metric": "f1"
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"output_type": "multiple_choice",
|
186 |
+
"repeats": 1,
|
187 |
+
"should_decontaminate": false,
|
188 |
+
"metadata": {
|
189 |
+
"version": 1.0
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"qnli": {
|
193 |
+
"task": "qnli",
|
194 |
+
"group": "glue",
|
195 |
+
"dataset_path": "glue",
|
196 |
+
"dataset_name": "qnli",
|
197 |
+
"training_split": "train",
|
198 |
+
"validation_split": "validation",
|
199 |
+
"doc_to_text": "{{question}}\n{{sentence}}\nQuestion: Does this response answer the question?\nAnswer:",
|
200 |
+
"doc_to_target": "label",
|
201 |
+
"doc_to_choice": [
|
202 |
+
"yes",
|
203 |
+
"no"
|
204 |
+
],
|
205 |
+
"description": "",
|
206 |
+
"target_delimiter": " ",
|
207 |
+
"fewshot_delimiter": "\n\n",
|
208 |
+
"metric_list": [
|
209 |
+
{
|
210 |
+
"metric": "acc"
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"output_type": "multiple_choice",
|
214 |
+
"repeats": 1,
|
215 |
+
"should_decontaminate": false,
|
216 |
+
"metadata": {
|
217 |
+
"version": 1.0
|
218 |
+
}
|
219 |
+
},
|
220 |
+
"qqp": {
|
221 |
+
"task": "qqp",
|
222 |
+
"group": "glue",
|
223 |
+
"dataset_path": "glue",
|
224 |
+
"dataset_name": "qqp",
|
225 |
+
"training_split": "train",
|
226 |
+
"validation_split": "validation",
|
227 |
+
"doc_to_text": "\nSentence 1: {{question1}}\nSentence 2: {{question2}}\nAnswer:",
|
228 |
+
"doc_to_target": "label",
|
229 |
+
"doc_to_choice": [
|
230 |
+
"no",
|
231 |
+
"yes"
|
232 |
+
],
|
233 |
+
"description": "",
|
234 |
+
"target_delimiter": " ",
|
235 |
+
"fewshot_delimiter": "\n\n",
|
236 |
+
"metric_list": [
|
237 |
+
{
|
238 |
+
"metric": "acc"
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"metric": "f1"
|
242 |
+
}
|
243 |
+
],
|
244 |
+
"output_type": "multiple_choice",
|
245 |
+
"repeats": 1,
|
246 |
+
"should_decontaminate": false,
|
247 |
+
"metadata": {
|
248 |
+
"version": 1.0
|
249 |
+
}
|
250 |
+
},
|
251 |
+
"rte": {
|
252 |
+
"task": "rte",
|
253 |
+
"group": "glue",
|
254 |
+
"dataset_path": "glue",
|
255 |
+
"dataset_name": "rte",
|
256 |
+
"training_split": "train",
|
257 |
+
"validation_split": "validation",
|
258 |
+
"doc_to_text": "{{sentence1}}\nQuestion: {{sentence2}} True or False?\nAnswer:",
|
259 |
+
"doc_to_target": "label",
|
260 |
+
"doc_to_choice": [
|
261 |
+
"True",
|
262 |
+
"False"
|
263 |
+
],
|
264 |
+
"description": "",
|
265 |
+
"target_delimiter": " ",
|
266 |
+
"fewshot_delimiter": "\n\n",
|
267 |
+
"metric_list": [
|
268 |
+
{
|
269 |
+
"metric": "acc"
|
270 |
+
}
|
271 |
+
],
|
272 |
+
"output_type": "multiple_choice",
|
273 |
+
"repeats": 1,
|
274 |
+
"should_decontaminate": false,
|
275 |
+
"metadata": {
|
276 |
+
"version": 1.0
|
277 |
+
}
|
278 |
+
},
|
279 |
+
"sst2": {
|
280 |
+
"task": "sst2",
|
281 |
+
"group": "glue",
|
282 |
+
"dataset_path": "glue",
|
283 |
+
"dataset_name": "sst2",
|
284 |
+
"training_split": "train",
|
285 |
+
"validation_split": "validation",
|
286 |
+
"doc_to_text": "{{sentence}}\nQuestion: Is this sentence positive or negative?\nAnswer:",
|
287 |
+
"doc_to_target": "label",
|
288 |
+
"doc_to_choice": [
|
289 |
+
"negative",
|
290 |
+
"positive"
|
291 |
+
],
|
292 |
+
"description": "",
|
293 |
+
"target_delimiter": " ",
|
294 |
+
"fewshot_delimiter": "\n\n",
|
295 |
+
"metric_list": [
|
296 |
+
{
|
297 |
+
"metric": "acc"
|
298 |
+
}
|
299 |
+
],
|
300 |
+
"output_type": "multiple_choice",
|
301 |
+
"repeats": 1,
|
302 |
+
"should_decontaminate": false,
|
303 |
+
"metadata": {
|
304 |
+
"version": 1.0
|
305 |
+
}
|
306 |
+
},
|
307 |
+
"wnli": {
|
308 |
+
"task": "wnli",
|
309 |
+
"group": "glue",
|
310 |
+
"dataset_path": "glue",
|
311 |
+
"dataset_name": "wnli",
|
312 |
+
"training_split": "train",
|
313 |
+
"validation_split": "validation",
|
314 |
+
"doc_to_text": "{{sentence1}}\nQuestion: {{sentence2}} True or False?\nAnswer:",
|
315 |
+
"doc_to_target": "label",
|
316 |
+
"doc_to_choice": [
|
317 |
+
"False",
|
318 |
+
"True"
|
319 |
+
],
|
320 |
+
"description": "",
|
321 |
+
"target_delimiter": " ",
|
322 |
+
"fewshot_delimiter": "\n\n",
|
323 |
+
"metric_list": [
|
324 |
+
{
|
325 |
+
"metric": "acc"
|
326 |
+
}
|
327 |
+
],
|
328 |
+
"output_type": "multiple_choice",
|
329 |
+
"repeats": 1,
|
330 |
+
"should_decontaminate": false,
|
331 |
+
"metadata": {
|
332 |
+
"version": 2.0
|
333 |
+
}
|
334 |
+
}
|
335 |
+
},
|
336 |
+
"versions": {
|
337 |
+
"cola": 1.0,
|
338 |
+
"glue": "N/A",
|
339 |
+
"mnli": 1.0,
|
340 |
+
"mnli_mismatch": 1.0,
|
341 |
+
"mrpc": 1.0,
|
342 |
+
"qnli": 1.0,
|
343 |
+
"qqp": 1.0,
|
344 |
+
"rte": 1.0,
|
345 |
+
"sst2": 1.0,
|
346 |
+
"wnli": 2.0
|
347 |
+
},
|
348 |
+
"n-shot": {
|
349 |
+
"cola": 0,
|
350 |
+
"glue": 0,
|
351 |
+
"mnli": 0,
|
352 |
+
"mnli_mismatch": 0,
|
353 |
+
"mrpc": 0,
|
354 |
+
"qnli": 0,
|
355 |
+
"qqp": 0,
|
356 |
+
"rte": 0,
|
357 |
+
"sst2": 0,
|
358 |
+
"wnli": 0
|
359 |
+
},
|
360 |
+
"config": {
|
361 |
+
"model": "hf",
|
362 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
363 |
+
"batch_size": "auto",
|
364 |
+
"batch_sizes": [
|
365 |
+
64
|
366 |
+
],
|
367 |
+
"device": null,
|
368 |
+
"use_cache": null,
|
369 |
+
"limit": null,
|
370 |
+
"bootstrap_iters": 100000,
|
371 |
+
"gen_kwargs": null
|
372 |
+
},
|
373 |
+
"git_hash": "97a2520"
|
374 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/glue/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fee5fd9ba0c9ff49ae4f15afe5a5745e5500a7d1f0074a62940e352b2624b2c1
|
3 |
+
size 177134
|
lm-eval-output/m8than/Finch-14B-Final2/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f75888e4d6ff6cc51c4949d47ce98090862ee06b2e7b49049bd5be7fb1d62599
|
3 |
+
size 4778283
|
lm-eval-output/m8than/Finch-14B-Final2/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"hellaswag": {
|
4 |
+
"acc,none": 0.5768771161123282,
|
5 |
+
"acc_stderr,none": 0.004930448527146673,
|
6 |
+
"acc_norm,none": 0.7648874726150169,
|
7 |
+
"acc_norm_stderr,none": 0.004232024522115296,
|
8 |
+
"alias": "hellaswag"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"hellaswag": {
|
13 |
+
"task": "hellaswag",
|
14 |
+
"group": [
|
15 |
+
"multiple_choice"
|
16 |
+
],
|
17 |
+
"dataset_path": "hellaswag",
|
18 |
+
"training_split": "train",
|
19 |
+
"validation_split": "validation",
|
20 |
+
"process_docs": "def process_docs(dataset: datasets.Dataset) -> datasets.Dataset:\n def _process_doc(doc):\n ctx = doc[\"ctx_a\"] + \" \" + doc[\"ctx_b\"].capitalize()\n out_doc = {\n \"query\": preprocess(doc[\"activity_label\"] + \": \" + ctx),\n \"choices\": [preprocess(ending) for ending in doc[\"endings\"]],\n \"gold\": int(doc[\"label\"]),\n }\n return out_doc\n\n return dataset.map(_process_doc)\n",
|
21 |
+
"doc_to_text": "{{query}}",
|
22 |
+
"doc_to_target": "{{label}}",
|
23 |
+
"doc_to_choice": "choices",
|
24 |
+
"description": "",
|
25 |
+
"target_delimiter": " ",
|
26 |
+
"fewshot_delimiter": "\n\n",
|
27 |
+
"metric_list": [
|
28 |
+
{
|
29 |
+
"metric": "acc",
|
30 |
+
"aggregation": "mean",
|
31 |
+
"higher_is_better": true
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"metric": "acc_norm",
|
35 |
+
"aggregation": "mean",
|
36 |
+
"higher_is_better": true
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"output_type": "multiple_choice",
|
40 |
+
"repeats": 1,
|
41 |
+
"should_decontaminate": false,
|
42 |
+
"metadata": {
|
43 |
+
"version": 1.0
|
44 |
+
}
|
45 |
+
}
|
46 |
+
},
|
47 |
+
"versions": {
|
48 |
+
"hellaswag": 1.0
|
49 |
+
},
|
50 |
+
"n-shot": {
|
51 |
+
"hellaswag": 0
|
52 |
+
},
|
53 |
+
"config": {
|
54 |
+
"model": "hf",
|
55 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
56 |
+
"batch_size": "auto",
|
57 |
+
"batch_sizes": [
|
58 |
+
64
|
59 |
+
],
|
60 |
+
"device": null,
|
61 |
+
"use_cache": null,
|
62 |
+
"limit": null,
|
63 |
+
"bootstrap_iters": 100000,
|
64 |
+
"gen_kwargs": null
|
65 |
+
},
|
66 |
+
"git_hash": "97a2520"
|
67 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/hellaswag/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e28ea8ec6542760a7755c52513c0b39411d56dda69c227b795435d866a4372a1
|
3 |
+
size 44640
|
lm-eval-output/m8than/Finch-14B-Final2/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60441f5051ce8bc469176a2e509a3770a9d958ebf67aa159ed6ce48951da9db6
|
3 |
+
size 1970180
|
lm-eval-output/m8than/Finch-14B-Final2/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"lambada": {
|
4 |
+
"perplexity,none": 3.2499198564639857,
|
5 |
+
"perplexity_stderr,none": 0.13915345161118498,
|
6 |
+
"acc,none": 0.7279254803027363,
|
7 |
+
"acc_stderr,none": 0.016352526740605534,
|
8 |
+
"alias": "lambada"
|
9 |
+
},
|
10 |
+
"lambada_openai": {
|
11 |
+
"perplexity,none": 2.999940748411074,
|
12 |
+
"perplexity_stderr,none": 0.05477769188436788,
|
13 |
+
"acc,none": 0.7581991073161265,
|
14 |
+
"acc_stderr,none": 0.0059653050484342355,
|
15 |
+
"alias": " - lambada_openai"
|
16 |
+
},
|
17 |
+
"lambada_standard": {
|
18 |
+
"perplexity,none": 3.499898964516897,
|
19 |
+
"perplexity_stderr,none": 0.06693046629134702,
|
20 |
+
"acc,none": 0.697651853289346,
|
21 |
+
"acc_stderr,none": 0.006398602102697942,
|
22 |
+
"alias": " - lambada_standard"
|
23 |
+
}
|
24 |
+
},
|
25 |
+
"groups": {
|
26 |
+
"lambada": {
|
27 |
+
"perplexity,none": 3.2499198564639857,
|
28 |
+
"perplexity_stderr,none": 0.13915345161118498,
|
29 |
+
"acc,none": 0.7279254803027363,
|
30 |
+
"acc_stderr,none": 0.016352526740605534,
|
31 |
+
"alias": "lambada"
|
32 |
+
}
|
33 |
+
},
|
34 |
+
"configs": {
|
35 |
+
"lambada_openai": {
|
36 |
+
"task": "lambada_openai",
|
37 |
+
"group": [
|
38 |
+
"lambada"
|
39 |
+
],
|
40 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
41 |
+
"dataset_name": "default",
|
42 |
+
"test_split": "test",
|
43 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
44 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
45 |
+
"description": "",
|
46 |
+
"target_delimiter": " ",
|
47 |
+
"fewshot_delimiter": "\n\n",
|
48 |
+
"metric_list": [
|
49 |
+
{
|
50 |
+
"metric": "perplexity",
|
51 |
+
"aggregation": "perplexity",
|
52 |
+
"higher_is_better": false
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"metric": "acc",
|
56 |
+
"aggregation": "mean",
|
57 |
+
"higher_is_better": true
|
58 |
+
}
|
59 |
+
],
|
60 |
+
"output_type": "loglikelihood",
|
61 |
+
"repeats": 1,
|
62 |
+
"should_decontaminate": true,
|
63 |
+
"doc_to_decontamination_query": "{{text}}",
|
64 |
+
"metadata": {
|
65 |
+
"version": 1.0
|
66 |
+
}
|
67 |
+
},
|
68 |
+
"lambada_standard": {
|
69 |
+
"task": "lambada_standard",
|
70 |
+
"group": [
|
71 |
+
"lambada"
|
72 |
+
],
|
73 |
+
"dataset_path": "lambada",
|
74 |
+
"validation_split": "validation",
|
75 |
+
"test_split": "test",
|
76 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
77 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
78 |
+
"description": "",
|
79 |
+
"target_delimiter": " ",
|
80 |
+
"fewshot_delimiter": "\n\n",
|
81 |
+
"metric_list": [
|
82 |
+
{
|
83 |
+
"metric": "perplexity",
|
84 |
+
"aggregation": "perplexity",
|
85 |
+
"higher_is_better": false
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"metric": "acc",
|
89 |
+
"aggregation": "mean",
|
90 |
+
"higher_is_better": true
|
91 |
+
}
|
92 |
+
],
|
93 |
+
"output_type": "loglikelihood",
|
94 |
+
"repeats": 1,
|
95 |
+
"should_decontaminate": true,
|
96 |
+
"doc_to_decontamination_query": "{{text}}",
|
97 |
+
"metadata": {
|
98 |
+
"version": 1.0
|
99 |
+
}
|
100 |
+
}
|
101 |
+
},
|
102 |
+
"versions": {
|
103 |
+
"lambada": "N/A",
|
104 |
+
"lambada_openai": 1.0,
|
105 |
+
"lambada_standard": 1.0
|
106 |
+
},
|
107 |
+
"n-shot": {
|
108 |
+
"lambada": 0,
|
109 |
+
"lambada_openai": 0,
|
110 |
+
"lambada_standard": 0
|
111 |
+
},
|
112 |
+
"config": {
|
113 |
+
"model": "hf",
|
114 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
115 |
+
"batch_size": "auto",
|
116 |
+
"batch_sizes": [
|
117 |
+
64
|
118 |
+
],
|
119 |
+
"device": null,
|
120 |
+
"use_cache": null,
|
121 |
+
"limit": null,
|
122 |
+
"bootstrap_iters": 100000,
|
123 |
+
"gen_kwargs": null
|
124 |
+
},
|
125 |
+
"git_hash": "97a2520"
|
126 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/lambada/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:616e85bbdb03a5311c58f50d230859df58d7336c7d6d080068c182e73f30f4f8
|
3 |
+
size 14626
|
lm-eval-output/m8than/Finch-14B-Final2/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:101fe4d4424f8211c26ab64d4e463ddc5e43643c185112675d605e7310341120
|
3 |
+
size 5219297
|
lm-eval-output/m8than/Finch-14B-Final2/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"lambada_multilingual": {
|
4 |
+
"perplexity,none": 16.169373730394376,
|
5 |
+
"perplexity_stderr,none": 6.322488097039559,
|
6 |
+
"acc,none": 0.5705026198331069,
|
7 |
+
"acc_stderr,none": 0.07935665046551688,
|
8 |
+
"alias": "lambada_multilingual"
|
9 |
+
},
|
10 |
+
"lambada_openai_mt_de": {
|
11 |
+
"perplexity,none": 27.213026200762556,
|
12 |
+
"perplexity_stderr,none": 1.4867757934202306,
|
13 |
+
"acc,none": 0.4589559479914613,
|
14 |
+
"acc_stderr,none": 0.006942468015741764,
|
15 |
+
"alias": " - lambada_openai_mt_de"
|
16 |
+
},
|
17 |
+
"lambada_openai_mt_en": {
|
18 |
+
"perplexity,none": 2.9999165682619666,
|
19 |
+
"perplexity_stderr,none": 0.05477772562618202,
|
20 |
+
"acc,none": 0.7576169221812536,
|
21 |
+
"acc_stderr,none": 0.005970188644154153,
|
22 |
+
"alias": " - lambada_openai_mt_en"
|
23 |
+
},
|
24 |
+
"lambada_openai_mt_es": {
|
25 |
+
"perplexity,none": 21.630412618047156,
|
26 |
+
"perplexity_stderr,none": 1.0339953094729808,
|
27 |
+
"acc,none": 0.48845332815835435,
|
28 |
+
"acc_stderr,none": 0.00696411992274735,
|
29 |
+
"alias": " - lambada_openai_mt_es"
|
30 |
+
},
|
31 |
+
"lambada_openai_mt_fr": {
|
32 |
+
"perplexity,none": 12.7001010026148,
|
33 |
+
"perplexity_stderr,none": 0.5995570948205043,
|
34 |
+
"acc,none": 0.5901416650494857,
|
35 |
+
"acc_stderr,none": 0.00685183817515505,
|
36 |
+
"alias": " - lambada_openai_mt_fr"
|
37 |
+
},
|
38 |
+
"lambada_openai_mt_it": {
|
39 |
+
"perplexity,none": 16.30341226228541,
|
40 |
+
"perplexity_stderr,none": 0.8467650753430807,
|
41 |
+
"acc,none": 0.5573452357849796,
|
42 |
+
"acc_stderr,none": 0.006920011095249945,
|
43 |
+
"alias": " - lambada_openai_mt_it"
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"groups": {
|
47 |
+
"lambada_multilingual": {
|
48 |
+
"perplexity,none": 16.169373730394376,
|
49 |
+
"perplexity_stderr,none": 6.322488097039559,
|
50 |
+
"acc,none": 0.5705026198331069,
|
51 |
+
"acc_stderr,none": 0.07935665046551688,
|
52 |
+
"alias": "lambada_multilingual"
|
53 |
+
}
|
54 |
+
},
|
55 |
+
"configs": {
|
56 |
+
"lambada_openai_mt_de": {
|
57 |
+
"task": "lambada_openai_mt_de",
|
58 |
+
"group": [
|
59 |
+
"lambada_multilingual"
|
60 |
+
],
|
61 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
62 |
+
"dataset_name": "de",
|
63 |
+
"test_split": "test",
|
64 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
65 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
66 |
+
"description": "",
|
67 |
+
"target_delimiter": " ",
|
68 |
+
"fewshot_delimiter": "\n\n",
|
69 |
+
"metric_list": [
|
70 |
+
{
|
71 |
+
"metric": "perplexity",
|
72 |
+
"aggregation": "perplexity",
|
73 |
+
"higher_is_better": false
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"metric": "acc",
|
77 |
+
"aggregation": "mean",
|
78 |
+
"higher_is_better": true
|
79 |
+
}
|
80 |
+
],
|
81 |
+
"output_type": "loglikelihood",
|
82 |
+
"repeats": 1,
|
83 |
+
"should_decontaminate": true,
|
84 |
+
"doc_to_decontamination_query": "{{text}}",
|
85 |
+
"metadata": {
|
86 |
+
"version": 1.0
|
87 |
+
}
|
88 |
+
},
|
89 |
+
"lambada_openai_mt_en": {
|
90 |
+
"task": "lambada_openai_mt_en",
|
91 |
+
"group": [
|
92 |
+
"lambada_multilingual"
|
93 |
+
],
|
94 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
95 |
+
"dataset_name": "en",
|
96 |
+
"test_split": "test",
|
97 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
98 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
