picocreator commited on
Commit
425b411
·
1 Parent(s): ce1db6c

llama 7b (v1)

Browse files
Files changed (18) hide show
  1. lm-eval-output/huggyllama/llama-7b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  2. lm-eval-output/huggyllama/llama-7b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +252 -0
  3. lm-eval-output/huggyllama/llama-7b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  4. lm-eval-output/huggyllama/llama-7b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  5. lm-eval-output/huggyllama/llama-7b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +283 -0
  6. lm-eval-output/huggyllama/llama-7b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  7. lm-eval-output/huggyllama/llama-7b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  8. lm-eval-output/huggyllama/llama-7b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +390 -0
  9. lm-eval-output/huggyllama/llama-7b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  10. lm-eval-output/huggyllama/llama-7b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  11. lm-eval-output/huggyllama/llama-7b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +548 -0
  12. lm-eval-output/huggyllama/llama-7b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  13. lm-eval-output/huggyllama/llama-7b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  14. lm-eval-output/huggyllama/llama-7b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +423 -0
  15. lm-eval-output/huggyllama/llama-7b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
  16. lm-eval-output/huggyllama/llama-7b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz +3 -0
  17. lm-eval-output/huggyllama/llama-7b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json +248 -0
  18. lm-eval-output/huggyllama/llama-7b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log +3 -0
lm-eval-output/huggyllama/llama-7b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b93c4e0fb038c10d2cf39827b6149ac80ae356d0047adb9508e708825de9b461
3
+ size 5549153
lm-eval-output/huggyllama/llama-7b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "lambada_multilingual": {
4
+ "perplexity,none": 34.70618327212021,
5
+ "perplexity_stderr,none": 10.13400692835123,
6
+ "acc,none": 0.4961769842810014,
7
+ "acc_stderr,none": 0.07008621640376027,
8
+ "alias": "lambada_multilingual"
9
+ },
10
+ "lambada_openai_mt_de": {
11
+ "perplexity,none": 52.1774210359345,
12
+ "perplexity_stderr,none": 3.066701318008749,
13
+ "acc,none": 0.3842421890161071,
14
+ "acc_stderr,none": 0.006776720307079438,
15
+ "alias": " - lambada_openai_mt_de"
16
+ },
17
+ "lambada_openai_mt_en": {
18
+ "perplexity,none": 3.500850622734743,
19
+ "perplexity_stderr,none": 0.06865018892342145,
20
+ "acc,none": 0.7308364059771008,
21
+ "acc_stderr,none": 0.006179172491966779,
22
+ "alias": " - lambada_openai_mt_en"
23
+ },
24
+ "lambada_openai_mt_es": {
25
+ "perplexity,none": 44.71228931610228,
26
+ "perplexity_stderr,none": 2.3667778615446906,
27
+ "acc,none": 0.42751795070832527,
28
+ "acc_stderr,none": 0.0068923954478686475,
29
+ "alias": " - lambada_openai_mt_es"
30
+ },
31
+ "lambada_openai_mt_fr": {
32
+ "perplexity,none": 30.92265081458904,
33
+ "perplexity_stderr,none": 1.6736871487566927,
34
+ "acc,none": 0.4818552299631283,
35
+ "acc_stderr,none": 0.006961389291072816,
36
+ "alias": " - lambada_openai_mt_fr"
37
+ },
38
+ "lambada_openai_mt_it": {
39
+ "perplexity,none": 42.21770457124047,
40
+ "perplexity_stderr,none": 2.4716268498273224,
41
+ "acc,none": 0.45643314574034544,
42
+ "acc_stderr,none": 0.0069394834360396295,
43
+ "alias": " - lambada_openai_mt_it"
44
+ }
45
+ },
46
+ "groups": {
47
+ "lambada_multilingual": {
48
+ "perplexity,none": 34.70618327212021,
49
+ "perplexity_stderr,none": 10.13400692835123,
50
+ "acc,none": 0.4961769842810014,
51
+ "acc_stderr,none": 0.07008621640376027,
52
+ "alias": "lambada_multilingual"
53
+ }
54
+ },
55
+ "configs": {
56
+ "lambada_openai_mt_de": {
57
+ "task": "lambada_openai_mt_de",
58
+ "group": [
59
+ "lambada_multilingual"
60
+ ],
61
+ "dataset_path": "EleutherAI/lambada_openai",
62
+ "dataset_name": "de",
63
+ "test_split": "test",
64
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
65
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
66
+ "description": "",
67
+ "target_delimiter": " ",