99 |
+
"description": "",
|
100 |
+
"target_delimiter": " ",
|
101 |
+
"fewshot_delimiter": "\n\n",
|
102 |
+
"metric_list": [
|
103 |
+
{
|
104 |
+
"metric": "perplexity",
|
105 |
+
"aggregation": "perplexity",
|
106 |
+
"higher_is_better": false
|
107 |
+
},
|
108 |
+
{
|
109 |
+
"metric": "acc",
|
110 |
+
"aggregation": "mean",
|
111 |
+
"higher_is_better": true
|
112 |
+
}
|
113 |
+
],
|
114 |
+
"output_type": "loglikelihood",
|
115 |
+
"repeats": 1,
|
116 |
+
"should_decontaminate": true,
|
117 |
+
"doc_to_decontamination_query": "{{text}}",
|
118 |
+
"metadata": {
|
119 |
+
"version": 1.0
|
120 |
+
}
|
121 |
+
},
|
122 |
+
"lambada_openai_mt_es": {
|
123 |
+
"task": "lambada_openai_mt_es",
|
124 |
+
"group": [
|
125 |
+
"lambada_multilingual"
|
126 |
+
],
|
127 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
128 |
+
"dataset_name": "es",
|
129 |
+
"test_split": "test",
|
130 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
131 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
132 |
+
"description": "",
|
133 |
+
"target_delimiter": " ",
|
134 |
+
"fewshot_delimiter": "\n\n",
|
135 |
+
"metric_list": [
|
136 |
+
{
|
137 |
+
"metric": "perplexity",
|
138 |
+
"aggregation": "perplexity",
|
139 |
+
"higher_is_better": false
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"metric": "acc",
|
143 |
+
"aggregation": "mean",
|
144 |
+
"higher_is_better": true
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"output_type": "loglikelihood",
|
148 |
+
"repeats": 1,
|
149 |
+
"should_decontaminate": true,
|
150 |
+
"doc_to_decontamination_query": "{{text}}",
|
151 |
+
"metadata": {
|
152 |
+
"version": 1.0
|
153 |
+
}
|
154 |
+
},
|
155 |
+
"lambada_openai_mt_fr": {
|
156 |
+
"task": "lambada_openai_mt_fr",
|
157 |
+
"group": [
|
158 |
+
"lambada_multilingual"
|
159 |
+
],
|
160 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
161 |
+
"dataset_name": "fr",
|
162 |
+
"test_split": "test",
|
163 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
164 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
165 |
+
"description": "",
|
166 |
+
"target_delimiter": " ",
|
167 |
+
"fewshot_delimiter": "\n\n",
|
168 |
+
"metric_list": [
|
169 |
+
{
|
170 |
+
"metric": "perplexity",
|
171 |
+
"aggregation": "perplexity",
|
172 |
+
"higher_is_better": false
|
173 |
+
},
|
174 |
+
{
|
175 |
+
"metric": "acc",
|
176 |
+
"aggregation": "mean",
|
177 |
+
"higher_is_better": true
|
178 |
+
}
|
179 |
+
],
|
180 |
+
"output_type": "loglikelihood",
|
181 |
+
"repeats": 1,
|
182 |
+
"should_decontaminate": true,
|
183 |
+
"doc_to_decontamination_query": "{{text}}",
|
184 |
+
"metadata": {
|
185 |
+
"version": 1.0
|
186 |
+
}
|
187 |
+
},
|
188 |
+
"lambada_openai_mt_it": {
|
189 |
+
"task": "lambada_openai_mt_it",
|
190 |
+
"group": [
|
191 |
+
"lambada_multilingual"
|
192 |
+
],
|
193 |
+
"dataset_path": "EleutherAI/lambada_openai",
|
194 |
+
"dataset_name": "it",
|
195 |
+
"test_split": "test",
|
196 |
+
"doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
|
197 |
+
"doc_to_target": "{{' '+text.split(' ')[-1]}}",
|
198 |
+
"description": "",
|
199 |
+
"target_delimiter": " ",
|
200 |
+
"fewshot_delimiter": "\n\n",
|
201 |
+
"metric_list": [
|
202 |
+
{
|
203 |
+
"metric": "perplexity",
|
204 |
+
"aggregation": "perplexity",
|
205 |
+
"higher_is_better": false
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"metric": "acc",
|
209 |
+
"aggregation": "mean",
|
210 |
+
"higher_is_better": true
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"output_type": "loglikelihood",
|
214 |
+
"repeats": 1,
|
215 |
+
"should_decontaminate": true,
|
216 |
+
"doc_to_decontamination_query": "{{text}}",
|
217 |
+
"metadata": {
|
218 |
+
"version": 1.0
|
219 |
+
}
|
220 |
+
}
|
221 |
+
},
|
222 |
+
"versions": {
|
223 |
+
"lambada_multilingual": "N/A",
|
224 |
+
"lambada_openai_mt_de": 1.0,
|
225 |
+
"lambada_openai_mt_en": 1.0,
|
226 |
+
"lambada_openai_mt_es": 1.0,
|
227 |
+
"lambada_openai_mt_fr": 1.0,
|
228 |
+
"lambada_openai_mt_it": 1.0
|
229 |
+
},
|
230 |
+
"n-shot": {
|
231 |
+
"lambada_multilingual": 0,
|
232 |
+
"lambada_openai_mt_de": 0,
|
233 |
+
"lambada_openai_mt_en": 0,
|
234 |
+
"lambada_openai_mt_es": 0,
|
235 |
+
"lambada_openai_mt_fr": 0,
|
236 |
+
"lambada_openai_mt_it": 0
|
237 |
+
},
|
238 |
+
"config": {
|
239 |
+
"model": "hf",
|
240 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
241 |
+
"batch_size": "auto",
|
242 |
+
"batch_sizes": [
|
243 |
+
64
|
244 |
+
],
|
245 |
+
"device": null,
|
246 |
+
"use_cache": null,
|
247 |
+
"limit": null,
|
248 |
+
"bootstrap_iters": 100000,
|
249 |
+
"gen_kwargs": null
|
250 |
+
},
|
251 |
+
"git_hash": "97a2520"
|
252 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82026bf86ad4f17eff21329565ae230f9f7526b57df783669bbb8c9be4ef0e21
|
3 |
+
size 36471
|
lm-eval-output/m8than/Finch-14B-Final2/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8266013d661fb2a4e31f8dc15cd9ecf91bff8705fb2eee90f0ae57376b89b866
|
3 |
+
size 285968
|
lm-eval-output/m8than/Finch-14B-Final2/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"logiqa": {
|
4 |
+
"acc,none": 0.2565284178187404,
|
5 |
+
"acc_stderr,none": 0.01712944332788756,
|
6 |
+
"acc_norm,none": 0.29493087557603687,
|
7 |
+
"acc_norm_stderr,none": 0.017886249734104395,
|
8 |
+
"alias": "logiqa"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"logiqa": {
|
13 |
+
"task": "logiqa",
|
14 |
+
"dataset_path": "EleutherAI/logiqa",
|
15 |
+
"dataset_name": "logiqa",
|
16 |
+
"training_split": "train",
|
17 |
+
"validation_split": "validation",
|
18 |
+
"test_split": "test",
|
19 |
+
"doc_to_text": "def doc_to_text(doc) -> str:\n \"\"\"\n Passage: <passage>\n Question: <question>\n Choices:\n A. <choice1>\n B. <choice2>\n C. <choice3>\n D. <choice4>\n Answer:\n \"\"\"\n choices = [\"a\", \"b\", \"c\", \"d\"]\n prompt = \"Passage: \" + doc[\"context\"] + \"\\n\"\n prompt += \"Question: \" + doc[\"question\"] + \"\\nChoices:\\n\"\n for choice, option in zip(choices, doc[\"options\"]):\n prompt += f\"{choice.upper()}. {option}\\n\"\n prompt += \"Answer:\"\n return prompt\n",
|
20 |
+
"doc_to_target": "def doc_to_target(doc) -> int:\n choices = [\"a\", \"b\", \"c\", \"d\"]\n return choices.index(doc[\"label\"].strip())\n",
|
21 |
+
"doc_to_choice": "{{options}}",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"metric_list": [
|
26 |
+
{
|
27 |
+
"metric": "acc",
|
28 |
+
"aggregation": "mean",
|
29 |
+
"higher_is_better": true
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"metric": "acc_norm",
|
33 |
+
"aggregation": "mean",
|
34 |
+
"higher_is_better": true
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"output_type": "multiple_choice",
|
38 |
+
"repeats": 1,
|
39 |
+
"should_decontaminate": true,
|
40 |
+
"doc_to_decontamination_query": "{{context}}",
|
41 |
+
"metadata": {
|
42 |
+
"version": 1.0
|
43 |
+
}
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"versions": {
|
47 |
+
"logiqa": 1.0
|
48 |
+
},
|
49 |
+
"n-shot": {
|
50 |
+
"logiqa": 0
|
51 |
+
},
|
52 |
+
"config": {
|
53 |
+
"model": "hf",
|
54 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
55 |
+
"batch_size": "auto",
|
56 |
+
"batch_sizes": [
|
57 |
+
64
|
58 |
+
],
|
59 |
+
"device": null,
|
60 |
+
"use_cache": null,
|
61 |
+
"limit": null,
|
62 |
+
"bootstrap_iters": 100000,
|
63 |
+
"gen_kwargs": null
|
64 |
+
},
|
65 |
+
"git_hash": "97a2520"
|
66 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/logiqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e263f350f1569e8906c08d3970b4ea6216b41265ca7354b46d208c44ff1fb89
|
3 |
+
size 5437
|
lm-eval-output/m8than/Finch-14B-Final2/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:24cc04a2d5566d7ba6633488ec100a785805b4dc100ece59406dd68000e98ffb
|
3 |
+
size 4073443
|
lm-eval-output/m8than/Finch-14B-Final2/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,2594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"mmlu": {
|
4 |
+
"acc,none": 0.560461472724683,
|
5 |
+
"acc_stderr,none": 0.13217735852620205,
|
6 |
+
"alias": "mmlu"
|
7 |
+
},
|
8 |
+
"mmlu_humanities": {
|
9 |
+
"alias": " - humanities",
|
10 |
+
"acc,none": 0.5086078639744952,
|
11 |
+
"acc_stderr,none": 0.14622754639234883
|
12 |
+
},
|
13 |
+
"mmlu_formal_logic": {
|
14 |
+
"alias": " - formal_logic",
|
15 |
+
"acc,none": 0.36507936507936506,
|
16 |
+
"acc_stderr,none": 0.043062412591271526
|
17 |
+
},
|
18 |
+
"mmlu_high_school_european_history": {
|
19 |
+
"alias": " - high_school_european_history",
|
20 |
+
"acc,none": 0.7090909090909091,
|
21 |
+
"acc_stderr,none": 0.03546563019624335
|
22 |
+
},
|
23 |
+
"mmlu_high_school_us_history": {
|
24 |
+
"alias": " - high_school_us_history",
|
25 |
+
"acc,none": 0.7352941176470589,
|
26 |
+
"acc_stderr,none": 0.03096451792692341
|
27 |
+
},
|
28 |
+
"mmlu_high_school_world_history": {
|
29 |
+
"alias": " - high_school_world_history",
|
30 |
+
"acc,none": 0.7932489451476793,
|
31 |
+
"acc_stderr,none": 0.026361651668389094
|
32 |
+
},
|
33 |
+
"mmlu_international_law": {
|
34 |
+
"alias": " - international_law",
|
35 |
+
"acc,none": 0.6859504132231405,
|
36 |
+
"acc_stderr,none": 0.042369647530410184
|
37 |
+
},
|
38 |
+
"mmlu_jurisprudence": {
|
39 |
+
"alias": " - jurisprudence",
|
40 |
+
"acc,none": 0.7222222222222222,
|
41 |
+
"acc_stderr,none": 0.04330043749650742
|
42 |
+
},
|
43 |
+
"mmlu_logical_fallacies": {
|
44 |
+
"alias": " - logical_fallacies",
|
45 |
+
"acc,none": 0.656441717791411,
|
46 |
+
"acc_stderr,none": 0.03731133519673893
|
47 |
+
},
|
48 |
+
"mmlu_moral_disputes": {
|
49 |
+
"alias": " - moral_disputes",
|
50 |
+
"acc,none": 0.6127167630057804,
|
51 |
+
"acc_stderr,none": 0.02622615860512465
|
52 |
+
},
|
53 |
+
"mmlu_moral_scenarios": {
|
54 |
+
"alias": " - moral_scenarios",
|
55 |
+
"acc,none": 0.24022346368715083,
|
56 |
+
"acc_stderr,none": 0.014288343803925305
|
57 |
+
},
|
58 |
+
"mmlu_philosophy": {
|
59 |
+
"alias": " - philosophy",
|
60 |
+
"acc,none": 0.6463022508038585,
|
61 |
+
"acc_stderr,none": 0.027155208103200875
|
62 |
+
},
|
63 |
+
"mmlu_prehistory": {
|
64 |
+
"alias": " - prehistory",
|
65 |
+
"acc,none": 0.5987654320987654,
|
66 |
+
"acc_stderr,none": 0.027272582849839792
|
67 |
+
},
|
68 |
+
"mmlu_professional_law": {
|
69 |
+
"alias": " - professional_law",
|
70 |
+
"acc,none": 0.43415906127770537,
|
71 |
+
"acc_stderr,none": 0.01265903323706725
|
72 |
+
},
|
73 |
+
"mmlu_world_religions": {
|
74 |
+
"alias": " - world_religions",
|
75 |
+
"acc,none": 0.7953216374269005,
|
76 |
+
"acc_stderr,none": 0.030944459778533204
|
77 |
+
},
|
78 |
+
"mmlu_other": {
|
79 |
+
"alias": " - other",
|
80 |
+
"acc,none": 0.6266495011264885,
|
81 |
+
"acc_stderr,none": 0.10678706055887757
|
82 |
+
},
|
83 |
+
"mmlu_business_ethics": {
|
84 |
+
"alias": " - business_ethics",
|
85 |
+
"acc,none": 0.6,
|
86 |
+
"acc_stderr,none": 0.049236596391733084
|
87 |
+
},
|
88 |
+
"mmlu_clinical_knowledge": {
|
89 |
+
"alias": " - clinical_knowledge",
|
90 |
+
"acc,none": 0.6150943396226415,
|
91 |
+
"acc_stderr,none": 0.02994649856769995
|
92 |
+
},
|
93 |
+
"mmlu_college_medicine": {
|
94 |
+
"alias": " - college_medicine",
|
95 |
+
"acc,none": 0.5780346820809249,
|
96 |
+
"acc_stderr,none": 0.0376574669386515
|
97 |
+
},
|
98 |
+
"mmlu_global_facts": {
|
99 |
+
"alias": " - global_facts",
|
100 |
+
"acc,none": 0.22,
|
101 |
+
"acc_stderr,none": 0.04163331998932269
|
102 |
+
},
|
103 |
+
"mmlu_human_aging": {
|
104 |
+
"alias": " - human_aging",
|
105 |
+
"acc,none": 0.6457399103139013,
|
106 |
+
"acc_stderr,none": 0.03210062154134987
|
107 |
+
},
|
108 |
+
"mmlu_management": {
|
109 |
+
"alias": " - management",
|
110 |
+
"acc,none": 0.7281553398058253,
|
111 |
+
"acc_stderr,none": 0.044052680241409216
|
112 |
+
},
|
113 |
+
"mmlu_marketing": {
|
114 |
+
"alias": " - marketing",
|
115 |
+
"acc,none": 0.8076923076923077,
|
116 |
+
"acc_stderr,none": 0.025819233256483724
|
117 |
+
},
|
118 |
+
"mmlu_medical_genetics": {
|
119 |
+
"alias": " - medical_genetics",
|
120 |
+
"acc,none": 0.71,
|
121 |
+
"acc_stderr,none": 0.045604802157206845
|
122 |
+
},
|
123 |
+
"mmlu_miscellaneous": {
|
124 |
+
"alias": " - miscellaneous",
|
125 |
+
"acc,none": 0.7407407407407407,
|
126 |
+
"acc_stderr,none": 0.01567100600933957
|
127 |
+
},
|
128 |
+
"mmlu_nutrition": {
|
129 |
+
"alias": " - nutrition",
|
130 |
+
"acc,none": 0.6143790849673203,
|
131 |
+
"acc_stderr,none": 0.02787074527829027
|
132 |
+
},
|
133 |
+
"mmlu_professional_accounting": {
|
134 |
+
"alias": " - professional_accounting",
|
135 |
+
"acc,none": 0.4219858156028369,
|
136 |
+
"acc_stderr,none": 0.029462189233370597
|
137 |
+
},
|
138 |
+
"mmlu_professional_medicine": {
|
139 |
+
"alias": " - professional_medicine",
|
140 |
+
"acc,none": 0.5735294117647058,
|
141 |
+
"acc_stderr,none": 0.030042615832714867
|
142 |
+
},
|
143 |
+
"mmlu_virology": {
|
144 |
+
"alias": " - virology",
|
145 |
+
"acc,none": 0.4819277108433735,
|
146 |
+
"acc_stderr,none": 0.038899512528272166
|
147 |
+
},
|
148 |
+
"mmlu_social_sciences": {
|
149 |
+
"alias": " - social_sciences",
|
150 |
+
"acc,none": 0.6626584335391615,
|
151 |
+
"acc_stderr,none": 0.09958788043918582
|
152 |
+
},
|
153 |
+
"mmlu_econometrics": {
|
154 |
+
"alias": " - econometrics",
|
155 |
+
"acc,none": 0.3333333333333333,
|
156 |
+
"acc_stderr,none": 0.044346007015849245
|
157 |
+
},
|
158 |
+
"mmlu_high_school_geography": {
|
159 |
+
"alias": " - high_school_geography",
|
160 |
+
"acc,none": 0.7626262626262627,
|
161 |
+
"acc_stderr,none": 0.030313710538198896
|
162 |
+
},
|
163 |
+
"mmlu_high_school_government_and_politics": {
|
164 |
+
"alias": " - high_school_government_and_politics",
|
165 |
+
"acc,none": 0.7772020725388601,
|
166 |
+
"acc_stderr,none": 0.03003114797764154
|
167 |
+
},
|
168 |
+
"mmlu_high_school_macroeconomics": {
|
169 |
+
"alias": " - high_school_macroeconomics",
|
170 |
+
"acc,none": 0.5820512820512821,
|
171 |
+
"acc_stderr,none": 0.025007329882461213
|
172 |
+
},
|
173 |
+
"mmlu_high_school_microeconomics": {
|
174 |
+
"alias": " - high_school_microeconomics",
|
175 |
+
"acc,none": 0.5756302521008403,
|
176 |
+
"acc_stderr,none": 0.032104790510157764
|
177 |
+
},
|
178 |
+
"mmlu_high_school_psychology": {
|
179 |
+
"alias": " - high_school_psychology",
|
180 |
+
"acc,none": 0.7889908256880734,
|
181 |
+
"acc_stderr,none": 0.01749392240411265
|
182 |
+
},
|
183 |
+
"mmlu_human_sexuality": {
|
184 |
+
"alias": " - human_sexuality",
|
185 |
+
"acc,none": 0.6564885496183206,
|
186 |
+
"acc_stderr,none": 0.041649760719448786
|
187 |
+
},
|
188 |
+
"mmlu_professional_psychology": {
|
189 |
+
"alias": " - professional_psychology",
|
190 |
+
"acc,none": 0.5735294117647058,
|
191 |
+
"acc_stderr,none": 0.020007912739359368
|
192 |
+
},
|
193 |
+
"mmlu_public_relations": {
|
194 |
+
"alias": " - public_relations",
|
195 |
+
"acc,none": 0.6,
|
196 |
+
"acc_stderr,none": 0.0469237132203465
|
197 |
+
},
|
198 |
+
"mmlu_security_studies": {
|
199 |
+
"alias": " - security_studies",
|
200 |
+
"acc,none": 0.6326530612244898,
|
201 |
+
"acc_stderr,none": 0.030862144921087555
|
202 |
+
},
|
203 |
+
"mmlu_sociology": {
|
204 |
+
"alias": " - sociology",
|
205 |
+
"acc,none": 0.8208955223880597,
|
206 |
+
"acc_stderr,none": 0.027113286753111837
|
207 |
+
},
|
208 |
+
"mmlu_us_foreign_policy": {
|
209 |
+
"alias": " - us_foreign_policy",
|
210 |
+
"acc,none": 0.83,
|
211 |
+
"acc_stderr,none": 0.03775251680686371
|
212 |
+
},
|
213 |
+
"mmlu_stem": {
|
214 |
+
"alias": " - stem",
|
215 |
+
"acc,none": 0.47288296860133205,
|
216 |
+
"acc_stderr,none": 0.11294065176078537
|
217 |
+
},
|
218 |
+
"mmlu_abstract_algebra": {
|
219 |
+
"alias": " - abstract_algebra",
|
220 |
+
"acc,none": 0.31,
|
221 |
+
"acc_stderr,none": 0.04648231987117316
|
222 |
+
},
|
223 |
+
"mmlu_anatomy": {
|
224 |
+
"alias": " - anatomy",
|
225 |
+
"acc,none": 0.5259259259259259,
|
226 |
+
"acc_stderr,none": 0.04313531696750575
|
227 |
+
},
|
228 |
+
"mmlu_astronomy": {
|
229 |
+
"alias": " - astronomy",
|
230 |
+
"acc,none": 0.5789473684210527,
|
231 |
+
"acc_stderr,none": 0.04017901275981749
|
232 |
+
},
|
233 |
+
"mmlu_college_biology": {
|
234 |
+
"alias": " - college_biology",
|
235 |
+
"acc,none": 0.6527777777777778,
|
236 |
+
"acc_stderr,none": 0.03981240543717861
|
237 |
+
},
|
238 |
+
"mmlu_college_chemistry": {
|
239 |
+
"alias": " - college_chemistry",
|
240 |
+
"acc,none": 0.44,
|
241 |
+
"acc_stderr,none": 0.0498887651569859
|
242 |
+
},
|
243 |
+
"mmlu_college_computer_science": {
|
244 |
+
"alias": " - college_computer_science",
|
245 |
+
"acc,none": 0.48,
|
246 |
+
"acc_stderr,none": 0.050211673156867795
|
247 |
+
},
|
248 |
+
"mmlu_college_mathematics": {
|
249 |
+
"alias": " - college_mathematics",
|
250 |
+
"acc,none": 0.35,
|
251 |
+
"acc_stderr,none": 0.04793724854411019
|
252 |
+
},
|
253 |
+
"mmlu_college_physics": {
|
254 |
+
"alias": " - college_physics",
|
255 |
+
"acc,none": 0.43137254901960786,
|
256 |
+
"acc_stderr,none": 0.04928099597287534
|
257 |
+
},
|
258 |
+
"mmlu_computer_security": {
|
259 |
+
"alias": " - computer_security",
|
260 |
+
"acc,none": 0.69,
|
261 |
+
"acc_stderr,none": 0.04648231987117316
|
262 |
+
},
|
263 |
+
"mmlu_conceptual_physics": {
|
264 |
+
"alias": " - conceptual_physics",
|
265 |
+
"acc,none": 0.4425531914893617,
|
266 |
+
"acc_stderr,none": 0.03246956919789958
|
267 |
+
},
|
268 |
+
"mmlu_electrical_engineering": {
|
269 |
+
"alias": " - electrical_engineering",
|
270 |
+
"acc,none": 0.503448275862069,
|
271 |
+
"acc_stderr,none": 0.041665675771015785
|
272 |
+
},
|
273 |
+
"mmlu_elementary_mathematics": {
|
274 |
+
"alias": " - elementary_mathematics",
|
275 |
+
"acc,none": 0.3306878306878307,
|
276 |
+
"acc_stderr,none": 0.024229965298425086
|
277 |
+
},
|
278 |
+
"mmlu_high_school_biology": {
|
279 |
+
"alias": " - high_school_biology",
|
280 |
+
"acc,none": 0.7,
|
281 |
+
"acc_stderr,none": 0.026069362295335134
|
282 |
+
},
|
283 |
+
"mmlu_high_school_chemistry": {
|
284 |
+
"alias": " - high_school_chemistry",
|
285 |
+
"acc,none": 0.4236453201970443,
|
286 |
+
"acc_stderr,none": 0.03476725747649037
|
287 |
+
},
|
288 |
+
"mmlu_high_school_computer_science": {
|
289 |
+
"alias": " - high_school_computer_science",
|
290 |
+
"acc,none": 0.55,
|
291 |
+
"acc_stderr,none": 0.04999999999999999
|
292 |
+
},
|
293 |
+
"mmlu_high_school_mathematics": {
|
294 |
+
"alias": " - high_school_mathematics",
|
295 |
+
"acc,none": 0.31851851851851853,
|
296 |
+
"acc_stderr,none": 0.02840653309060846
|
297 |
+
},
|
298 |
+
"mmlu_high_school_physics": {
|
299 |
+
"alias": " - high_school_physics",
|
300 |
+
"acc,none": 0.31125827814569534,
|
301 |
+
"acc_stderr,none": 0.03780445850526733
|
302 |
+
},
|
303 |
+
"mmlu_high_school_statistics": {
|
304 |
+
"alias": " - high_school_statistics",
|
305 |
+
"acc,none": 0.5462962962962963,
|
306 |
+
"acc_stderr,none": 0.033953227263757976
|
307 |
+
},
|
308 |
+
"mmlu_machine_learning": {
|
309 |
+
"alias": " - machine_learning",
|
310 |
+
"acc,none": 0.5,
|
311 |
+
"acc_stderr,none": 0.04745789978762494
|
312 |
+
}
|
313 |
+
},
|
314 |
+
"groups": {
|
315 |
+
"mmlu": {
|
316 |
+
"acc,none": 0.560461472724683,
|
317 |
+
"acc_stderr,none": 0.13217735852620205,
|
318 |
+
"alias": "mmlu"
|
319 |
+
},
|
320 |
+
"mmlu_humanities": {
|
321 |
+
"alias": " - humanities",
|
322 |
+
"acc,none": 0.5086078639744952,
|
323 |
+
"acc_stderr,none": 0.14622754639234883
|
324 |
+
},
|
325 |
+
"mmlu_other": {
|
326 |
+
"alias": " - other",
|
327 |
+
"acc,none": 0.6266495011264885,
|
328 |
+
"acc_stderr,none": 0.10678706055887757
|
329 |
+
},
|
330 |
+
"mmlu_social_sciences": {
|
331 |
+
"alias": " - social_sciences",
|
332 |
+
"acc,none": 0.6626584335391615,
|
333 |
+
"acc_stderr,none": 0.09958788043918582
|
334 |
+
},
|
335 |
+
"mmlu_stem": {
|
336 |
+
"alias": " - stem",
|
337 |
+
"acc,none": 0.47288296860133205,
|
338 |
+
"acc_stderr,none": 0.11294065176078537
|
339 |
+
}
|
340 |
+
},
|
341 |
+
"configs": {
|
342 |
+
"mmlu_abstract_algebra": {
|
343 |
+
"task": "mmlu_abstract_algebra",
|
344 |
+
"task_alias": "abstract_algebra",
|
345 |
+
"group": "mmlu_stem",
|
346 |
+
"group_alias": "stem",
|
347 |
+
"dataset_path": "hails/mmlu_no_train",
|
348 |
+
"dataset_name": "abstract_algebra",
|
349 |
+
"test_split": "test",
|
350 |
+
"fewshot_split": "dev",
|
351 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
352 |
+
"doc_to_target": "answer",
|
353 |
+
"doc_to_choice": [
|
354 |
+
"A",
|
355 |
+
"B",
|
356 |
+
"C",
|
357 |
+
"D"
|
358 |
+
],
|
359 |
+
"description": "The following are multiple choice questions (with answers) about abstract algebra.\n\n",
|
360 |
+
"target_delimiter": " ",
|
361 |
+
"fewshot_delimiter": "\n\n",
|
362 |
+
"fewshot_config": {
|
363 |
+
"sampler": "first_n"
|
364 |
+
},
|
365 |
+
"metric_list": [
|
366 |
+
{
|
367 |
+
"metric": "acc",
|
368 |
+
"aggregation": "mean",
|
369 |
+
"higher_is_better": true
|
370 |
+
}
|
371 |
+
],
|
372 |
+
"output_type": "multiple_choice",
|
373 |
+
"repeats": 1,
|
374 |
+
"should_decontaminate": false,
|
375 |
+
"metadata": {
|
376 |
+
"version": 0.0
|
377 |
+
}
|
378 |
+
},
|
379 |
+
"mmlu_anatomy": {
|
380 |
+
"task": "mmlu_anatomy",
|
381 |
+
"task_alias": "anatomy",
|
382 |
+
"group": "mmlu_stem",
|
383 |
+
"group_alias": "stem",
|
384 |
+
"dataset_path": "hails/mmlu_no_train",
|
385 |
+
"dataset_name": "anatomy",
|
386 |
+
"test_split": "test",
|
387 |
+
"fewshot_split": "dev",
|
388 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
389 |
+
"doc_to_target": "answer",
|
390 |
+
"doc_to_choice": [
|
391 |
+
"A",
|
392 |
+
"B",
|
393 |
+
"C",
|
394 |
+
"D"
|
395 |
+
],
|
396 |
+
"description": "The following are multiple choice questions (with answers) about anatomy.\n\n",
|
397 |
+
"target_delimiter": " ",
|
398 |
+
"fewshot_delimiter": "\n\n",
|
399 |
+
"fewshot_config": {
|
400 |
+
"sampler": "first_n"
|
401 |
+
},
|
402 |
+
"metric_list": [
|
403 |
+
{
|
404 |
+
"metric": "acc",
|
405 |
+
"aggregation": "mean",
|
406 |
+
"higher_is_better": true
|
407 |
+
}
|
408 |
+
],
|
409 |
+
"output_type": "multiple_choice",
|
410 |
+
"repeats": 1,
|
411 |
+
"should_decontaminate": false,
|
412 |
+
"metadata": {
|
413 |
+
"version": 0.0
|
414 |
+
}
|
415 |
+
},
|
416 |
+
"mmlu_astronomy": {
|
417 |
+
"task": "mmlu_astronomy",
|
418 |
+
"task_alias": "astronomy",
|
419 |
+
"group": "mmlu_stem",
|
420 |
+
"group_alias": "stem",
|
421 |
+
"dataset_path": "hails/mmlu_no_train",
|
422 |
+
"dataset_name": "astronomy",
|
423 |
+
"test_split": "test",
|
424 |
+
"fewshot_split": "dev",
|
425 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
426 |
+
"doc_to_target": "answer",
|
427 |
+
"doc_to_choice": [
|
428 |
+
"A",
|
429 |
+
"B",
|
430 |
+
"C",
|
431 |
+
"D"
|
432 |
+
],
|
433 |
+
"description": "The following are multiple choice questions (with answers) about astronomy.\n\n",
|
434 |
+
"target_delimiter": " ",
|
435 |
+
"fewshot_delimiter": "\n\n",
|
436 |
+
"fewshot_config": {
|
437 |
+
"sampler": "first_n"
|
438 |
+
},
|
439 |
+
"metric_list": [
|
440 |
+
{
|
441 |
+
"metric": "acc",
|
442 |
+
"aggregation": "mean",
|
443 |
+
"higher_is_better": true
|
444 |
+
}
|
445 |
+
],
|
446 |
+
"output_type": "multiple_choice",
|
447 |
+
"repeats": 1,
|
448 |
+
"should_decontaminate": false,
|
449 |
+
"metadata": {
|
450 |
+
"version": 0.0
|
451 |
+
}
|
452 |
+
},
|
453 |
+
"mmlu_business_ethics": {
|
454 |
+
"task": "mmlu_business_ethics",
|
455 |
+
"task_alias": "business_ethics",
|
456 |
+
"group": "mmlu_other",
|
457 |
+
"group_alias": "other",
|
458 |
+
"dataset_path": "hails/mmlu_no_train",
|
459 |
+
"dataset_name": "business_ethics",
|
460 |
+
"test_split": "test",
|
461 |
+
"fewshot_split": "dev",
|
462 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
463 |
+
"doc_to_target": "answer",
|
464 |
+
"doc_to_choice": [
|
465 |
+
"A",
|
466 |
+
"B",
|
467 |
+
"C",
|
468 |
+
"D"
|
469 |
+
],
|
470 |
+
"description": "The following are multiple choice questions (with answers) about business ethics.\n\n",
|
471 |
+
"target_delimiter": " ",
|
472 |
+
"fewshot_delimiter": "\n\n",
|
473 |
+
"fewshot_config": {
|
474 |
+
"sampler": "first_n"
|
475 |
+
},
|
476 |
+
"metric_list": [
|
477 |
+
{
|
478 |
+
"metric": "acc",
|
479 |
+
"aggregation": "mean",
|
480 |
+
"higher_is_better": true
|
481 |
+
}
|
482 |
+
],
|
483 |
+
"output_type": "multiple_choice",
|
484 |
+
"repeats": 1,
|
485 |
+
"should_decontaminate": false,
|
486 |
+
"metadata": {
|
487 |
+
"version": 0.0
|
488 |
+
}
|
489 |
+
},
|
490 |
+
"mmlu_clinical_knowledge": {
|
491 |
+
"task": "mmlu_clinical_knowledge",
|
492 |
+
"task_alias": "clinical_knowledge",
|
493 |
+
"group": "mmlu_other",
|
494 |
+
"group_alias": "other",
|
495 |
+
"dataset_path": "hails/mmlu_no_train",
|
496 |
+
"dataset_name": "clinical_knowledge",
|
497 |
+
"test_split": "test",
|
498 |
+
"fewshot_split": "dev",
|
499 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
500 |
+
"doc_to_target": "answer",
|
501 |
+
"doc_to_choice": [
|
502 |
+
"A",
|
503 |
+
"B",
|
504 |
+
"C",
|
505 |
+
"D"
|
506 |
+
],
|
507 |
+
"description": "The following are multiple choice questions (with answers) about clinical knowledge.\n\n",
|
508 |
+
"target_delimiter": " ",
|
509 |
+
"fewshot_delimiter": "\n\n",
|
510 |
+
"fewshot_config": {
|
511 |
+
"sampler": "first_n"
|
512 |
+
},
|
513 |
+
"metric_list": [
|
514 |
+
{
|
515 |
+
"metric": "acc",
|
516 |
+
"aggregation": "mean",
|
517 |
+
"higher_is_better": true
|
518 |
+
}
|
519 |
+
],
|
520 |
+
"output_type": "multiple_choice",
|
521 |
+
"repeats": 1,
|
522 |
+
"should_decontaminate": false,
|
523 |
+
"metadata": {
|
524 |
+
"version": 0.0
|
525 |
+
}
|
526 |
+
},
|
527 |
+
"mmlu_college_biology": {
|
528 |
+
"task": "mmlu_college_biology",
|
529 |
+
"task_alias": "college_biology",
|
530 |
+
"group": "mmlu_stem",
|
531 |
+
"group_alias": "stem",
|
532 |
+
"dataset_path": "hails/mmlu_no_train",
|
533 |
+
"dataset_name": "college_biology",
|
534 |
+
"test_split": "test",
|
535 |
+
"fewshot_split": "dev",
|
536 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
537 |
+
"doc_to_target": "answer",
|
538 |
+
"doc_to_choice": [
|
539 |
+
"A",
|
540 |
+
"B",
|
541 |
+
"C",
|
542 |
+
"D"
|
543 |
+
],
|
544 |
+
"description": "The following are multiple choice questions (with answers) about college biology.\n\n",
|
545 |
+
"target_delimiter": " ",
|
546 |
+
"fewshot_delimiter": "\n\n",
|
547 |
+
"fewshot_config": {
|
548 |
+
"sampler": "first_n"
|
549 |
+
},
|
550 |
+
"metric_list": [
|
551 |
+
{
|
552 |
+
"metric": "acc",
|
553 |
+
"aggregation": "mean",
|
554 |
+
"higher_is_better": true
|
555 |
+
}
|
556 |
+
],
|
557 |
+
"output_type": "multiple_choice",
|
558 |
+
"repeats": 1,
|
559 |
+
"should_decontaminate": false,
|
560 |
+
"metadata": {
|
561 |
+
"version": 0.0
|
562 |
+
}
|
563 |
+
},
|
564 |
+
"mmlu_college_chemistry": {
|
565 |
+
"task": "mmlu_college_chemistry",
|
566 |
+
"task_alias": "college_chemistry",
|
567 |
+
"group": "mmlu_stem",
|
568 |
+
"group_alias": "stem",
|
569 |
+
"dataset_path": "hails/mmlu_no_train",
|
570 |
+
"dataset_name": "college_chemistry",
|
571 |
+
"test_split": "test",
|
572 |
+
"fewshot_split": "dev",
|
573 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
574 |
+
"doc_to_target": "answer",
|
575 |
+
"doc_to_choice": [
|
576 |
+
"A",
|
577 |
+
"B",
|
578 |
+
"C",
|
579 |
+
"D"
|
580 |
+
],
|
581 |
+
"description": "The following are multiple choice questions (with answers) about college chemistry.\n\n",
|
582 |
+
"target_delimiter": " ",
|
583 |
+
"fewshot_delimiter": "\n\n",
|
584 |
+
"fewshot_config": {
|
585 |
+
"sampler": "first_n"
|
586 |
+
},
|
587 |
+
"metric_list": [
|
588 |
+
{
|
589 |
+
"metric": "acc",
|
590 |
+
"aggregation": "mean",
|
591 |
+
"higher_is_better": true
|
592 |
+
}
|
593 |
+
],
|
594 |
+
"output_type": "multiple_choice",
|
595 |
+
"repeats": 1,
|
596 |
+
"should_decontaminate": false,
|
597 |
+
"metadata": {
|
598 |
+
"version": 0.0
|
599 |
+
}
|
600 |
+
},
|
601 |
+
"mmlu_college_computer_science": {
|
602 |
+
"task": "mmlu_college_computer_science",
|
603 |
+
"task_alias": "college_computer_science",
|
604 |
+
"group": "mmlu_stem",
|
605 |
+
"group_alias": "stem",
|
606 |
+
"dataset_path": "hails/mmlu_no_train",
|
607 |
+
"dataset_name": "college_computer_science",
|
608 |
+
"test_split": "test",
|
609 |
+
"fewshot_split": "dev",
|
610 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
611 |
+
"doc_to_target": "answer",
|
612 |
+
"doc_to_choice": [
|
613 |
+
"A",
|
614 |
+
"B",
|
615 |
+
"C",
|
616 |
+
"D"
|
617 |
+
],
|
618 |
+
"description": "The following are multiple choice questions (with answers) about college computer science.\n\n",
|
619 |
+
"target_delimiter": " ",
|
620 |
+
"fewshot_delimiter": "\n\n",
|
621 |
+
"fewshot_config": {
|
622 |
+
"sampler": "first_n"
|
623 |
+
},
|
624 |
+
"metric_list": [
|
625 |
+
{
|
626 |
+
"metric": "acc",
|
627 |
+
"aggregation": "mean",
|
628 |
+
"higher_is_better": true
|
629 |
+
}
|
630 |
+
],
|
631 |
+
"output_type": "multiple_choice",
|
632 |
+
"repeats": 1,
|
633 |
+
"should_decontaminate": false,
|
634 |
+
"metadata": {
|
635 |
+
"version": 0.0
|
636 |
+
}
|
637 |
+
},
|
638 |
+
"mmlu_college_mathematics": {
|
639 |
+
"task": "mmlu_college_mathematics",
|
640 |
+
"task_alias": "college_mathematics",
|
641 |
+
"group": "mmlu_stem",
|
642 |
+
"group_alias": "stem",
|
643 |
+
"dataset_path": "hails/mmlu_no_train",
|
644 |
+
"dataset_name": "college_mathematics",
|
645 |
+
"test_split": "test",
|
646 |
+
"fewshot_split": "dev",
|
647 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
648 |
+
"doc_to_target": "answer",
|
649 |
+
"doc_to_choice": [
|
650 |
+
"A",
|
651 |
+
"B",
|
652 |
+
"C",
|
653 |
+
"D"
|
654 |
+
],
|
655 |
+
"description": "The following are multiple choice questions (with answers) about college mathematics.\n\n",
|
656 |
+
"target_delimiter": " ",
|
657 |
+
"fewshot_delimiter": "\n\n",
|
658 |
+
"fewshot_config": {
|
659 |
+
"sampler": "first_n"
|
660 |
+
},
|
661 |
+
"metric_list": [
|
662 |
+
{
|
663 |
+
"metric": "acc",
|
664 |
+
"aggregation": "mean",
|
665 |
+
"higher_is_better": true
|
666 |
+
}
|
667 |
+
],
|
668 |
+
"output_type": "multiple_choice",
|
669 |
+
"repeats": 1,
|
670 |
+
"should_decontaminate": false,
|
671 |
+
"metadata": {
|
672 |
+
"version": 0.0
|
673 |
+
}
|
674 |
+
},
|
675 |
+
"mmlu_college_medicine": {
|
676 |
+
"task": "mmlu_college_medicine",
|
677 |
+
"task_alias": "college_medicine",
|
678 |
+
"group": "mmlu_other",
|
679 |
+
"group_alias": "other",
|
680 |
+
"dataset_path": "hails/mmlu_no_train",
|
681 |
+
"dataset_name": "college_medicine",
|
682 |
+
"test_split": "test",
|
683 |
+
"fewshot_split": "dev",
|
684 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
685 |
+
"doc_to_target": "answer",
|
686 |
+
"doc_to_choice": [
|
687 |
+
"A",
|
688 |
+
"B",
|
689 |
+
"C",
|
690 |
+
"D"
|
691 |
+
],
|
692 |
+
"description": "The following are multiple choice questions (with answers) about college medicine.\n\n",
|
693 |
+
"target_delimiter": " ",
|
694 |
+
"fewshot_delimiter": "\n\n",
|
695 |
+
"fewshot_config": {
|
696 |
+
"sampler": "first_n"
|
697 |
+
},
|
698 |
+
"metric_list": [
|
699 |
+
{
|
700 |
+
"metric": "acc",
|
701 |
+
"aggregation": "mean",
|
702 |
+
"higher_is_better": true
|
703 |
+
}
|
704 |
+
],
|
705 |
+
"output_type": "multiple_choice",
|
706 |
+
"repeats": 1,
|
707 |
+
"should_decontaminate": false,
|
708 |
+
"metadata": {
|
709 |
+
"version": 0.0
|
710 |
+
}
|
711 |
+
},
|
712 |
+
"mmlu_college_physics": {
|
713 |
+
"task": "mmlu_college_physics",
|
714 |
+
"task_alias": "college_physics",
|
715 |
+
"group": "mmlu_stem",
|
716 |
+
"group_alias": "stem",
|
717 |
+
"dataset_path": "hails/mmlu_no_train",
|
718 |
+
"dataset_name": "college_physics",
|
719 |
+
"test_split": "test",
|
720 |
+
"fewshot_split": "dev",
|
721 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
722 |
+
"doc_to_target": "answer",
|
723 |
+
"doc_to_choice": [
|
724 |
+
"A",
|
725 |
+
"B",
|
726 |
+
"C",
|
727 |
+
"D"
|
728 |
+
],
|
729 |
+
"description": "The following are multiple choice questions (with answers) about college physics.\n\n",
|
730 |
+
"target_delimiter": " ",
|
731 |
+
"fewshot_delimiter": "\n\n",
|
732 |
+
"fewshot_config": {
|
733 |
+
"sampler": "first_n"
|
734 |
+
},
|
735 |
+
"metric_list": [
|
736 |
+
{
|
737 |
+
"metric": "acc",
|
738 |
+
"aggregation": "mean",
|
739 |
+
"higher_is_better": true
|
740 |
+
}
|
741 |
+
],
|
742 |
+
"output_type": "multiple_choice",
|
743 |
+
"repeats": 1,
|
744 |
+
"should_decontaminate": false,
|
745 |
+
"metadata": {
|
746 |
+
"version": 0.0
|
747 |
+
}
|
748 |
+
},
|
749 |
+
"mmlu_computer_security": {
|
750 |
+
"task": "mmlu_computer_security",
|
751 |
+
"task_alias": "computer_security",
|
752 |
+
"group": "mmlu_stem",
|
753 |
+
"group_alias": "stem",
|
754 |
+
"dataset_path": "hails/mmlu_no_train",
|
755 |
+
"dataset_name": "computer_security",
|
756 |
+
"test_split": "test",
|
757 |
+
"fewshot_split": "dev",
|
758 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
759 |
+
"doc_to_target": "answer",
|
760 |
+
"doc_to_choice": [
|
761 |
+
"A",
|
762 |
+
"B",
|
763 |
+
"C",
|
764 |
+
"D"
|
765 |
+
],
|
766 |
+
"description": "The following are multiple choice questions (with answers) about computer security.\n\n",
|
767 |
+
"target_delimiter": " ",
|
768 |
+
"fewshot_delimiter": "\n\n",
|
769 |
+
"fewshot_config": {
|
770 |
+
"sampler": "first_n"
|
771 |
+
},
|
772 |
+
"metric_list": [
|
773 |
+
{
|
774 |
+
"metric": "acc",
|
775 |
+
"aggregation": "mean",
|
776 |
+
"higher_is_better": true
|
777 |
+
}
|
778 |
+
],
|
779 |
+
"output_type": "multiple_choice",
|
780 |
+
"repeats": 1,
|
781 |
+
"should_decontaminate": false,
|
782 |
+
"metadata": {
|
783 |
+
"version": 0.0
|
784 |
+
}
|
785 |
+
},
|
786 |
+
"mmlu_conceptual_physics": {
|
787 |
+
"task": "mmlu_conceptual_physics",
|
788 |
+
"task_alias": "conceptual_physics",
|
789 |
+
"group": "mmlu_stem",
|
790 |
+
"group_alias": "stem",
|
791 |
+
"dataset_path": "hails/mmlu_no_train",
|
792 |
+
"dataset_name": "conceptual_physics",
|
793 |
+
"test_split": "test",
|
794 |
+
"fewshot_split": "dev",
|
795 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
796 |
+
"doc_to_target": "answer",
|
797 |
+
"doc_to_choice": [
|
798 |
+
"A",
|
799 |
+
"B",
|
800 |
+
"C",
|
801 |
+
"D"
|
802 |
+
],
|
803 |
+
"description": "The following are multiple choice questions (with answers) about conceptual physics.\n\n",
|
804 |
+
"target_delimiter": " ",
|
805 |
+
"fewshot_delimiter": "\n\n",
|
806 |
+
"fewshot_config": {
|
807 |
+
"sampler": "first_n"
|
808 |
+
},
|
809 |
+
"metric_list": [
|
810 |
+
{
|
811 |
+
"metric": "acc",
|
812 |
+
"aggregation": "mean",
|
813 |
+
"higher_is_better": true
|
814 |
+
}
|
815 |
+
],
|
816 |
+
"output_type": "multiple_choice",
|
817 |
+
"repeats": 1,
|
818 |
+
"should_decontaminate": false,
|
819 |
+
"metadata": {
|
820 |
+
"version": 0.0
|
821 |
+
}
|
822 |
+
},
|
823 |
+
"mmlu_econometrics": {
|
824 |
+
"task": "mmlu_econometrics",
|
825 |
+
"task_alias": "econometrics",
|
826 |
+
"group": "mmlu_social_sciences",
|
827 |
+
"group_alias": "social_sciences",
|
828 |
+
"dataset_path": "hails/mmlu_no_train",
|
829 |
+
"dataset_name": "econometrics",
|
830 |
+
"test_split": "test",
|
831 |
+
"fewshot_split": "dev",
|
832 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
833 |
+
"doc_to_target": "answer",
|
834 |
+
"doc_to_choice": [
|
835 |
+
"A",
|
836 |
+
"B",
|
837 |
+
"C",
|
838 |
+
"D"
|
839 |
+
],
|
840 |
+
"description": "The following are multiple choice questions (with answers) about econometrics.\n\n",
|
841 |
+
"target_delimiter": " ",
|
842 |
+
"fewshot_delimiter": "\n\n",
|
843 |
+
"fewshot_config": {
|
844 |
+
"sampler": "first_n"
|
845 |
+
},
|
846 |
+
"metric_list": [
|
847 |
+
{
|
848 |
+
"metric": "acc",
|
849 |
+
"aggregation": "mean",
|
850 |
+
"higher_is_better": true
|
851 |
+
}
|
852 |
+
],
|
853 |
+
"output_type": "multiple_choice",
|
854 |
+
"repeats": 1,
|
855 |
+
"should_decontaminate": false,
|
856 |
+
"metadata": {
|
857 |
+
"version": 0.0
|
858 |
+
}
|
859 |
+
},
|
860 |
+
"mmlu_electrical_engineering": {
|
861 |
+
"task": "mmlu_electrical_engineering",
|
862 |
+
"task_alias": "electrical_engineering",
|
863 |
+
"group": "mmlu_stem",
|
864 |
+
"group_alias": "stem",
|
865 |
+
"dataset_path": "hails/mmlu_no_train",
|
866 |
+
"dataset_name": "electrical_engineering",
|
867 |
+
"test_split": "test",
|
868 |
+
"fewshot_split": "dev",
|
869 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
870 |
+
"doc_to_target": "answer",
|
871 |
+
"doc_to_choice": [
|
872 |
+
"A",
|
873 |
+
"B",
|
874 |
+
"C",
|
875 |
+
"D"
|
876 |
+
],
|
877 |
+
"description": "The following are multiple choice questions (with answers) about electrical engineering.\n\n",
|
878 |
+
"target_delimiter": " ",
|
879 |
+
"fewshot_delimiter": "\n\n",
|
880 |
+
"fewshot_config": {
|
881 |
+
"sampler": "first_n"
|
882 |
+
},
|
883 |
+
"metric_list": [
|
884 |
+
{
|
885 |
+
"metric": "acc",
|
886 |
+
"aggregation": "mean",
|
887 |
+
"higher_is_better": true
|
888 |
+
}
|
889 |
+
],
|
890 |
+
"output_type": "multiple_choice",
|
891 |
+
"repeats": 1,
|
892 |
+
"should_decontaminate": false,
|
893 |
+
"metadata": {
|
894 |
+
"version": 0.0
|
895 |
+
}
|
896 |
+
},
|
897 |
+
"mmlu_elementary_mathematics": {
|
898 |
+
"task": "mmlu_elementary_mathematics",
|
899 |
+
"task_alias": "elementary_mathematics",
|
900 |
+
"group": "mmlu_stem",
|
901 |
+
"group_alias": "stem",
|
902 |
+
"dataset_path": "hails/mmlu_no_train",
|
903 |
+
"dataset_name": "elementary_mathematics",
|
904 |
+
"test_split": "test",
|
905 |
+
"fewshot_split": "dev",
|
906 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
907 |
+
"doc_to_target": "answer",
|
908 |
+
"doc_to_choice": [
|
909 |
+
"A",
|
910 |
+
"B",
|
911 |
+
"C",
|
912 |
+
"D"
|
913 |
+
],
|
914 |
+
"description": "The following are multiple choice questions (with answers) about elementary mathematics.\n\n",
|
915 |
+
"target_delimiter": " ",
|
916 |
+
"fewshot_delimiter": "\n\n",
|
917 |
+
"fewshot_config": {
|
918 |
+
"sampler": "first_n"
|
919 |
+
},
|
920 |
+
"metric_list": [
|
921 |
+
{
|
922 |
+
"metric": "acc",
|
923 |
+
"aggregation": "mean",
|
924 |
+
"higher_is_better": true
|
925 |
+
}
|
926 |
+
],
|
927 |
+
"output_type": "multiple_choice",
|
928 |
+
"repeats": 1,
|
929 |
+
"should_decontaminate": false,
|
930 |
+
"metadata": {
|
931 |
+
"version": 0.0
|
932 |
+
}
|
933 |
+
},
|
934 |
+
"mmlu_formal_logic": {
|
935 |
+
"task": "mmlu_formal_logic",
|
936 |
+
"task_alias": "formal_logic",
|
937 |
+
"group": "mmlu_humanities",
|
938 |
+
"group_alias": "humanities",
|
939 |
+
"dataset_path": "hails/mmlu_no_train",
|
940 |
+
"dataset_name": "formal_logic",
|
941 |
+
"test_split": "test",
|
942 |
+
"fewshot_split": "dev",
|
943 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
944 |
+
"doc_to_target": "answer",
|
945 |
+
"doc_to_choice": [
|
946 |
+
"A",
|
947 |
+
"B",
|
948 |
+
"C",
|
949 |
+
"D"
|
950 |
+
],
|
951 |
+
"description": "The following are multiple choice questions (with answers) about formal logic.\n\n",
|
952 |
+
"target_delimiter": " ",
|
953 |
+
"fewshot_delimiter": "\n\n",
|
954 |
+
"fewshot_config": {
|
955 |
+
"sampler": "first_n"
|
956 |
+
},
|
957 |
+
"metric_list": [
|
958 |
+
{
|
959 |
+
"metric": "acc",
|
960 |
+
"aggregation": "mean",
|
961 |
+
"higher_is_better": true
|
962 |
+
}
|
963 |
+
],
|
964 |
+
"output_type": "multiple_choice",
|
965 |
+
"repeats": 1,
|
966 |
+
"should_decontaminate": false,
|
967 |
+
"metadata": {
|
968 |
+
"version": 0.0
|
969 |
+
}
|
970 |
+
},
|
971 |
+
"mmlu_global_facts": {
|
972 |
+
"task": "mmlu_global_facts",
|
973 |
+
"task_alias": "global_facts",
|
974 |
+
"group": "mmlu_other",
|
975 |
+
"group_alias": "other",
|
976 |
+
"dataset_path": "hails/mmlu_no_train",
|
977 |
+
"dataset_name": "global_facts",
|
978 |
+
"test_split": "test",
|
979 |
+
"fewshot_split": "dev",
|
980 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
981 |
+
"doc_to_target": "answer",
|
982 |
+
"doc_to_choice": [
|
983 |
+
"A",
|
984 |
+
"B",
|
985 |
+
"C",
|
986 |
+
"D"
|
987 |
+
],
|
988 |
+
"description": "The following are multiple choice questions (with answers) about global facts.\n\n",
|
989 |
+
"target_delimiter": " ",
|
990 |
+
"fewshot_delimiter": "\n\n",
|
991 |
+
"fewshot_config": {
|
992 |
+
"sampler": "first_n"
|
993 |
+
},
|
994 |
+
"metric_list": [
|
995 |
+
{
|
996 |
+
"metric": "acc",
|
997 |
+
"aggregation": "mean",
|
998 |
+
"higher_is_better": true
|
999 |
+
}
|
1000 |
+
],
|
1001 |
+
"output_type": "multiple_choice",
|
1002 |
+
"repeats": 1,
|
1003 |
+
"should_decontaminate": false,
|
1004 |
+
"metadata": {
|
1005 |
+
"version": 0.0
|
1006 |
+
}
|
1007 |
+
},
|
1008 |
+
"mmlu_high_school_biology": {
|
1009 |
+
"task": "mmlu_high_school_biology",
|
1010 |
+
"task_alias": "high_school_biology",
|
1011 |
+
"group": "mmlu_stem",
|
1012 |
+
"group_alias": "stem",
|
1013 |
+
"dataset_path": "hails/mmlu_no_train",
|
1014 |
+
"dataset_name": "high_school_biology",
|
1015 |
+
"test_split": "test",
|
1016 |
+
"fewshot_split": "dev",
|
1017 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1018 |
+
"doc_to_target": "answer",
|
1019 |
+
"doc_to_choice": [
|
1020 |
+
"A",
|
1021 |
+
"B",
|
1022 |
+
"C",
|
1023 |
+
"D"
|
1024 |
+
],
|
1025 |
+
"description": "The following are multiple choice questions (with answers) about high school biology.\n\n",
|
1026 |
+
"target_delimiter": " ",
|
1027 |
+
"fewshot_delimiter": "\n\n",
|
1028 |
+
"fewshot_config": {
|
1029 |
+
"sampler": "first_n"
|
1030 |
+
},
|
1031 |
+
"metric_list": [
|
1032 |
+
{
|
1033 |
+
"metric": "acc",
|
1034 |
+
"aggregation": "mean",
|
1035 |
+
"higher_is_better": true
|
1036 |
+
}
|
1037 |
+
],
|
1038 |
+
"output_type": "multiple_choice",
|
1039 |
+
"repeats": 1,
|
1040 |
+
"should_decontaminate": false,
|
1041 |
+
"metadata": {
|
1042 |
+
"version": 0.0
|
1043 |
+
}
|
1044 |
+
},
|
1045 |
+
"mmlu_high_school_chemistry": {
|
1046 |
+
"task": "mmlu_high_school_chemistry",
|
1047 |
+
"task_alias": "high_school_chemistry",
|
1048 |
+
"group": "mmlu_stem",
|
1049 |
+
"group_alias": "stem",
|
1050 |
+
"dataset_path": "hails/mmlu_no_train",
|
1051 |
+
"dataset_name": "high_school_chemistry",
|
1052 |
+
"test_split": "test",
|
1053 |
+
"fewshot_split": "dev",
|
1054 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1055 |
+
"doc_to_target": "answer",
|
1056 |
+
"doc_to_choice": [
|
1057 |
+
"A",
|
1058 |
+
"B",
|
1059 |
+
"C",
|
1060 |
+
"D"
|
1061 |
+
],
|
1062 |
+
"description": "The following are multiple choice questions (with answers) about high school chemistry.\n\n",
|
1063 |
+
"target_delimiter": " ",
|
1064 |
+
"fewshot_delimiter": "\n\n",
|
1065 |
+
"fewshot_config": {
|
1066 |
+
"sampler": "first_n"
|
1067 |
+
},
|
1068 |
+
"metric_list": [
|
1069 |
+
{
|
1070 |
+
"metric": "acc",
|
1071 |
+
"aggregation": "mean",
|
1072 |
+
"higher_is_better": true
|
1073 |
+
}
|
1074 |
+
],
|
1075 |
+
"output_type": "multiple_choice",
|
1076 |
+
"repeats": 1,
|
1077 |
+
"should_decontaminate": false,
|
1078 |
+
"metadata": {
|
1079 |
+
"version": 0.0
|
1080 |
+
}
|
1081 |
+
},
|
1082 |
+
"mmlu_high_school_computer_science": {
|
1083 |
+
"task": "mmlu_high_school_computer_science",
|
1084 |
+
"task_alias": "high_school_computer_science",
|
1085 |
+
"group": "mmlu_stem",
|
1086 |
+
"group_alias": "stem",
|
1087 |
+
"dataset_path": "hails/mmlu_no_train",
|
1088 |
+
"dataset_name": "high_school_computer_science",
|
1089 |
+
"test_split": "test",
|
1090 |
+
"fewshot_split": "dev",
|
1091 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1092 |
+
"doc_to_target": "answer",
|
1093 |
+
"doc_to_choice": [
|
1094 |
+
"A",
|
1095 |
+
"B",
|
1096 |
+
"C",
|
1097 |
+
"D"
|
1098 |
+
],
|
1099 |
+
"description": "The following are multiple choice questions (with answers) about high school computer science.\n\n",
|
1100 |
+
"target_delimiter": " ",
|
1101 |
+
"fewshot_delimiter": "\n\n",
|
1102 |
+
"fewshot_config": {
|
1103 |
+
"sampler": "first_n"
|
1104 |
+
},
|
1105 |
+
"metric_list": [
|
1106 |
+
{
|
1107 |
+
"metric": "acc",
|
1108 |
+
"aggregation": "mean",
|
1109 |
+
"higher_is_better": true
|
1110 |
+
}
|
1111 |
+
],
|
1112 |
+
"output_type": "multiple_choice",
|
1113 |
+
"repeats": 1,
|
1114 |
+
"should_decontaminate": false,
|
1115 |
+
"metadata": {
|
1116 |
+
"version": 0.0
|
1117 |
+
}
|
1118 |
+
},
|
1119 |
+
"mmlu_high_school_european_history": {
|
1120 |
+
"task": "mmlu_high_school_european_history",
|
1121 |
+
"task_alias": "high_school_european_history",
|
1122 |
+
"group": "mmlu_humanities",
|
1123 |
+
"group_alias": "humanities",
|
1124 |
+
"dataset_path": "hails/mmlu_no_train",
|
1125 |
+
"dataset_name": "high_school_european_history",
|
1126 |
+
"test_split": "test",
|
1127 |
+
"fewshot_split": "dev",
|
1128 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1129 |
+
"doc_to_target": "answer",
|
1130 |
+
"doc_to_choice": [
|
1131 |
+
"A",
|
1132 |
+
"B",
|
1133 |
+
"C",
|
1134 |
+
"D"
|
1135 |
+
],
|
1136 |
+
"description": "The following are multiple choice questions (with answers) about high school european history.\n\n",
|
1137 |
+
"target_delimiter": " ",
|
1138 |
+
"fewshot_delimiter": "\n\n",
|
1139 |
+
"fewshot_config": {
|
1140 |
+
"sampler": "first_n"
|
1141 |
+
},
|
1142 |
+
"metric_list": [
|
1143 |
+
{
|
1144 |
+
"metric": "acc",
|
1145 |
+
"aggregation": "mean",
|
1146 |
+
"higher_is_better": true
|
1147 |
+
}
|
1148 |
+
],
|
1149 |
+
"output_type": "multiple_choice",
|
1150 |
+
"repeats": 1,
|
1151 |
+
"should_decontaminate": false,
|
1152 |
+
"metadata": {
|
1153 |
+
"version": 0.0
|
1154 |
+
}
|
1155 |
+
},
|
1156 |
+
"mmlu_high_school_geography": {
|
1157 |
+
"task": "mmlu_high_school_geography",
|
1158 |
+
"task_alias": "high_school_geography",
|
1159 |
+
"group": "mmlu_social_sciences",
|
1160 |
+
"group_alias": "social_sciences",
|
1161 |
+
"dataset_path": "hails/mmlu_no_train",
|
1162 |
+
"dataset_name": "high_school_geography",
|
1163 |
+
"test_split": "test",
|
1164 |
+
"fewshot_split": "dev",
|
1165 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1166 |
+
"doc_to_target": "answer",
|
1167 |
+
"doc_to_choice": [
|
1168 |
+
"A",
|
1169 |
+
"B",
|
1170 |
+
"C",
|
1171 |
+
"D"
|
1172 |
+
],
|
1173 |
+
"description": "The following are multiple choice questions (with answers) about high school geography.\n\n",
|
1174 |
+
"target_delimiter": " ",
|
1175 |
+
"fewshot_delimiter": "\n\n",
|
1176 |
+
"fewshot_config": {
|
1177 |
+
"sampler": "first_n"
|
1178 |
+
},
|
1179 |
+
"metric_list": [
|
1180 |
+
{
|
1181 |
+
"metric": "acc",
|
1182 |
+
"aggregation": "mean",
|
1183 |
+
"higher_is_better": true
|
1184 |
+
}
|
1185 |
+
],
|
1186 |
+
"output_type": "multiple_choice",
|
1187 |
+
"repeats": 1,
|
1188 |
+
"should_decontaminate": false,
|
1189 |
+
"metadata": {
|
1190 |
+
"version": 0.0
|
1191 |
+
}
|
1192 |
+
},
|
1193 |
+
"mmlu_high_school_government_and_politics": {
|
1194 |
+
"task": "mmlu_high_school_government_and_politics",
|
1195 |
+
"task_alias": "high_school_government_and_politics",
|
1196 |
+
"group": "mmlu_social_sciences",
|
1197 |
+
"group_alias": "social_sciences",
|
1198 |
+
"dataset_path": "hails/mmlu_no_train",
|
1199 |
+
"dataset_name": "high_school_government_and_politics",
|
1200 |
+
"test_split": "test",
|
1201 |
+
"fewshot_split": "dev",
|
1202 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1203 |
+
"doc_to_target": "answer",
|
1204 |
+
"doc_to_choice": [
|
1205 |
+
"A",
|
1206 |
+
"B",
|
1207 |
+
"C",
|
1208 |
+
"D"
|
1209 |
+
],
|
1210 |
+
"description": "The following are multiple choice questions (with answers) about high school government and politics.\n\n",
|
1211 |
+
"target_delimiter": " ",
|
1212 |
+
"fewshot_delimiter": "\n\n",
|
1213 |
+
"fewshot_config": {
|
1214 |
+
"sampler": "first_n"
|
1215 |
+
},
|
1216 |
+
"metric_list": [
|
1217 |
+
{
|
1218 |
+
"metric": "acc",
|
1219 |
+
"aggregation": "mean",
|
1220 |
+
"higher_is_better": true
|
1221 |
+
}
|
1222 |
+
],
|
1223 |
+
"output_type": "multiple_choice",
|
1224 |
+
"repeats": 1,
|
1225 |
+
"should_decontaminate": false,
|
1226 |
+
"metadata": {
|
1227 |
+
"version": 0.0
|
1228 |
+
}
|
1229 |
+
},
|
1230 |
+
"mmlu_high_school_macroeconomics": {
|
1231 |
+
"task": "mmlu_high_school_macroeconomics",
|
1232 |
+
"task_alias": "high_school_macroeconomics",
|
1233 |
+
"group": "mmlu_social_sciences",
|
1234 |
+
"group_alias": "social_sciences",
|
1235 |
+
"dataset_path": "hails/mmlu_no_train",
|
1236 |
+
"dataset_name": "high_school_macroeconomics",
|
1237 |
+
"test_split": "test",
|
1238 |
+
"fewshot_split": "dev",
|
1239 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1240 |
+
"doc_to_target": "answer",
|
1241 |
+
"doc_to_choice": [
|
1242 |
+
"A",
|
1243 |
+
"B",
|
1244 |
+
"C",
|
1245 |
+
"D"
|
1246 |
+
],
|
1247 |
+
"description": "The following are multiple choice questions (with answers) about high school macroeconomics.\n\n",
|
1248 |
+
"target_delimiter": " ",
|
1249 |
+
"fewshot_delimiter": "\n\n",
|
1250 |
+
"fewshot_config": {
|
1251 |
+
"sampler": "first_n"
|
1252 |
+
},
|
1253 |
+
"metric_list": [
|
1254 |
+
{
|
1255 |
+
"metric": "acc",
|
1256 |
+
"aggregation": "mean",
|
1257 |
+
"higher_is_better": true
|
1258 |
+
}
|
1259 |
+
],
|
1260 |
+
"output_type": "multiple_choice",
|
1261 |
+
"repeats": 1,
|
1262 |
+
"should_decontaminate": false,
|
1263 |
+
"metadata": {
|
1264 |
+
"version": 0.0
|
1265 |
+
}
|
1266 |
+
},
|
1267 |
+
"mmlu_high_school_mathematics": {
|
1268 |
+
"task": "mmlu_high_school_mathematics",
|
1269 |
+
"task_alias": "high_school_mathematics",
|
1270 |
+
"group": "mmlu_stem",
|
1271 |
+
"group_alias": "stem",
|
1272 |
+
"dataset_path": "hails/mmlu_no_train",
|
1273 |
+
"dataset_name": "high_school_mathematics",
|
1274 |
+
"test_split": "test",
|
1275 |
+
"fewshot_split": "dev",
|
1276 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1277 |
+
"doc_to_target": "answer",
|
1278 |
+
"doc_to_choice": [
|
1279 |
+
"A",
|
1280 |
+
"B",
|
1281 |
+
"C",
|
1282 |
+
"D"
|
1283 |
+
],
|
1284 |
+
"description": "The following are multiple choice questions (with answers) about high school mathematics.\n\n",
|
1285 |
+
"target_delimiter": " ",
|
1286 |
+
"fewshot_delimiter": "\n\n",
|
1287 |
+
"fewshot_config": {
|
1288 |
+
"sampler": "first_n"
|
1289 |
+
},
|
1290 |
+
"metric_list": [
|
1291 |
+
{
|
1292 |
+
"metric": "acc",
|
1293 |
+
"aggregation": "mean",
|
1294 |
+
"higher_is_better": true
|
1295 |
+
}
|
1296 |
+
],
|
1297 |
+
"output_type": "multiple_choice",
|
1298 |
+
"repeats": 1,
|
1299 |
+
"should_decontaminate": false,
|
1300 |
+
"metadata": {
|
1301 |
+
"version": 0.0
|
1302 |
+
}
|
1303 |
+
},
|
1304 |
+
"mmlu_high_school_microeconomics": {
|
1305 |
+
"task": "mmlu_high_school_microeconomics",
|
1306 |
+
"task_alias": "high_school_microeconomics",
|
1307 |
+
"group": "mmlu_social_sciences",
|
1308 |
+
"group_alias": "social_sciences",
|
1309 |
+
"dataset_path": "hails/mmlu_no_train",
|
1310 |
+
"dataset_name": "high_school_microeconomics",
|
1311 |
+
"test_split": "test",
|
1312 |
+
"fewshot_split": "dev",
|
1313 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1314 |
+
"doc_to_target": "answer",
|
1315 |
+
"doc_to_choice": [
|
1316 |
+
"A",
|
1317 |
+
"B",
|
1318 |
+
"C",
|
1319 |
+
"D"
|
1320 |
+
],
|
1321 |
+
"description": "The following are multiple choice questions (with answers) about high school microeconomics.\n\n",
|
1322 |
+
"target_delimiter": " ",
|
1323 |
+
"fewshot_delimiter": "\n\n",
|
1324 |
+
"fewshot_config": {
|
1325 |
+
"sampler": "first_n"
|
1326 |
+
},
|
1327 |
+
"metric_list": [
|
1328 |
+
{
|
1329 |
+
"metric": "acc",
|
1330 |
+
"aggregation": "mean",
|
1331 |
+
"higher_is_better": true
|
1332 |
+
}
|
1333 |
+
],
|
1334 |
+
"output_type": "multiple_choice",
|
1335 |
+
"repeats": 1,
|
1336 |
+
"should_decontaminate": false,
|
1337 |
+
"metadata": {
|
1338 |
+
"version": 0.0
|
1339 |
+
}
|
1340 |
+
},
|
1341 |
+
"mmlu_high_school_physics": {
|
1342 |
+
"task": "mmlu_high_school_physics",
|
1343 |
+
"task_alias": "high_school_physics",
|
1344 |
+
"group": "mmlu_stem",
|
1345 |
+
"group_alias": "stem",
|
1346 |
+
"dataset_path": "hails/mmlu_no_train",
|
1347 |
+
"dataset_name": "high_school_physics",
|
1348 |
+
"test_split": "test",
|
1349 |
+
"fewshot_split": "dev",
|
1350 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1351 |
+
"doc_to_target": "answer",
|
1352 |
+
"doc_to_choice": [
|
1353 |
+
"A",
|
1354 |
+
"B",
|
1355 |
+
"C",
|
1356 |
+
"D"
|
1357 |
+
],
|
1358 |
+
"description": "The following are multiple choice questions (with answers) about high school physics.\n\n",
|
1359 |
+
"target_delimiter": " ",
|
1360 |
+
"fewshot_delimiter": "\n\n",
|
1361 |
+
"fewshot_config": {
|
1362 |
+
"sampler": "first_n"
|
1363 |
+
},
|
1364 |
+
"metric_list": [
|
1365 |
+
{
|
1366 |
+
"metric": "acc",
|
1367 |
+
"aggregation": "mean",
|
1368 |
+
"higher_is_better": true
|
1369 |
+
}
|
1370 |
+
],
|
1371 |
+
"output_type": "multiple_choice",
|
1372 |
+
"repeats": 1,
|
1373 |
+
"should_decontaminate": false,
|
1374 |
+
"metadata": {
|
1375 |
+
"version": 0.0
|
1376 |
+
}
|
1377 |
+
},
|
1378 |
+
"mmlu_high_school_psychology": {
|
1379 |
+
"task": "mmlu_high_school_psychology",
|
1380 |
+
"task_alias": "high_school_psychology",
|
1381 |
+
"group": "mmlu_social_sciences",
|
1382 |
+
"group_alias": "social_sciences",
|
1383 |
+
"dataset_path": "hails/mmlu_no_train",
|
1384 |
+
"dataset_name": "high_school_psychology",
|
1385 |
+
"test_split": "test",
|
1386 |
+
"fewshot_split": "dev",
|
1387 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1388 |
+
"doc_to_target": "answer",
|
1389 |
+
"doc_to_choice": [
|
1390 |
+
"A",
|
1391 |
+
"B",
|
1392 |
+
"C",
|
1393 |
+
"D"
|
1394 |
+
],
|
1395 |
+
"description": "The following are multiple choice questions (with answers) about high school psychology.\n\n",
|
1396 |
+
"target_delimiter": " ",
|
1397 |
+
"fewshot_delimiter": "\n\n",
|
1398 |
+
"fewshot_config": {
|
1399 |
+
"sampler": "first_n"
|
1400 |
+
},
|
1401 |
+
"metric_list": [
|
1402 |
+
{
|
1403 |
+
"metric": "acc",
|
1404 |
+
"aggregation": "mean",
|
1405 |
+
"higher_is_better": true
|
1406 |
+
}
|
1407 |
+
],
|
1408 |
+
"output_type": "multiple_choice",
|
1409 |
+
"repeats": 1,
|
1410 |
+
"should_decontaminate": false,
|
1411 |
+
"metadata": {
|
1412 |
+
"version": 0.0
|
1413 |
+
}
|
1414 |
+
},
|
1415 |
+
"mmlu_high_school_statistics": {
|
1416 |
+
"task": "mmlu_high_school_statistics",
|
1417 |
+
"task_alias": "high_school_statistics",
|
1418 |
+
"group": "mmlu_stem",
|
1419 |
+
"group_alias": "stem",
|
1420 |
+
"dataset_path": "hails/mmlu_no_train",
|
1421 |
+
"dataset_name": "high_school_statistics",
|
1422 |
+
"test_split": "test",
|
1423 |
+
"fewshot_split": "dev",
|
1424 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1425 |
+
"doc_to_target": "answer",
|
1426 |
+
"doc_to_choice": [
|
1427 |
+
"A",
|
1428 |
+
"B",
|
1429 |
+
"C",
|
1430 |
+
"D"
|
1431 |
+
],
|
1432 |
+
"description": "The following are multiple choice questions (with answers) about high school statistics.\n\n",
|
1433 |
+
"target_delimiter": " ",
|
1434 |
+
"fewshot_delimiter": "\n\n",
|
1435 |
+
"fewshot_config": {
|
1436 |
+
"sampler": "first_n"
|
1437 |
+
},
|
1438 |
+
"metric_list": [
|
1439 |
+
{
|
1440 |
+
"metric": "acc",
|
1441 |
+
"aggregation": "mean",
|
1442 |
+
"higher_is_better": true
|
1443 |
+
}
|
1444 |
+
],
|
1445 |
+
"output_type": "multiple_choice",
|
1446 |
+
"repeats": 1,
|
1447 |
+
"should_decontaminate": false,
|
1448 |
+
"metadata": {
|
1449 |
+
"version": 0.0
|
1450 |
+
}
|
1451 |
+
},
|
1452 |
+
"mmlu_high_school_us_history": {
|
1453 |
+
"task": "mmlu_high_school_us_history",
|
1454 |
+
"task_alias": "high_school_us_history",
|
1455 |
+
"group": "mmlu_humanities",
|
1456 |
+
"group_alias": "humanities",
|
1457 |
+
"dataset_path": "hails/mmlu_no_train",
|
1458 |
+
"dataset_name": "high_school_us_history",
|
1459 |
+
"test_split": "test",
|
1460 |
+
"fewshot_split": "dev",
|
1461 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1462 |
+
"doc_to_target": "answer",
|
1463 |
+
"doc_to_choice": [
|
1464 |
+
"A",
|
1465 |
+
"B",
|
1466 |
+
"C",
|
1467 |
+
"D"
|
1468 |
+
],
|
1469 |
+
"description": "The following are multiple choice questions (with answers) about high school us history.\n\n",
|
1470 |
+
"target_delimiter": " ",
|
1471 |
+
"fewshot_delimiter": "\n\n",
|
1472 |
+
"fewshot_config": {
|
1473 |
+
"sampler": "first_n"
|
1474 |
+
},
|
1475 |
+
"metric_list": [
|
1476 |
+
{
|
1477 |
+
"metric": "acc",
|
1478 |
+
"aggregation": "mean",
|
1479 |
+
"higher_is_better": true
|
1480 |
+
}
|
1481 |
+
],
|
1482 |
+
"output_type": "multiple_choice",
|
1483 |
+
"repeats": 1,
|
1484 |
+
"should_decontaminate": false,
|
1485 |
+
"metadata": {
|
1486 |
+
"version": 0.0
|
1487 |
+
}
|
1488 |
+
},
|
1489 |
+
"mmlu_high_school_world_history": {
|
1490 |
+
"task": "mmlu_high_school_world_history",
|
1491 |
+
"task_alias": "high_school_world_history",
|
1492 |
+
"group": "mmlu_humanities",
|
1493 |
+
"group_alias": "humanities",
|
1494 |
+
"dataset_path": "hails/mmlu_no_train",
|
1495 |
+
"dataset_name": "high_school_world_history",
|
1496 |
+
"test_split": "test",
|
1497 |
+
"fewshot_split": "dev",
|
1498 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1499 |
+
"doc_to_target": "answer",
|
1500 |
+
"doc_to_choice": [
|
1501 |
+
"A",
|
1502 |
+
"B",
|
1503 |
+
"C",
|
1504 |
+
"D"
|
1505 |
+
],
|
1506 |
+
"description": "The following are multiple choice questions (with answers) about high school world history.\n\n",
|
1507 |
+
"target_delimiter": " ",
|
1508 |
+
"fewshot_delimiter": "\n\n",
|
1509 |
+
"fewshot_config": {
|
1510 |
+
"sampler": "first_n"
|
1511 |
+
},
|
1512 |
+
"metric_list": [
|
1513 |
+
{
|
1514 |
+
"metric": "acc",
|
1515 |
+
"aggregation": "mean",
|
1516 |
+
"higher_is_better": true
|
1517 |
+
}
|
1518 |
+
],
|
1519 |
+
"output_type": "multiple_choice",
|
1520 |
+
"repeats": 1,
|
1521 |
+
"should_decontaminate": false,
|
1522 |
+
"metadata": {
|
1523 |
+
"version": 0.0
|
1524 |
+
}
|
1525 |
+
},
|
1526 |
+
"mmlu_human_aging": {
|
1527 |
+
"task": "mmlu_human_aging",
|
1528 |
+
"task_alias": "human_aging",
|
1529 |
+
"group": "mmlu_other",
|
1530 |
+
"group_alias": "other",
|
1531 |
+
"dataset_path": "hails/mmlu_no_train",
|
1532 |
+
"dataset_name": "human_aging",
|
1533 |
+
"test_split": "test",
|
1534 |
+
"fewshot_split": "dev",
|
1535 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1536 |
+
"doc_to_target": "answer",
|
1537 |
+
"doc_to_choice": [
|
1538 |
+
"A",
|
1539 |
+
"B",
|
1540 |
+
"C",
|
1541 |
+
"D"
|
1542 |
+
],
|
1543 |
+
"description": "The following are multiple choice questions (with answers) about human aging.\n\n",
|
1544 |
+
"target_delimiter": " ",
|
1545 |
+
"fewshot_delimiter": "\n\n",
|
1546 |
+
"fewshot_config": {
|
1547 |
+
"sampler": "first_n"
|
1548 |
+
},
|
1549 |
+
"metric_list": [
|
1550 |
+
{
|
1551 |
+
"metric": "acc",
|
1552 |
+
"aggregation": "mean",
|
1553 |
+
"higher_is_better": true
|
1554 |
+
}
|
1555 |
+
],
|
1556 |
+
"output_type": "multiple_choice",
|
1557 |
+
"repeats": 1,
|
1558 |
+
"should_decontaminate": false,
|
1559 |
+
"metadata": {
|
1560 |
+
"version": 0.0
|
1561 |
+
}
|
1562 |
+
},
|
1563 |
+
"mmlu_human_sexuality": {
|
1564 |
+
"task": "mmlu_human_sexuality",
|
1565 |
+
"task_alias": "human_sexuality",
|
1566 |
+
"group": "mmlu_social_sciences",
|
1567 |
+
"group_alias": "social_sciences",
|
1568 |
+
"dataset_path": "hails/mmlu_no_train",
|
1569 |
+
"dataset_name": "human_sexuality",
|
1570 |
+
"test_split": "test",
|
1571 |
+
"fewshot_split": "dev",
|
1572 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1573 |
+
"doc_to_target": "answer",
|
1574 |
+
"doc_to_choice": [
|
1575 |
+
"A",
|
1576 |
+
"B",
|
1577 |
+
"C",
|
1578 |
+
"D"
|
1579 |
+
],
|
1580 |
+
"description": "The following are multiple choice questions (with answers) about human sexuality.\n\n",
|
1581 |
+
"target_delimiter": " ",
|
1582 |
+
"fewshot_delimiter": "\n\n",
|
1583 |
+
"fewshot_config": {
|
1584 |
+
"sampler": "first_n"
|
1585 |
+
},
|
1586 |
+
"metric_list": [
|
1587 |
+
{
|
1588 |
+
"metric": "acc",
|
1589 |
+
"aggregation": "mean",
|
1590 |
+
"higher_is_better": true
|
1591 |
+
}
|
1592 |
+
],
|
1593 |
+
"output_type": "multiple_choice",
|
1594 |
+
"repeats": 1,
|
1595 |
+
"should_decontaminate": false,
|
1596 |
+
"metadata": {
|
1597 |
+
"version": 0.0
|
1598 |
+
}
|
1599 |
+
},
|
1600 |
+
"mmlu_international_law": {
|
1601 |
+
"task": "mmlu_international_law",
|
1602 |
+
"task_alias": "international_law",
|
1603 |
+
"group": "mmlu_humanities",
|
1604 |
+
"group_alias": "humanities",
|
1605 |
+
"dataset_path": "hails/mmlu_no_train",
|
1606 |
+
"dataset_name": "international_law",
|
1607 |
+
"test_split": "test",
|
1608 |
+
"fewshot_split": "dev",
|
1609 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1610 |
+
"doc_to_target": "answer",
|
1611 |
+
"doc_to_choice": [
|
1612 |
+
"A",
|
1613 |
+
"B",
|
1614 |
+
"C",
|
1615 |
+
"D"
|
1616 |
+
],
|
1617 |
+
"description": "The following are multiple choice questions (with answers) about international law.\n\n",
|
1618 |
+
"target_delimiter": " ",
|
1619 |
+
"fewshot_delimiter": "\n\n",
|
1620 |
+
"fewshot_config": {
|
1621 |
+
"sampler": "first_n"
|
1622 |
+
},
|
1623 |
+
"metric_list": [
|
1624 |
+
{
|
1625 |
+
"metric": "acc",
|
1626 |
+
"aggregation": "mean",
|
1627 |
+
"higher_is_better": true
|
1628 |
+
}
|
1629 |
+
],
|
1630 |
+
"output_type": "multiple_choice",
|
1631 |
+
"repeats": 1,
|
1632 |
+
"should_decontaminate": false,
|
1633 |
+
"metadata": {
|
1634 |
+
"version": 0.0
|
1635 |
+
}
|
1636 |
+
},
|
1637 |
+
"mmlu_jurisprudence": {
|
1638 |
+
"task": "mmlu_jurisprudence",
|
1639 |
+
"task_alias": "jurisprudence",
|
1640 |
+
"group": "mmlu_humanities",
|
1641 |
+
"group_alias": "humanities",
|
1642 |
+
"dataset_path": "hails/mmlu_no_train",
|
1643 |
+
"dataset_name": "jurisprudence",
|
1644 |
+
"test_split": "test",
|
1645 |
+
"fewshot_split": "dev",
|
1646 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1647 |
+
"doc_to_target": "answer",
|
1648 |
+
"doc_to_choice": [
|
1649 |
+
"A",
|
1650 |
+
"B",
|
1651 |
+
"C",
|
1652 |
+
"D"
|
1653 |
+
],
|
1654 |
+
"description": "The following are multiple choice questions (with answers) about jurisprudence.\n\n",
|
1655 |
+
"target_delimiter": " ",
|
1656 |
+
"fewshot_delimiter": "\n\n",
|
1657 |
+
"fewshot_config": {
|
1658 |
+
"sampler": "first_n"
|
1659 |
+
},
|
1660 |
+
"metric_list": [
|
1661 |
+
{
|
1662 |
+
"metric": "acc",
|
1663 |
+
"aggregation": "mean",
|
1664 |
+
"higher_is_better": true
|
1665 |
+
}
|
1666 |
+
],
|
1667 |
+
"output_type": "multiple_choice",
|
1668 |
+
"repeats": 1,
|
1669 |
+
"should_decontaminate": false,
|
1670 |
+
"metadata": {
|
1671 |
+
"version": 0.0
|
1672 |
+
}
|
1673 |
+
},
|
1674 |
+
"mmlu_logical_fallacies": {
|
1675 |
+
"task": "mmlu_logical_fallacies",
|
1676 |
+
"task_alias": "logical_fallacies",
|
1677 |
+
"group": "mmlu_humanities",
|
1678 |
+
"group_alias": "humanities",
|
1679 |
+
"dataset_path": "hails/mmlu_no_train",
|
1680 |
+
"dataset_name": "logical_fallacies",
|
1681 |
+
"test_split": "test",
|
1682 |
+
"fewshot_split": "dev",
|
1683 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1684 |
+
"doc_to_target": "answer",
|
1685 |
+
"doc_to_choice": [
|
1686 |
+
"A",
|
1687 |
+
"B",
|
1688 |
+
"C",
|
1689 |
+
"D"
|
1690 |
+
],
|
1691 |
+
"description": "The following are multiple choice questions (with answers) about logical fallacies.\n\n",
|
1692 |
+
"target_delimiter": " ",
|
1693 |
+
"fewshot_delimiter": "\n\n",
|
1694 |
+
"fewshot_config": {
|
1695 |
+
"sampler": "first_n"
|
1696 |
+
},
|
1697 |
+
"metric_list": [
|
1698 |
+
{
|
1699 |
+
"metric": "acc",
|
1700 |
+
"aggregation": "mean",
|
1701 |
+
"higher_is_better": true
|
1702 |
+
}
|
1703 |
+
],
|
1704 |
+
"output_type": "multiple_choice",
|
1705 |
+
"repeats": 1,
|
1706 |
+
"should_decontaminate": false,
|
1707 |
+
"metadata": {
|
1708 |
+
"version": 0.0
|
1709 |
+
}
|
1710 |
+
},
|
1711 |
+
"mmlu_machine_learning": {
|
1712 |
+
"task": "mmlu_machine_learning",
|
1713 |
+
"task_alias": "machine_learning",
|
1714 |
+
"group": "mmlu_stem",
|
1715 |
+
"group_alias": "stem",
|
1716 |
+
"dataset_path": "hails/mmlu_no_train",
|
1717 |
+
"dataset_name": "machine_learning",
|
1718 |
+
"test_split": "test",
|
1719 |
+
"fewshot_split": "dev",
|
1720 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1721 |
+
"doc_to_target": "answer",
|
1722 |
+
"doc_to_choice": [
|
1723 |
+
"A",
|
1724 |
+
"B",
|
1725 |
+
"C",
|
1726 |
+
"D"
|
1727 |
+
],
|
1728 |
+
"description": "The following are multiple choice questions (with answers) about machine learning.\n\n",
|
1729 |
+
"target_delimiter": " ",
|
1730 |
+
"fewshot_delimiter": "\n\n",
|
1731 |
+
"fewshot_config": {
|
1732 |
+
"sampler": "first_n"
|
1733 |
+
},
|
1734 |
+
"metric_list": [
|
1735 |
+
{
|
1736 |
+
"metric": "acc",
|
1737 |
+
"aggregation": "mean",
|
1738 |
+
"higher_is_better": true
|
1739 |
+
}
|
1740 |
+
],
|
1741 |
+
"output_type": "multiple_choice",
|
1742 |
+
"repeats": 1,
|
1743 |
+
"should_decontaminate": false,
|
1744 |
+
"metadata": {
|
1745 |
+
"version": 0.0
|
1746 |
+
}
|
1747 |
+
},
|
1748 |
+
"mmlu_management": {
|
1749 |
+
"task": "mmlu_management",
|
1750 |
+
"task_alias": "management",
|
1751 |
+
"group": "mmlu_other",
|
1752 |
+
"group_alias": "other",
|
1753 |
+
"dataset_path": "hails/mmlu_no_train",
|
1754 |
+
"dataset_name": "management",
|
1755 |
+
"test_split": "test",
|
1756 |
+
"fewshot_split": "dev",
|
1757 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1758 |
+
"doc_to_target": "answer",
|
1759 |
+
"doc_to_choice": [
|
1760 |
+
"A",
|
1761 |
+
"B",
|
1762 |
+
"C",
|
1763 |
+
"D"
|
1764 |
+
],
|
1765 |
+
"description": "The following are multiple choice questions (with answers) about management.\n\n",
|
1766 |
+
"target_delimiter": " ",
|
1767 |
+
"fewshot_delimiter": "\n\n",
|
1768 |
+
"fewshot_config": {
|
1769 |
+
"sampler": "first_n"
|
1770 |
+
},
|
1771 |
+
"metric_list": [
|
1772 |
+
{
|
1773 |
+
"metric": "acc",
|
1774 |
+
"aggregation": "mean",
|
1775 |
+
"higher_is_better": true
|
1776 |
+
}
|
1777 |
+
],
|
1778 |
+
"output_type": "multiple_choice",
|
1779 |
+
"repeats": 1,
|
1780 |
+
"should_decontaminate": false,
|
1781 |
+
"metadata": {
|
1782 |
+
"version": 0.0
|
1783 |
+
}
|
1784 |
+
},
|
1785 |
+
"mmlu_marketing": {
|
1786 |
+
"task": "mmlu_marketing",
|
1787 |
+
"task_alias": "marketing",
|
1788 |
+
"group": "mmlu_other",
|
1789 |
+
"group_alias": "other",
|
1790 |
+
"dataset_path": "hails/mmlu_no_train",
|
1791 |
+
"dataset_name": "marketing",
|
1792 |
+
"test_split": "test",
|
1793 |
+
"fewshot_split": "dev",
|
1794 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1795 |
+
"doc_to_target": "answer",
|
1796 |
+
"doc_to_choice": [
|
1797 |
+
"A",
|
1798 |
+
"B",
|
1799 |
+
"C",
|
1800 |
+
"D"
|
1801 |
+
],
|
1802 |
+
"description": "The following are multiple choice questions (with answers) about marketing.\n\n",
|
1803 |
+
"target_delimiter": " ",
|
1804 |
+
"fewshot_delimiter": "\n\n",
|
1805 |
+
"fewshot_config": {
|
1806 |
+
"sampler": "first_n"
|
1807 |
+
},
|
1808 |
+
"metric_list": [
|
1809 |
+
{
|
1810 |
+
"metric": "acc",
|
1811 |
+
"aggregation": "mean",
|
1812 |
+
"higher_is_better": true
|
1813 |
+
}
|
1814 |
+
],
|
1815 |
+
"output_type": "multiple_choice",
|
1816 |
+
"repeats": 1,
|
1817 |
+
"should_decontaminate": false,
|
1818 |
+
"metadata": {
|
1819 |
+
"version": 0.0
|
1820 |
+
}
|
1821 |
+
},
|
1822 |
+
"mmlu_medical_genetics": {
|
1823 |
+
"task": "mmlu_medical_genetics",
|
1824 |
+
"task_alias": "medical_genetics",
|
1825 |
+
"group": "mmlu_other",
|
1826 |
+
"group_alias": "other",
|
1827 |
+
"dataset_path": "hails/mmlu_no_train",
|
1828 |
+
"dataset_name": "medical_genetics",
|
1829 |
+
"test_split": "test",
|
1830 |
+
"fewshot_split": "dev",
|
1831 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1832 |
+
"doc_to_target": "answer",
|
1833 |
+
"doc_to_choice": [
|
1834 |
+
"A",
|
1835 |
+
"B",
|
1836 |
+
"C",
|
1837 |
+
"D"
|
1838 |
+
],
|
1839 |
+
"description": "The following are multiple choice questions (with answers) about medical genetics.\n\n",
|
1840 |
+
"target_delimiter": " ",
|
1841 |
+
"fewshot_delimiter": "\n\n",
|
1842 |
+
"fewshot_config": {
|
1843 |
+
"sampler": "first_n"
|
1844 |
+
},
|
1845 |
+
"metric_list": [
|
1846 |
+
{
|
1847 |
+
"metric": "acc",
|
1848 |
+
"aggregation": "mean",
|
1849 |
+
"higher_is_better": true
|
1850 |
+
}
|
1851 |
+
],
|
1852 |
+
"output_type": "multiple_choice",
|
1853 |
+
"repeats": 1,
|
1854 |
+
"should_decontaminate": false,
|
1855 |
+
"metadata": {
|
1856 |
+
"version": 0.0
|
1857 |
+
}
|
1858 |
+
},
|
1859 |
+
"mmlu_miscellaneous": {
|
1860 |
+
"task": "mmlu_miscellaneous",
|
1861 |
+
"task_alias": "miscellaneous",
|
1862 |
+
"group": "mmlu_other",
|
1863 |
+
"group_alias": "other",
|
1864 |
+
"dataset_path": "hails/mmlu_no_train",
|
1865 |
+
"dataset_name": "miscellaneous",
|
1866 |
+
"test_split": "test",
|
1867 |
+
"fewshot_split": "dev",
|
1868 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1869 |
+
"doc_to_target": "answer",
|
1870 |
+
"doc_to_choice": [
|
1871 |
+
"A",
|
1872 |
+
"B",
|
1873 |
+
"C",
|
1874 |
+
"D"
|
1875 |
+
],
|
1876 |
+
"description": "The following are multiple choice questions (with answers) about miscellaneous.\n\n",
|
1877 |
+
"target_delimiter": " ",
|
1878 |
+
"fewshot_delimiter": "\n\n",
|
1879 |
+
"fewshot_config": {
|
1880 |
+
"sampler": "first_n"
|
1881 |
+
},
|
1882 |
+
"metric_list": [
|
1883 |
+
{
|
1884 |
+
"metric": "acc",
|
1885 |
+
"aggregation": "mean",
|
1886 |
+
"higher_is_better": true
|
1887 |
+
}
|
1888 |
+
],
|
1889 |
+
"output_type": "multiple_choice",
|
1890 |
+
"repeats": 1,
|
1891 |
+
"should_decontaminate": false,
|
1892 |
+
"metadata": {
|
1893 |
+
"version": 0.0
|
1894 |
+
}
|
1895 |
+
},
|
1896 |
+
"mmlu_moral_disputes": {
|
1897 |
+
"task": "mmlu_moral_disputes",
|
1898 |
+
"task_alias": "moral_disputes",
|
1899 |
+
"group": "mmlu_humanities",
|
1900 |
+
"group_alias": "humanities",
|
1901 |
+
"dataset_path": "hails/mmlu_no_train",
|
1902 |
+
"dataset_name": "moral_disputes",
|
1903 |
+
"test_split": "test",
|
1904 |
+
"fewshot_split": "dev",
|
1905 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1906 |
+
"doc_to_target": "answer",
|
1907 |
+
"doc_to_choice": [
|
1908 |
+
"A",
|
1909 |
+
"B",
|
1910 |
+
"C",
|
1911 |
+
"D"
|
1912 |
+
],
|
1913 |
+
"description": "The following are multiple choice questions (with answers) about moral disputes.\n\n",
|
1914 |
+
"target_delimiter": " ",
|
1915 |
+
"fewshot_delimiter": "\n\n",
|
1916 |
+
"fewshot_config": {
|
1917 |
+
"sampler": "first_n"
|
1918 |
+
},
|
1919 |
+
"metric_list": [
|
1920 |
+
{
|
1921 |
+
"metric": "acc",
|
1922 |
+
"aggregation": "mean",
|
1923 |
+
"higher_is_better": true
|
1924 |
+
}
|
1925 |
+
],
|
1926 |
+
"output_type": "multiple_choice",
|
1927 |
+
"repeats": 1,
|
1928 |
+
"should_decontaminate": false,
|
1929 |
+
"metadata": {
|
1930 |
+
"version": 0.0
|
1931 |
+
}
|
1932 |
+
},
|
1933 |
+
"mmlu_moral_scenarios": {
|
1934 |
+
"task": "mmlu_moral_scenarios",
|
1935 |
+
"task_alias": "moral_scenarios",
|
1936 |
+
"group": "mmlu_humanities",
|
1937 |
+
"group_alias": "humanities",
|
1938 |
+
"dataset_path": "hails/mmlu_no_train",
|
1939 |
+
"dataset_name": "moral_scenarios",
|
1940 |
+
"test_split": "test",
|
1941 |
+
"fewshot_split": "dev",
|
1942 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1943 |
+
"doc_to_target": "answer",
|
1944 |
+
"doc_to_choice": [
|
1945 |
+
"A",
|
1946 |
+
"B",
|
1947 |
+
"C",
|
1948 |
+
"D"
|
1949 |
+
],
|
1950 |
+
"description": "The following are multiple choice questions (with answers) about moral scenarios.\n\n",
|
1951 |
+
"target_delimiter": " ",
|
1952 |
+
"fewshot_delimiter": "\n\n",
|
1953 |
+
"fewshot_config": {
|
1954 |
+
"sampler": "first_n"
|
1955 |
+
},
|
1956 |
+
"metric_list": [
|
1957 |
+
{
|
1958 |
+
"metric": "acc",
|
1959 |
+
"aggregation": "mean",
|
1960 |
+
"higher_is_better": true
|
1961 |
+
}
|
1962 |
+
],
|
1963 |
+
"output_type": "multiple_choice",
|
1964 |
+
"repeats": 1,
|
1965 |
+
"should_decontaminate": false,
|
1966 |
+
"metadata": {
|
1967 |
+
"version": 0.0
|
1968 |
+
}
|
1969 |
+
},
|
1970 |
+
"mmlu_nutrition": {
|
1971 |
+
"task": "mmlu_nutrition",
|
1972 |
+
"task_alias": "nutrition",
|
1973 |
+
"group": "mmlu_other",
|
1974 |
+
"group_alias": "other",
|
1975 |
+
"dataset_path": "hails/mmlu_no_train",
|
1976 |
+
"dataset_name": "nutrition",
|
1977 |
+
"test_split": "test",
|
1978 |
+
"fewshot_split": "dev",
|
1979 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
1980 |
+
"doc_to_target": "answer",
|
1981 |
+
"doc_to_choice": [
|
1982 |
+
"A",
|
1983 |
+
"B",
|
1984 |
+
"C",
|
1985 |
+
"D"
|
1986 |
+
],
|
1987 |
+
"description": "The following are multiple choice questions (with answers) about nutrition.\n\n",
|
1988 |
+
"target_delimiter": " ",
|
1989 |
+
"fewshot_delimiter": "\n\n",
|
1990 |
+
"fewshot_config": {
|
1991 |
+
"sampler": "first_n"
|
1992 |
+
},
|
1993 |
+
"metric_list": [
|
1994 |
+
{
|
1995 |
+
"metric": "acc",
|
1996 |
+
"aggregation": "mean",
|
1997 |
+
"higher_is_better": true
|
1998 |
+
}
|
1999 |
+
],
|
2000 |
+
"output_type": "multiple_choice",
|
2001 |
+
"repeats": 1,
|
2002 |
+
"should_decontaminate": false,
|
2003 |
+
"metadata": {
|
2004 |
+
"version": 0.0
|
2005 |
+
}
|
2006 |
+
},
|
2007 |
+
"mmlu_philosophy": {
|
2008 |
+
"task": "mmlu_philosophy",
|
2009 |
+
"task_alias": "philosophy",
|
2010 |
+
"group": "mmlu_humanities",
|
2011 |
+
"group_alias": "humanities",
|
2012 |
+
"dataset_path": "hails/mmlu_no_train",
|
2013 |
+
"dataset_name": "philosophy",
|
2014 |
+
"test_split": "test",
|
2015 |
+
"fewshot_split": "dev",
|
2016 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2017 |
+
"doc_to_target": "answer",
|
2018 |
+
"doc_to_choice": [
|
2019 |
+
"A",
|
2020 |
+
"B",
|
2021 |
+
"C",
|
2022 |
+
"D"
|
2023 |
+
],
|
2024 |
+
"description": "The following are multiple choice questions (with answers) about philosophy.\n\n",
|
2025 |
+
"target_delimiter": " ",
|
2026 |
+
"fewshot_delimiter": "\n\n",
|
2027 |
+
"fewshot_config": {
|
2028 |
+
"sampler": "first_n"
|
2029 |
+
},
|
2030 |
+
"metric_list": [
|
2031 |
+
{
|
2032 |
+
"metric": "acc",
|
2033 |
+
"aggregation": "mean",
|
2034 |
+
"higher_is_better": true
|
2035 |
+
}
|
2036 |
+
],
|
2037 |
+
"output_type": "multiple_choice",
|
2038 |
+
"repeats": 1,
|
2039 |
+
"should_decontaminate": false,
|
2040 |
+
"metadata": {
|
2041 |
+
"version": 0.0
|
2042 |
+
}
|
2043 |
+
},
|
2044 |
+
"mmlu_prehistory": {
|
2045 |
+
"task": "mmlu_prehistory",
|
2046 |
+
"task_alias": "prehistory",
|
2047 |
+
"group": "mmlu_humanities",
|
2048 |
+
"group_alias": "humanities",
|
2049 |
+
"dataset_path": "hails/mmlu_no_train",
|
2050 |
+
"dataset_name": "prehistory",
|
2051 |
+
"test_split": "test",
|
2052 |
+
"fewshot_split": "dev",
|
2053 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2054 |
+
"doc_to_target": "answer",
|
2055 |
+
"doc_to_choice": [
|
2056 |
+
"A",
|
2057 |
+
"B",
|
2058 |
+
"C",
|
2059 |
+
"D"
|
2060 |
+
],
|
2061 |
+
"description": "The following are multiple choice questions (with answers) about prehistory.\n\n",
|
2062 |
+
"target_delimiter": " ",
|
2063 |
+
"fewshot_delimiter": "\n\n",
|
2064 |
+
"fewshot_config": {
|
2065 |
+
"sampler": "first_n"
|
2066 |
+
},
|
2067 |
+
"metric_list": [
|
2068 |
+
{
|
2069 |
+
"metric": "acc",
|
2070 |
+
"aggregation": "mean",
|
2071 |
+
"higher_is_better": true
|
2072 |
+
}
|
2073 |
+
],
|
2074 |
+
"output_type": "multiple_choice",
|
2075 |
+
"repeats": 1,
|
2076 |
+
"should_decontaminate": false,
|
2077 |
+
"metadata": {
|
2078 |
+
"version": 0.0
|
2079 |
+
}
|
2080 |
+
},
|
2081 |
+
"mmlu_professional_accounting": {
|
2082 |
+
"task": "mmlu_professional_accounting",
|
2083 |
+
"task_alias": "professional_accounting",
|
2084 |
+
"group": "mmlu_other",
|
2085 |
+
"group_alias": "other",
|
2086 |
+
"dataset_path": "hails/mmlu_no_train",
|
2087 |
+
"dataset_name": "professional_accounting",
|
2088 |
+
"test_split": "test",
|
2089 |
+
"fewshot_split": "dev",
|
2090 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2091 |
+
"doc_to_target": "answer",
|
2092 |
+
"doc_to_choice": [
|
2093 |
+
"A",
|
2094 |
+
"B",
|
2095 |
+
"C",
|
2096 |
+
"D"
|
2097 |
+
],
|
2098 |
+
"description": "The following are multiple choice questions (with answers) about professional accounting.\n\n",
|
2099 |
+
"target_delimiter": " ",
|
2100 |
+
"fewshot_delimiter": "\n\n",
|
2101 |
+
"fewshot_config": {
|
2102 |
+
"sampler": "first_n"
|
2103 |
+
},
|
2104 |
+
"metric_list": [
|
2105 |
+
{
|
2106 |
+
"metric": "acc",
|
2107 |
+
"aggregation": "mean",
|
2108 |
+
"higher_is_better": true
|
2109 |
+
}
|
2110 |
+
],
|
2111 |
+
"output_type": "multiple_choice",
|
2112 |
+
"repeats": 1,
|
2113 |
+
"should_decontaminate": false,
|
2114 |
+
"metadata": {
|
2115 |
+
"version": 0.0
|
2116 |
+
}
|
2117 |
+
},
|
2118 |
+
"mmlu_professional_law": {
|
2119 |
+
"task": "mmlu_professional_law",
|
2120 |
+
"task_alias": "professional_law",
|
2121 |
+
"group": "mmlu_humanities",
|
2122 |
+
"group_alias": "humanities",
|
2123 |
+
"dataset_path": "hails/mmlu_no_train",
|
2124 |
+
"dataset_name": "professional_law",
|
2125 |
+
"test_split": "test",
|
2126 |
+
"fewshot_split": "dev",
|
2127 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2128 |
+
"doc_to_target": "answer",
|
2129 |
+
"doc_to_choice": [
|
2130 |
+
"A",
|
2131 |
+
"B",
|
2132 |
+
"C",
|
2133 |
+
"D"
|
2134 |
+
],
|
2135 |
+
"description": "The following are multiple choice questions (with answers) about professional law.\n\n",
|
2136 |
+
"target_delimiter": " ",
|
2137 |
+
"fewshot_delimiter": "\n\n",
|
2138 |
+
"fewshot_config": {
|
2139 |
+
"sampler": "first_n"
|
2140 |
+
},
|
2141 |
+
"metric_list": [
|
2142 |
+
{
|
2143 |
+
"metric": "acc",
|
2144 |
+
"aggregation": "mean",
|
2145 |
+
"higher_is_better": true
|
2146 |
+
}
|
2147 |
+
],
|
2148 |
+
"output_type": "multiple_choice",
|
2149 |
+
"repeats": 1,
|
2150 |
+
"should_decontaminate": false,
|
2151 |
+
"metadata": {
|
2152 |
+
"version": 0.0
|
2153 |
+
}
|
2154 |
+
},
|
2155 |
+
"mmlu_professional_medicine": {
|
2156 |
+
"task": "mmlu_professional_medicine",
|
2157 |
+
"task_alias": "professional_medicine",
|
2158 |
+
"group": "mmlu_other",
|
2159 |
+
"group_alias": "other",
|
2160 |
+
"dataset_path": "hails/mmlu_no_train",
|
2161 |
+
"dataset_name": "professional_medicine",
|
2162 |
+
"test_split": "test",
|
2163 |
+
"fewshot_split": "dev",
|
2164 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2165 |
+
"doc_to_target": "answer",
|
2166 |
+
"doc_to_choice": [
|
2167 |
+
"A",
|
2168 |
+
"B",
|
2169 |
+
"C",
|
2170 |
+
"D"
|
2171 |
+
],
|
2172 |
+
"description": "The following are multiple choice questions (with answers) about professional medicine.\n\n",
|
2173 |
+
"target_delimiter": " ",
|
2174 |
+
"fewshot_delimiter": "\n\n",
|
2175 |
+
"fewshot_config": {
|
2176 |
+
"sampler": "first_n"
|
2177 |
+
},
|
2178 |
+
"metric_list": [
|
2179 |
+
{
|
2180 |
+
"metric": "acc",
|
2181 |
+
"aggregation": "mean",
|
2182 |
+
"higher_is_better": true
|
2183 |
+
}
|
2184 |
+
],
|
2185 |
+
"output_type": "multiple_choice",
|
2186 |
+
"repeats": 1,
|
2187 |
+
"should_decontaminate": false,
|
2188 |
+
"metadata": {
|
2189 |
+
"version": 0.0
|
2190 |
+
}
|
2191 |
+
},
|
2192 |
+
"mmlu_professional_psychology": {
|
2193 |
+
"task": "mmlu_professional_psychology",
|
2194 |
+
"task_alias": "professional_psychology",
|
2195 |
+
"group": "mmlu_social_sciences",
|
2196 |
+
"group_alias": "social_sciences",
|
2197 |
+
"dataset_path": "hails/mmlu_no_train",
|
2198 |
+
"dataset_name": "professional_psychology",
|
2199 |
+
"test_split": "test",
|
2200 |
+
"fewshot_split": "dev",
|
2201 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2202 |
+
"doc_to_target": "answer",
|
2203 |
+
"doc_to_choice": [
|
2204 |
+
"A",
|
2205 |
+
"B",
|
2206 |
+
"C",
|
2207 |
+
"D"
|
2208 |
+
],
|
2209 |
+
"description": "The following are multiple choice questions (with answers) about professional psychology.\n\n",
|
2210 |
+
"target_delimiter": " ",
|
2211 |
+
"fewshot_delimiter": "\n\n",
|
2212 |
+
"fewshot_config": {
|
2213 |
+
"sampler": "first_n"
|
2214 |
+
},
|
2215 |
+
"metric_list": [
|
2216 |
+
{
|
2217 |
+
"metric": "acc",
|
2218 |
+
"aggregation": "mean",
|
2219 |
+
"higher_is_better": true
|
2220 |
+
}
|
2221 |
+
],
|
2222 |
+
"output_type": "multiple_choice",
|
2223 |
+
"repeats": 1,
|
2224 |
+
"should_decontaminate": false,
|
2225 |
+
"metadata": {
|
2226 |
+
"version": 0.0
|
2227 |
+
}
|
2228 |
+
},
|
2229 |
+
"mmlu_public_relations": {
|
2230 |
+
"task": "mmlu_public_relations",
|
2231 |
+
"task_alias": "public_relations",
|
2232 |
+
"group": "mmlu_social_sciences",
|
2233 |
+
"group_alias": "social_sciences",
|
2234 |
+
"dataset_path": "hails/mmlu_no_train",
|
2235 |
+
"dataset_name": "public_relations",
|
2236 |
+
"test_split": "test",
|
2237 |
+
"fewshot_split": "dev",
|
2238 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2239 |
+
"doc_to_target": "answer",
|
2240 |
+
"doc_to_choice": [
|
2241 |
+
"A",
|
2242 |
+
"B",
|
2243 |
+
"C",
|
2244 |
+
"D"
|
2245 |
+
],
|
2246 |
+
"description": "The following are multiple choice questions (with answers) about public relations.\n\n",
|
2247 |
+
"target_delimiter": " ",
|
2248 |
+
"fewshot_delimiter": "\n\n",
|
2249 |
+
"fewshot_config": {
|
2250 |
+
"sampler": "first_n"
|
2251 |
+
},
|
2252 |
+
"metric_list": [
|
2253 |
+
{
|
2254 |
+
"metric": "acc",
|
2255 |
+
"aggregation": "mean",
|
2256 |
+
"higher_is_better": true
|
2257 |
+
}
|
2258 |
+
],
|
2259 |
+
"output_type": "multiple_choice",
|
2260 |
+
"repeats": 1,
|
2261 |
+
"should_decontaminate": false,
|
2262 |
+
"metadata": {
|
2263 |
+
"version": 0.0
|
2264 |
+
}
|
2265 |
+
},
|
2266 |
+
"mmlu_security_studies": {
|
2267 |
+
"task": "mmlu_security_studies",
|
2268 |
+
"task_alias": "security_studies",
|
2269 |
+
"group": "mmlu_social_sciences",
|
2270 |
+
"group_alias": "social_sciences",
|
2271 |
+
"dataset_path": "hails/mmlu_no_train",
|
2272 |
+
"dataset_name": "security_studies",
|
2273 |
+
"test_split": "test",
|
2274 |
+
"fewshot_split": "dev",
|
2275 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2276 |
+
"doc_to_target": "answer",
|
2277 |
+
"doc_to_choice": [
|
2278 |
+
"A",
|
2279 |
+
"B",
|
2280 |
+
"C",
|
2281 |
+
"D"
|
2282 |
+
],
|
2283 |
+
"description": "The following are multiple choice questions (with answers) about security studies.\n\n",
|
2284 |
+
"target_delimiter": " ",
|
2285 |
+
"fewshot_delimiter": "\n\n",
|
2286 |
+
"fewshot_config": {
|
2287 |
+
"sampler": "first_n"
|
2288 |
+
},
|
2289 |
+
"metric_list": [
|
2290 |
+
{
|
2291 |
+
"metric": "acc",
|
2292 |
+
"aggregation": "mean",
|
2293 |
+
"higher_is_better": true
|
2294 |
+
}
|
2295 |
+
],
|
2296 |
+
"output_type": "multiple_choice",
|
2297 |
+
"repeats": 1,
|
2298 |
+
"should_decontaminate": false,
|
2299 |
+
"metadata": {
|
2300 |
+
"version": 0.0
|
2301 |
+
}
|
2302 |
+
},
|
2303 |
+
"mmlu_sociology": {
|
2304 |
+
"task": "mmlu_sociology",
|
2305 |
+
"task_alias": "sociology",
|
2306 |
+
"group": "mmlu_social_sciences",
|
2307 |
+
"group_alias": "social_sciences",
|
2308 |
+
"dataset_path": "hails/mmlu_no_train",
|
2309 |
+
"dataset_name": "sociology",
|
2310 |
+
"test_split": "test",
|
2311 |
+
"fewshot_split": "dev",
|
2312 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2313 |
+
"doc_to_target": "answer",
|
2314 |
+
"doc_to_choice": [
|
2315 |
+
"A",
|
2316 |
+
"B",
|
2317 |
+
"C",
|
2318 |
+
"D"
|
2319 |
+
],
|
2320 |
+
"description": "The following are multiple choice questions (with answers) about sociology.\n\n",
|
2321 |
+
"target_delimiter": " ",
|
2322 |
+
"fewshot_delimiter": "\n\n",
|
2323 |
+
"fewshot_config": {
|
2324 |
+
"sampler": "first_n"
|
2325 |
+
},
|
2326 |
+
"metric_list": [
|
2327 |
+
{
|
2328 |
+
"metric": "acc",
|
2329 |
+
"aggregation": "mean",
|
2330 |
+
"higher_is_better": true
|
2331 |
+
}
|
2332 |
+
],
|
2333 |
+
"output_type": "multiple_choice",
|
2334 |
+
"repeats": 1,
|
2335 |
+
"should_decontaminate": false,
|
2336 |
+
"metadata": {
|
2337 |
+
"version": 0.0
|
2338 |
+
}
|
2339 |
+
},
|
2340 |
+
"mmlu_us_foreign_policy": {
|
2341 |
+
"task": "mmlu_us_foreign_policy",
|
2342 |
+
"task_alias": "us_foreign_policy",
|
2343 |
+
"group": "mmlu_social_sciences",
|
2344 |
+
"group_alias": "social_sciences",
|
2345 |
+
"dataset_path": "hails/mmlu_no_train",
|
2346 |
+
"dataset_name": "us_foreign_policy",
|
2347 |
+
"test_split": "test",
|
2348 |
+
"fewshot_split": "dev",
|
2349 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2350 |
+
"doc_to_target": "answer",
|
2351 |
+
"doc_to_choice": [
|
2352 |
+
"A",
|
2353 |
+
"B",
|
2354 |
+
"C",
|
2355 |
+
"D"
|
2356 |
+
],
|
2357 |
+
"description": "The following are multiple choice questions (with answers) about us foreign policy.\n\n",
|
2358 |
+
"target_delimiter": " ",
|
2359 |
+
"fewshot_delimiter": "\n\n",
|
2360 |
+
"fewshot_config": {
|
2361 |
+
"sampler": "first_n"
|
2362 |
+
},
|
2363 |
+
"metric_list": [
|
2364 |
+
{
|
2365 |
+
"metric": "acc",
|
2366 |
+
"aggregation": "mean",
|
2367 |
+
"higher_is_better": true
|
2368 |
+
}
|
2369 |
+
],
|
2370 |
+
"output_type": "multiple_choice",
|
2371 |
+
"repeats": 1,
|
2372 |
+
"should_decontaminate": false,
|
2373 |
+
"metadata": {
|
2374 |
+
"version": 0.0
|
2375 |
+
}
|
2376 |
+
},
|
2377 |
+
"mmlu_virology": {
|
2378 |
+
"task": "mmlu_virology",
|
2379 |
+
"task_alias": "virology",
|
2380 |
+
"group": "mmlu_other",
|
2381 |
+
"group_alias": "other",
|
2382 |
+
"dataset_path": "hails/mmlu_no_train",
|
2383 |
+
"dataset_name": "virology",
|
2384 |
+
"test_split": "test",
|
2385 |
+
"fewshot_split": "dev",
|
2386 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2387 |
+
"doc_to_target": "answer",
|
2388 |
+
"doc_to_choice": [
|
2389 |
+
"A",
|
2390 |
+
"B",
|
2391 |
+
"C",
|
2392 |
+
"D"
|
2393 |
+
],
|
2394 |
+
"description": "The following are multiple choice questions (with answers) about virology.\n\n",
|
2395 |
+
"target_delimiter": " ",
|
2396 |
+
"fewshot_delimiter": "\n\n",
|
2397 |
+
"fewshot_config": {
|
2398 |
+
"sampler": "first_n"
|
2399 |
+
},
|
2400 |
+
"metric_list": [
|
2401 |
+
{
|
2402 |
+
"metric": "acc",
|
2403 |
+
"aggregation": "mean",
|
2404 |
+
"higher_is_better": true
|
2405 |
+
}
|
2406 |
+
],
|
2407 |
+
"output_type": "multiple_choice",
|
2408 |
+
"repeats": 1,
|
2409 |
+
"should_decontaminate": false,
|
2410 |
+
"metadata": {
|
2411 |
+
"version": 0.0
|
2412 |
+
}
|
2413 |
+
},
|
2414 |
+
"mmlu_world_religions": {
|
2415 |
+
"task": "mmlu_world_religions",
|
2416 |
+
"task_alias": "world_religions",
|
2417 |
+
"group": "mmlu_humanities",
|
2418 |
+
"group_alias": "humanities",
|
2419 |
+
"dataset_path": "hails/mmlu_no_train",
|
2420 |
+
"dataset_name": "world_religions",
|
2421 |
+
"test_split": "test",
|
2422 |
+
"fewshot_split": "dev",
|
2423 |
+
"doc_to_text": "{{question.strip()}}\nA. {{choices[0]}}\nB. {{choices[1]}}\nC. {{choices[2]}}\nD. {{choices[3]}}\nAnswer:",
|
2424 |
+
"doc_to_target": "answer",
|
2425 |
+
"doc_to_choice": [
|
2426 |
+
"A",
|
2427 |
+
"B",
|
2428 |
+
"C",
|
2429 |
+
"D"
|
2430 |
+
],
|
2431 |
+
"description": "The following are multiple choice questions (with answers) about world religions.\n\n",
|
2432 |
+
"target_delimiter": " ",
|
2433 |
+
"fewshot_delimiter": "\n\n",
|
2434 |
+
"fewshot_config": {
|
2435 |
+
"sampler": "first_n"
|
2436 |
+
},
|
2437 |
+
"metric_list": [
|
2438 |
+
{
|
2439 |
+
"metric": "acc",
|
2440 |
+
"aggregation": "mean",
|
2441 |
+
"higher_is_better": true
|
2442 |
+
}
|
2443 |
+
],
|
2444 |
+
"output_type": "multiple_choice",
|
2445 |
+
"repeats": 1,
|
2446 |
+
"should_decontaminate": false,
|
2447 |
+
"metadata": {
|
2448 |
+
"version": 0.0
|
2449 |
+
}
|
2450 |
+
}
|
2451 |
+
},
|
2452 |
+
"versions": {
|
2453 |
+
"mmlu": "N/A",
|
2454 |
+
"mmlu_abstract_algebra": 0.0,
|
2455 |
+
"mmlu_anatomy": 0.0,
|
2456 |
+
"mmlu_astronomy": 0.0,
|
2457 |
+
"mmlu_business_ethics": 0.0,
|
2458 |
+
"mmlu_clinical_knowledge": 0.0,
|
2459 |
+
"mmlu_college_biology": 0.0,
|
2460 |
+
"mmlu_college_chemistry": 0.0,
|
2461 |
+
"mmlu_college_computer_science": 0.0,
|
2462 |
+
"mmlu_college_mathematics": 0.0,
|
2463 |
+
"mmlu_college_medicine": 0.0,
|
2464 |
+
"mmlu_college_physics": 0.0,
|
2465 |
+
"mmlu_computer_security": 0.0,
|
2466 |
+
"mmlu_conceptual_physics": 0.0,
|
2467 |
+
"mmlu_econometrics": 0.0,
|
2468 |
+
"mmlu_electrical_engineering": 0.0,
|
2469 |
+
"mmlu_elementary_mathematics": 0.0,
|
2470 |
+
"mmlu_formal_logic": 0.0,
|
2471 |
+
"mmlu_global_facts": 0.0,
|
2472 |
+
"mmlu_high_school_biology": 0.0,
|
2473 |
+
"mmlu_high_school_chemistry": 0.0,
|
2474 |
+
"mmlu_high_school_computer_science": 0.0,
|
2475 |
+
"mmlu_high_school_european_history": 0.0,
|
2476 |
+
"mmlu_high_school_geography": 0.0,
|
2477 |
+
"mmlu_high_school_government_and_politics": 0.0,
|
2478 |
+
"mmlu_high_school_macroeconomics": 0.0,
|
2479 |
+
"mmlu_high_school_mathematics": 0.0,
|
2480 |
+
"mmlu_high_school_microeconomics": 0.0,
|
2481 |
+
"mmlu_high_school_physics": 0.0,
|
2482 |
+
"mmlu_high_school_psychology": 0.0,
|
2483 |
+
"mmlu_high_school_statistics": 0.0,
|
2484 |
+
"mmlu_high_school_us_history": 0.0,
|
2485 |
+
"mmlu_high_school_world_history": 0.0,
|
2486 |
+
"mmlu_human_aging": 0.0,
|
2487 |
+
"mmlu_human_sexuality": 0.0,
|
2488 |
+
"mmlu_humanities": "N/A",
|
2489 |
+
"mmlu_international_law": 0.0,
|
2490 |
+
"mmlu_jurisprudence": 0.0,
|
2491 |
+
"mmlu_logical_fallacies": 0.0,
|
2492 |
+
"mmlu_machine_learning": 0.0,
|
2493 |
+
"mmlu_management": 0.0,
|
2494 |
+
"mmlu_marketing": 0.0,
|
2495 |
+
"mmlu_medical_genetics": 0.0,
|
2496 |
+
"mmlu_miscellaneous": 0.0,
|
2497 |
+
"mmlu_moral_disputes": 0.0,
|
2498 |
+
"mmlu_moral_scenarios": 0.0,
|
2499 |
+
"mmlu_nutrition": 0.0,
|
2500 |
+
"mmlu_other": "N/A",
|
2501 |
+
"mmlu_philosophy": 0.0,
|
2502 |
+
"mmlu_prehistory": 0.0,
|
2503 |
+
"mmlu_professional_accounting": 0.0,
|
2504 |
+
"mmlu_professional_law": 0.0,
|
2505 |
+
"mmlu_professional_medicine": 0.0,
|
2506 |
+
"mmlu_professional_psychology": 0.0,
|
2507 |
+
"mmlu_public_relations": 0.0,
|
2508 |
+
"mmlu_security_studies": 0.0,
|
2509 |
+
"mmlu_social_sciences": "N/A",
|
2510 |
+
"mmlu_sociology": 0.0,
|
2511 |
+
"mmlu_stem": "N/A",
|
2512 |
+
"mmlu_us_foreign_policy": 0.0,
|
2513 |
+
"mmlu_virology": 0.0,
|
2514 |
+
"mmlu_world_religions": 0.0
|
2515 |
+
},
|
2516 |
+
"n-shot": {
|
2517 |
+
"mmlu": 0,
|
2518 |
+
"mmlu_abstract_algebra": 0,
|
2519 |
+
"mmlu_anatomy": 0,
|
2520 |
+
"mmlu_astronomy": 0,
|
2521 |
+
"mmlu_business_ethics": 0,
|
2522 |
+
"mmlu_clinical_knowledge": 0,
|
2523 |
+
"mmlu_college_biology": 0,
|
2524 |
+
"mmlu_college_chemistry": 0,
|
2525 |
+
"mmlu_college_computer_science": 0,
|
2526 |
+
"mmlu_college_mathematics": 0,
|
2527 |
+
"mmlu_college_medicine": 0,
|
2528 |
+
"mmlu_college_physics": 0,
|
2529 |
+
"mmlu_computer_security": 0,
|
2530 |
+
"mmlu_conceptual_physics": 0,
|
2531 |
+
"mmlu_econometrics": 0,
|
2532 |
+
"mmlu_electrical_engineering": 0,
|
2533 |
+
"mmlu_elementary_mathematics": 0,
|
2534 |
+
"mmlu_formal_logic": 0,
|
2535 |
+
"mmlu_global_facts": 0,
|
2536 |
+
"mmlu_high_school_biology": 0,
|
2537 |
+
"mmlu_high_school_chemistry": 0,
|
2538 |
+
"mmlu_high_school_computer_science": 0,
|
2539 |
+
"mmlu_high_school_european_history": 0,
|
2540 |
+
"mmlu_high_school_geography": 0,
|
2541 |
+
"mmlu_high_school_government_and_politics": 0,
|
2542 |
+
"mmlu_high_school_macroeconomics": 0,
|
2543 |
+
"mmlu_high_school_mathematics": 0,
|
2544 |
+
"mmlu_high_school_microeconomics": 0,
|
2545 |
+
"mmlu_high_school_physics": 0,
|
2546 |
+
"mmlu_high_school_psychology": 0,
|
2547 |
+
"mmlu_high_school_statistics": 0,
|
2548 |
+
"mmlu_high_school_us_history": 0,
|
2549 |
+
"mmlu_high_school_world_history": 0,
|
2550 |
+
"mmlu_human_aging": 0,
|
2551 |
+
"mmlu_human_sexuality": 0,
|
2552 |
+
"mmlu_humanities": 0,
|
2553 |
+
"mmlu_international_law": 0,
|
2554 |
+
"mmlu_jurisprudence": 0,
|
2555 |
+
"mmlu_logical_fallacies": 0,
|
2556 |
+
"mmlu_machine_learning": 0,
|
2557 |
+
"mmlu_management": 0,
|
2558 |
+
"mmlu_marketing": 0,
|
2559 |
+
"mmlu_medical_genetics": 0,
|
2560 |
+
"mmlu_miscellaneous": 0,
|
2561 |
+
"mmlu_moral_disputes": 0,
|
2562 |
+
"mmlu_moral_scenarios": 0,
|
2563 |
+
"mmlu_nutrition": 0,
|
2564 |
+
"mmlu_other": 0,
|
2565 |
+
"mmlu_philosophy": 0,
|
2566 |
+
"mmlu_prehistory": 0,
|
2567 |
+
"mmlu_professional_accounting": 0,
|
2568 |
+
"mmlu_professional_law": 0,
|
2569 |
+
"mmlu_professional_medicine": 0,
|
2570 |
+
"mmlu_professional_psychology": 0,
|
2571 |
+
"mmlu_public_relations": 0,
|
2572 |
+
"mmlu_security_studies": 0,
|
2573 |
+
"mmlu_social_sciences": 0,
|
2574 |
+
"mmlu_sociology": 0,
|
2575 |
+
"mmlu_stem": 0,
|
2576 |
+
"mmlu_us_foreign_policy": 0,
|
2577 |
+
"mmlu_virology": 0,
|
2578 |
+
"mmlu_world_religions": 0
|
2579 |
+
},
|
2580 |
+
"config": {
|
2581 |
+
"model": "hf",
|
2582 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
2583 |
+
"batch_size": "auto",
|
2584 |
+
"batch_sizes": [
|
2585 |
+
32
|
2586 |
+
],
|
2587 |
+
"device": null,
|
2588 |
+
"use_cache": null,
|
2589 |
+
"limit": null,
|
2590 |
+
"bootstrap_iters": 100000,
|
2591 |
+
"gen_kwargs": null
|
2592 |
+
},
|
2593 |
+
"git_hash": "97a2520"
|
2594 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/mmlu/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83c3b31fe093289992cbf8f7a5e67b4c02c81c83b34895617eb638852f7df239
|
3 |
+
size 132421
|
lm-eval-output/m8than/Finch-14B-Final2/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:391d245d52e06f1fed302c2a0fef8cf42faa4c5c0ad59182983a83e41c68b351
|
3 |
+
size 74518
|
lm-eval-output/m8than/Finch-14B-Final2/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"openbookqa": {
|
4 |
+
"acc,none": 0.342,
|
5 |
+
"acc_stderr,none": 0.02123614719989926,
|
6 |
+
"acc_norm,none": 0.456,
|
7 |
+
"acc_norm_stderr,none": 0.022296238348407056,
|
8 |
+
"alias": "openbookqa"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"openbookqa": {
|
13 |
+
"task": "openbookqa",
|
14 |
+
"dataset_path": "openbookqa",
|
15 |
+
"dataset_name": "main",
|
16 |
+
"training_split": "train",
|
17 |
+
"validation_split": "validation",
|
18 |
+
"test_split": "test",
|
19 |
+
"doc_to_text": "question_stem",
|
20 |
+
"doc_to_target": "{{choices.label.index(answerKey.lstrip())}}",
|
21 |
+
"doc_to_choice": "{{choices.text}}",
|
22 |
+
"description": "",
|
23 |
+
"target_delimiter": " ",
|
24 |
+
"fewshot_delimiter": "\n\n",
|
25 |
+
"metric_list": [
|
26 |
+
{
|
27 |
+
"metric": "acc",
|
28 |
+
"aggregation": "mean",
|
29 |
+
"higher_is_better": true
|
30 |
+
},
|
31 |
+
{
|
32 |
+
"metric": "acc_norm",
|
33 |
+
"aggregation": "mean",
|
34 |
+
"higher_is_better": true
|
35 |
+
}
|
36 |
+
],
|
37 |
+
"output_type": "multiple_choice",
|
38 |
+
"repeats": 1,
|
39 |
+
"should_decontaminate": true,
|
40 |
+
"doc_to_decontamination_query": "question_stem",
|
41 |
+
"metadata": {
|
42 |
+
"version": 1.0
|
43 |
+
}
|
44 |
+
}
|
45 |
+
},
|
46 |
+
"versions": {
|
47 |
+
"openbookqa": 1.0
|
48 |
+
},
|
49 |
+
"n-shot": {
|
50 |
+
"openbookqa": 0
|
51 |
+
},
|
52 |
+
"config": {
|
53 |
+
"model": "hf",
|
54 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
55 |
+
"batch_size": "auto",
|
56 |
+
"batch_sizes": [
|
57 |
+
64
|
58 |
+
],
|
59 |
+
"device": null,
|
60 |
+
"use_cache": null,
|
61 |
+
"limit": null,
|
62 |
+
"bootstrap_iters": 100000,
|
63 |
+
"gen_kwargs": null
|
64 |
+
},
|
65 |
+
"git_hash": "97a2520"
|
66 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/openbookqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d520d6788b2e00fce1e44beef20dda1bdea9495bcf7a01d81b47bde82982d3e7
|
3 |
+
size 4391
|
lm-eval-output/m8than/Finch-14B-Final2/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b4e9e2335d7eef7ea9994cd306fd310d342d49d20a6babe6028156ba9ba5ec5
|
3 |
+
size 2118649
|
lm-eval-output/m8than/Finch-14B-Final2/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"pawsx": {
|
4 |
+
"acc,none": 0.4322857142857143,
|
5 |
+
"acc_stderr,none": 0.060629863136872464,
|
6 |
+
"alias": "pawsx"
|
7 |
+
},
|
8 |
+
"paws_de": {
|
9 |
+
"acc,none": 0.3965,
|
10 |
+
"acc_stderr,none": 0.010940919836258157,
|
11 |
+
"alias": " - paws_de"
|
12 |
+
},
|
13 |
+
"paws_en": {
|
14 |
+
"acc,none": 0.3265,
|
15 |
+
"acc_stderr,none": 0.010488273305862498,
|
16 |
+
"alias": " - paws_en"
|
17 |
+
},
|
18 |
+
"paws_es": {
|
19 |
+
"acc,none": 0.3585,
|
20 |
+
"acc_stderr,none": 0.010725968403790009,
|
21 |
+
"alias": " - paws_es"
|
22 |
+
},
|
23 |
+
"paws_fr": {
|
24 |
+
"acc,none": 0.5365,
|
25 |
+
"acc_stderr,none": 0.01115329875133434,
|
26 |
+
"alias": " - paws_fr"
|
27 |
+
},
|
28 |
+
"paws_ja": {
|
29 |
+
"acc,none": 0.538,
|
30 |
+
"acc_stderr,none": 0.011150792352341666,
|
31 |
+
"alias": " - paws_ja"
|
32 |
+
},
|
33 |
+
"paws_ko": {
|
34 |
+
"acc,none": 0.434,
|
35 |
+
"acc_stderr,none": 0.011085280407858918,
|
36 |
+
"alias": " - paws_ko"
|
37 |
+
},
|
38 |
+
"paws_zh": {
|
39 |
+
"acc,none": 0.436,
|
40 |
+
"acc_stderr,none": 0.011091145421162655,
|
41 |
+
"alias": " - paws_zh"
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"groups": {
|
45 |
+
"pawsx": {
|
46 |
+
"acc,none": 0.4322857142857143,
|
47 |
+
"acc_stderr,none": 0.060629863136872464,
|
48 |
+
"alias": "pawsx"
|
49 |
+
}
|
50 |
+
},
|
51 |
+
"configs": {
|
52 |
+
"paws_de": {
|
53 |
+
"task": "paws_de",
|
54 |
+
"group": "pawsx",
|
55 |
+
"dataset_path": "paws-x",
|
56 |
+
"dataset_name": "de",
|
57 |
+
"training_split": "train",
|
58 |
+
"validation_split": "validation",
|
59 |
+
"test_split": "test",
|
60 |
+
"doc_to_text": "",
|
61 |
+
"doc_to_target": "label",
|
62 |
+
"doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}",
|
63 |
+
"description": "",
|
64 |
+
"target_delimiter": " ",
|
65 |
+
"fewshot_delimiter": "\n\n",
|
66 |
+
"metric_list": [
|
67 |
+
{
|
68 |
+
"metric": "acc",
|
69 |
+
"aggregation": "mean",
|
70 |
+
"higher_is_better": true
|
71 |
+
}
|
72 |
+
],
|
73 |
+
"output_type": "multiple_choice",
|
74 |
+
"repeats": 1,
|
75 |
+
"should_decontaminate": false,
|
76 |
+
"metadata": {
|
77 |
+
"version": 0.0
|
78 |
+
}
|
79 |
+
},
|
80 |
+
"paws_en": {
|
81 |
+
"task": "paws_en",
|
82 |
+
"group": "pawsx",
|
83 |
+
"dataset_path": "paws-x",
|
84 |
+
"dataset_name": "en",
|
85 |
+
"training_split": "train",
|
86 |
+
"validation_split": "validation",
|
87 |
+
"test_split": "test",
|
88 |
+
"doc_to_text": "",
|
89 |
+
"doc_to_target": "label",
|
90 |
+
"doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}",
|
91 |
+
"description": "",
|
92 |
+
"target_delimiter": " ",
|
93 |
+
"fewshot_delimiter": "\n\n",
|
94 |
+
"metric_list": [
|
95 |
+
{
|
96 |
+
"metric": "acc",
|
97 |
+
"aggregation": "mean",
|
98 |
+
"higher_is_better": true
|
99 |
+
}
|
100 |
+
],
|
101 |
+
"output_type": "multiple_choice",
|
102 |
+
"repeats": 1,
|
103 |
+
"should_decontaminate": false,
|
104 |
+
"metadata": {
|
105 |
+
"version": 0.0
|
106 |
+
}
|
107 |
+
},
|
108 |
+
"paws_es": {
|
109 |
+
"task": "paws_es",
|
110 |
+
"group": "pawsx",
|
111 |
+
"dataset_path": "paws-x",
|
112 |
+
"dataset_name": "es",
|
113 |
+
"training_split": "train",
|
114 |
+
"validation_split": "validation",
|
115 |
+
"test_split": "test",
|
116 |
+
"doc_to_text": "",
|
117 |
+
"doc_to_target": "label",
|
118 |
+
"doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}",
|
119 |
+
"description": "",
|
120 |
+
"target_delimiter": " ",
|
121 |
+
"fewshot_delimiter": "\n\n",
|
122 |
+
"metric_list": [
|
123 |
+
{
|
124 |
+
"metric": "acc",
|
125 |
+
"aggregation": "mean",
|
126 |
+
"higher_is_better": true
|
127 |
+
}
|
128 |
+
],
|
129 |
+
"output_type": "multiple_choice",
|
130 |
+
"repeats": 1,
|
131 |
+
"should_decontaminate": false,
|
132 |
+
"metadata": {
|
133 |
+
"version": 0.0
|
134 |
+
}
|
135 |
+
},
|
136 |
+
"paws_fr": {
|
137 |
+
"task": "paws_fr",
|
138 |
+
"group": "pawsx",
|
139 |
+
"dataset_path": "paws-x",
|
140 |
+
"dataset_name": "fr",
|
141 |
+
"training_split": "train",
|
142 |
+
"validation_split": "validation",
|
143 |
+
"test_split": "test",
|
144 |
+
"doc_to_text": "",
|
145 |
+
"doc_to_target": "label",
|
146 |
+
"doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}",
|
147 |
+
"description": "",
|
148 |
+
"target_delimiter": " ",
|
149 |
+
"fewshot_delimiter": "\n\n",
|
150 |
+
"metric_list": [
|
151 |
+
{
|
152 |
+
"metric": "acc",
|
153 |
+
"aggregation": "mean",
|
154 |
+
"higher_is_better": true
|
155 |
+
}
|
156 |
+
],
|
157 |
+
"output_type": "multiple_choice",
|
158 |
+
"repeats": 1,
|
159 |
+
"should_decontaminate": false,
|
160 |
+
"metadata": {
|
161 |
+
"version": 0.0
|
162 |
+
}
|
163 |
+
},
|
164 |
+
"paws_ja": {
|
165 |
+
"task": "paws_ja",
|
166 |
+
"group": "pawsx",
|
167 |
+
"dataset_path": "paws-x",
|
168 |
+
"dataset_name": "ja",
|
169 |
+
"training_split": "train",
|
170 |
+
"validation_split": "validation",
|
171 |
+
"test_split": "test",
|
172 |
+
"doc_to_text": "",
|
173 |
+
"doc_to_target": "label",
|
174 |
+
"doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}",
|
175 |
+
"description": "",
|
176 |
+
"target_delimiter": " ",
|
177 |
+
"fewshot_delimiter": "\n\n",
|
178 |
+
"metric_list": [
|
179 |
+
{
|
180 |
+
"metric": "acc",
|
181 |
+
"aggregation": "mean",
|
182 |
+
"higher_is_better": true
|
183 |
+
}
|
184 |
+
],
|
185 |
+
"output_type": "multiple_choice",
|
186 |
+
"repeats": 1,
|
187 |
+
"should_decontaminate": false,
|
188 |
+
"metadata": {
|
189 |
+
"version": 0.0
|
190 |
+
}
|
191 |
+
},
|
192 |
+
"paws_ko": {
|
193 |
+
"task": "paws_ko",
|
194 |
+
"group": "pawsx",
|
195 |
+
"dataset_path": "paws-x",
|
196 |
+
"dataset_name": "ko",
|
197 |
+
"training_split": "train",
|
198 |
+
"validation_split": "validation",
|
199 |
+
"test_split": "test",
|
200 |
+
"doc_to_text": "",
|
201 |
+
"doc_to_target": "label",
|
202 |
+
"doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}",
|
203 |
+
"description": "",
|
204 |
+
"target_delimiter": " ",
|
205 |
+
"fewshot_delimiter": "\n\n",
|
206 |
+
"metric_list": [
|
207 |
+
{
|
208 |
+
"metric": "acc",
|
209 |
+
"aggregation": "mean",
|
210 |
+
"higher_is_better": true
|
211 |
+
}
|
212 |
+
],
|
213 |
+
"output_type": "multiple_choice",
|
214 |
+
"repeats": 1,
|
215 |
+
"should_decontaminate": false,
|
216 |
+
"metadata": {
|
217 |
+
"version": 0.0
|
218 |
+
}
|
219 |
+
},
|
220 |
+
"paws_zh": {
|
221 |
+
"task": "paws_zh",
|
222 |
+
"group": "pawsx",
|
223 |
+
"dataset_path": "paws-x",
|
224 |
+
"dataset_name": "zh",
|
225 |
+
"training_split": "train",
|
226 |
+
"validation_split": "validation",
|
227 |
+
"test_split": "test",
|
228 |
+
"doc_to_text": "",
|
229 |
+
"doc_to_target": "label",
|
230 |
+
"doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}",
|
231 |
+
"description": "",
|
232 |
+
"target_delimiter": " ",
|
233 |
+
"fewshot_delimiter": "\n\n",
|
234 |
+
"metric_list": [
|
235 |
+
{
|
236 |
+
"metric": "acc",
|
237 |
+
"aggregation": "mean",
|
238 |
+
"higher_is_better": true
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"output_type": "multiple_choice",
|
242 |
+
"repeats": 1,
|
243 |
+
"should_decontaminate": false,
|
244 |
+
"metadata": {
|
245 |
+
"version": 0.0
|
246 |
+
}
|
247 |
+
}
|
248 |
+
},
|
249 |
+
"versions": {
|
250 |
+
"paws_de": 0.0,
|
251 |
+
"paws_en": 0.0,
|
252 |
+
"paws_es": 0.0,
|
253 |
+
"paws_fr": 0.0,
|
254 |
+
"paws_ja": 0.0,
|
255 |
+
"paws_ko": 0.0,
|
256 |
+
"paws_zh": 0.0,
|
257 |
+
"pawsx": "N/A"
|
258 |
+
},
|
259 |
+
"n-shot": {
|
260 |
+
"paws_de": 0,
|
261 |
+
"paws_en": 0,
|
262 |
+
"paws_es": 0,
|
263 |
+
"paws_fr": 0,
|
264 |
+
"paws_ja": 0,
|
265 |
+
"paws_ko": 0,
|
266 |
+
"paws_zh": 0,
|
267 |
+
"pawsx": 0
|
268 |
+
},
|
269 |
+
"config": {
|
270 |
+
"model": "hf",
|
271 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
272 |
+
"batch_size": "auto",
|
273 |
+
"batch_sizes": [
|
274 |
+
64
|
275 |
+
],
|
276 |
+
"device": null,
|
277 |
+
"use_cache": null,
|
278 |
+
"limit": null,
|
279 |
+
"bootstrap_iters": 100000,
|
280 |
+
"gen_kwargs": null
|
281 |
+
},
|
282 |
+
"git_hash": "97a2520"
|
283 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7fc45f89087ff623130e02dd0f01bc14d437e67e4637a60ab1b5cfaf2a623286
|
3 |
+
size 41855
|
lm-eval-output/m8than/Finch-14B-Final2/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4cc633bd2d172d3fac5410d3fcca9e333de372478fb78e7ec9b9429a55800e1c
|
3 |
+
size 238745
|
lm-eval-output/m8than/Finch-14B-Final2/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"piqa": {
|
4 |
+
"acc,none": 0.8019586507072906,
|
5 |
+
"acc_stderr,none": 0.009298209954776725,
|
6 |
+
"acc_norm,none": 0.8106637649619152,
|
7 |
+
"acc_norm_stderr,none": 0.009140767676615019,
|
8 |
+
"alias": "piqa"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"piqa": {
|
13 |
+
"task": "piqa",
|
14 |
+
"dataset_path": "piqa",
|
15 |
+
"training_split": "train",
|
16 |
+
"validation_split": "validation",
|
17 |
+
"doc_to_text": "Question: {{goal}}\nAnswer:",
|
18 |
+
"doc_to_target": "label",
|
19 |
+
"doc_to_choice": "{{[sol1, sol2]}}",
|
20 |
+
"description": "",
|
21 |
+
"target_delimiter": " ",
|
22 |
+
"fewshot_delimiter": "\n\n",
|
23 |
+
"metric_list": [
|
24 |
+
{
|
25 |
+
"metric": "acc",
|
26 |
+
"aggregation": "mean",
|
27 |
+
"higher_is_better": true
|
28 |
+
},
|
29 |
+
{
|
30 |
+
"metric": "acc_norm",
|
31 |
+
"aggregation": "mean",
|
32 |
+
"higher_is_better": true
|
33 |
+
}
|
34 |
+
],
|
35 |
+
"output_type": "multiple_choice",
|
36 |
+
"repeats": 1,
|
37 |
+
"should_decontaminate": true,
|
38 |
+
"doc_to_decontamination_query": "goal",
|
39 |
+
"metadata": {
|
40 |
+
"version": 1.0
|
41 |
+
}
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"versions": {
|
45 |
+
"piqa": 1.0
|
46 |
+
},
|
47 |
+
"n-shot": {
|
48 |
+
"piqa": 0
|
49 |
+
},
|
50 |
+
"config": {
|
51 |
+
"model": "hf",
|
52 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
53 |
+
"batch_size": "auto",
|
54 |
+
"batch_sizes": [
|
55 |
+
64
|
56 |
+
],
|
57 |
+
"device": null,
|
58 |
+
"use_cache": null,
|
59 |
+
"limit": null,
|
60 |
+
"bootstrap_iters": 100000,
|
61 |
+
"gen_kwargs": null
|
62 |
+
},
|
63 |
+
"git_hash": "97a2520"
|
64 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/piqa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f667a99cf1221654ecb656d6d64ad7974d004eda7ba4723570a9ead2f60540f6
|
3 |
+
size 6470
|
lm-eval-output/m8than/Finch-14B-Final2/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30c8c48fbb914622210c610047bae403331c04336041449a858141e513a63ee0
|
3 |
+
size 11911528
|
lm-eval-output/m8than/Finch-14B-Final2/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
lm-eval-output/m8than/Finch-14B-Final2/pythia/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa29a821d7e1ddc01584cb5d0a8472c64f922149c828b0d8e69952a6000b0c00
|
3 |
+
size 548273
|
lm-eval-output/m8than/Finch-14B-Final2/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:801d6219d9944d9fc68d729a83bf4cbba03eeeb61d4b1debd010e30d136d4f64
|
3 |
+
size 8973792
|
lm-eval-output/m8than/Finch-14B-Final2/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"record": {
|
4 |
+
"f1,none": 0.2756199999999998,
|
5 |
+
"f1_stderr,none": 0.004432690904754269,
|
6 |
+
"em,none": 0.2666,
|
7 |
+
"em_stderr,none": 0.004422035666969035,
|
8 |
+
"alias": "record"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"record": {
|
13 |
+
"task": "record",
|
14 |
+
"group": [
|
15 |
+
"super-glue-lm-eval-v1"
|
16 |
+
],
|
17 |
+
"dataset_path": "super_glue",
|
18 |
+
"dataset_name": "record",
|
19 |
+
"training_split": "train",
|
20 |
+
"validation_split": "validation",
|
21 |
+
"doc_to_text": "def doc_to_text(doc):\n initial_text, *highlights = doc[\"passage\"].strip().split(\"\\n@highlight\\n\")\n text = initial_text + \"\\n\\n\"\n for highlight in highlights:\n text += f\" - {highlight}.\\n\"\n return text\n",
|
22 |
+
"doc_to_target": "{{answers}}",
|
23 |
+
"doc_to_choice": "{{entities}}",
|
24 |
+
"process_results": "def process_results(doc, results):\n # ReCoRD's evaluation is actually deceptively simple:\n # - Pick the maximum likelihood prediction entity\n # - Evaluate the accuracy and token F1 PER EXAMPLE\n # - Average over all examples\n max_idx = np.argmax(np.array([result[0] for result in results]))\n\n prediction = doc[\"entities\"][max_idx]\n gold_label_set = doc[\"answers\"]\n f1 = metric_max_over_ground_truths(\n squad_metrics.compute_f1, prediction, gold_label_set\n )\n em = metric_max_over_ground_truths(\n squad_metrics.compute_exact, prediction, gold_label_set\n )\n\n return {\n \"f1\": f1,\n \"em\": em,\n }\n",
|
25 |
+
"description": "",
|
26 |
+
"target_delimiter": " ",
|
27 |
+
"fewshot_delimiter": "\n\n",
|
28 |
+
"metric_list": [
|
29 |
+
{
|
30 |
+
"metric": "f1",
|
31 |
+
"aggregation": "mean"
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"metric": "em",
|
35 |
+
"higher_is_better": true,
|
36 |
+
"aggregation": "mean"
|
37 |
+
}
|
38 |
+
],
|
39 |
+
"output_type": "multiple_choice",
|
40 |
+
"repeats": 1,
|
41 |
+
"should_decontaminate": false,
|
42 |
+
"metadata": {
|
43 |
+
"version": 1.0
|
44 |
+
}
|
45 |
+
}
|
46 |
+
},
|
47 |
+
"versions": {
|
48 |
+
"record": 1.0
|
49 |
+
},
|
50 |
+
"n-shot": {
|
51 |
+
"record": 0
|
52 |
+
},
|
53 |
+
"config": {
|
54 |
+
"model": "hf",
|
55 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
56 |
+
"batch_size": "auto",
|
57 |
+
"batch_sizes": [
|
58 |
+
32
|
59 |
+
],
|
60 |
+
"device": null,
|
61 |
+
"use_cache": null,
|
62 |
+
"limit": null,
|
63 |
+
"bootstrap_iters": 100000,
|
64 |
+
"gen_kwargs": null
|
65 |
+
},
|
66 |
+
"git_hash": "97a2520"
|
67 |
+
}
|
lm-eval-output/m8than/Finch-14B-Final2/record/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c757d69aada04ae508835d6eb5318bbfd497b44ffab81adfae70c1c5bee1afc6
|
3 |
+
size 274371
|
lm-eval-output/m8than/Finch-14B-Final2/sciq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f4849f5bafb7d2c219af8d34ae3f1e8f6a6ac5b09328f5fb0e5dabb23097fadf
|
3 |
+
size 334799
|
lm-eval-output/m8than/Finch-14B-Final2/sciq/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"results": {
|
3 |
+
"sciq": {
|
4 |
+
"acc,none": 0.934,
|
5 |
+
"acc_stderr,none": 0.007855297938697589,
|
6 |
+
"acc_norm,none": 0.932,
|
7 |
+
"acc_norm_stderr,none": 0.007964887911291603,
|
8 |
+
"alias": "sciq"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"configs": {
|
12 |
+
"sciq": {
|
13 |
+
"task": "sciq",
|
14 |
+
"dataset_path": "sciq",
|
15 |
+
"training_split": "train",
|
16 |
+
"validation_split": "validation",
|
17 |
+
"test_split": "test",
|
18 |
+
"doc_to_text": "{{support.lstrip()}}\nQuestion: {{question}}\nAnswer:",
|
19 |
+
"doc_to_target": 3,
|
20 |
+
"doc_to_choice": "{{[distractor1, distractor2, distractor3, correct_answer]}}",
|
21 |
+
"description": "",
|
22 |
+
"target_delimiter": " ",
|
23 |
+
"fewshot_delimiter": "\n\n",
|
24 |
+
"metric_list": [
|
25 |
+
{
|
26 |
+
"metric": "acc",
|
27 |
+
"aggregation": "mean",
|
28 |
+
"higher_is_better": true
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"metric": "acc_norm",
|
32 |
+
"aggregation": "mean",
|
33 |
+
"higher_is_better": true
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"output_type": "multiple_choice",
|
37 |
+
"repeats": 1,
|
38 |
+
"should_decontaminate": true,
|
39 |
+
"doc_to_decontamination_query": "{{support}} {{question}}",
|
40 |
+
"metadata": {
|
41 |
+
"version": 1.0
|
42 |
+
}
|
43 |
+
}
|
44 |
+
},
|
45 |
+
"versions": {
|
46 |
+
"sciq": 1.0
|
47 |
+
},
|
48 |
+
"n-shot": {
|
49 |
+
"sciq": 0
|
50 |
+
},
|
51 |
+
"config": {
|
52 |
+
"model": "hf",
|
53 |
+
"model_args": "pretrained=m8than/Finch-14B-Final2,dtype=bfloat16,trust_remote_code=True",
|
54 |
+
"batch_size": "auto",
|
55 |
+
"batch_sizes": [
|
56 |
+
64
|
57 |
+
],
|
58 |
+
"device": null,
|
59 |
+
"use_cache": null,
|
60 |
+
"limit": null,
|
61 |
+
"bootstrap_iters": 100000,
|
62 |
+
"gen_kwargs": null
|
63 |
+
},
|
64 |
+
"git_hash": "97a2520"
|
65 |
+
}
|