68
+ "fewshot_delimiter": "\n\n",
69
+ "metric_list": [
70
+ {
71
+ "metric": "perplexity",
72
+ "aggregation": "perplexity",
73
+ "higher_is_better": false
74
+ },
75
+ {
76
+ "metric": "acc",
77
+ "aggregation": "mean",
78
+ "higher_is_better": true
79
+ }
80
+ ],
81
+ "output_type": "loglikelihood",
82
+ "repeats": 1,
83
+ "should_decontaminate": true,
84
+ "doc_to_decontamination_query": "{{text}}",
85
+ "metadata": {
86
+ "version": 1.0
87
+ }
88
+ },
89
+ "lambada_openai_mt_en": {
90
+ "task": "lambada_openai_mt_en",
91
+ "group": [
92
+ "lambada_multilingual"
93
+ ],
94
+ "dataset_path": "EleutherAI/lambada_openai",
95
+ "dataset_name": "en",
96
+ "test_split": "test",
97
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
98
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
99
+ "description": "",
100
+ "target_delimiter": " ",
101
+ "fewshot_delimiter": "\n\n",
102
+ "metric_list": [
103
+ {
104
+ "metric": "perplexity",
105
+ "aggregation": "perplexity",
106
+ "higher_is_better": false
107
+ },
108
+ {
109
+ "metric": "acc",
110
+ "aggregation": "mean",
111
+ "higher_is_better": true
112
+ }
113
+ ],
114
+ "output_type": "loglikelihood",
115
+ "repeats": 1,
116
+ "should_decontaminate": true,
117
+ "doc_to_decontamination_query": "{{text}}",
118
+ "metadata": {
119
+ "version": 1.0
120
+ }
121
+ },
122
+ "lambada_openai_mt_es": {
123
+ "task": "lambada_openai_mt_es",
124
+ "group": [
125
+ "lambada_multilingual"
126
+ ],
127
+ "dataset_path": "EleutherAI/lambada_openai",
128
+ "dataset_name": "es",
129
+ "test_split": "test",
130
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
131
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
132
+ "description": "",
133
+ "target_delimiter": " ",
134
+ "fewshot_delimiter": "\n\n",
135
+ "metric_list": [
136
+ {
137
+ "metric": "perplexity",
138
+ "aggregation": "perplexity",
139
+ "higher_is_better": false
140
+ },
141
+ {
142
+ "metric": "acc",
143
+ "aggregation": "mean",
144
+ "higher_is_better": true
145
+ }
146
+ ],
147
+ "output_type": "loglikelihood",
148
+ "repeats": 1,
149
+ "should_decontaminate": true,
150
+ "doc_to_decontamination_query": "{{text}}",
151
+ "metadata": {
152
+ "version": 1.0
153
+ }
154
+ },
155
+ "lambada_openai_mt_fr": {
156
+ "task": "lambada_openai_mt_fr",
157
+ "group": [
158
+ "lambada_multilingual"
159
+ ],
160
+ "dataset_path": "EleutherAI/lambada_openai",
161
+ "dataset_name": "fr",
162
+ "test_split": "test",
163
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
164
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
165
+ "description": "",
166
+ "target_delimiter": " ",
167
+ "fewshot_delimiter": "\n\n",
168
+ "metric_list": [
169
+ {
170
+ "metric": "perplexity",
171
+ "aggregation": "perplexity",
172
+ "higher_is_better": false
173
+ },
174
+ {
175
+ "metric": "acc",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "loglikelihood",
181
+ "repeats": 1,
182
+ "should_decontaminate": true,
183
+ "doc_to_decontamination_query": "{{text}}",
184
+ "metadata": {
185
+ "version": 1.0
186
+ }
187
+ },
188
+ "lambada_openai_mt_it": {
189
+ "task": "lambada_openai_mt_it",
190
+ "group": [
191
+ "lambada_multilingual"
192
+ ],
193
+ "dataset_path": "EleutherAI/lambada_openai",
194
+ "dataset_name": "it",
195
+ "test_split": "test",
196
+ "doc_to_text": "{{text.split(' ')[:-1]|join(' ')}}",
197
+ "doc_to_target": "{{' '+text.split(' ')[-1]}}",
198
+ "description": "",
199
+ "target_delimiter": " ",
200
+ "fewshot_delimiter": "\n\n",
201
+ "metric_list": [
202
+ {
203
+ "metric": "perplexity",
204
+ "aggregation": "perplexity",
205
+ "higher_is_better": false
206
+ },
207
+ {
208
+ "metric": "acc",
209
+ "aggregation": "mean",
210
+ "higher_is_better": true
211
+ }
212
+ ],
213
+ "output_type": "loglikelihood",
214
+ "repeats": 1,
215
+ "should_decontaminate": true,
216
+ "doc_to_decontamination_query": "{{text}}",
217
+ "metadata": {
218
+ "version": 1.0
219
+ }
220
+ }
221
+ },
222
+ "versions": {
223
+ "lambada_multilingual": "N/A",
224
+ "lambada_openai_mt_de": 1.0,
225
+ "lambada_openai_mt_en": 1.0,
226
+ "lambada_openai_mt_es": 1.0,
227
+ "lambada_openai_mt_fr": 1.0,
228
+ "lambada_openai_mt_it": 1.0
229
+ },
230
+ "n-shot": {
231
+ "lambada_multilingual": 0,
232
+ "lambada_openai_mt_de": 0,
233
+ "lambada_openai_mt_en": 0,
234
+ "lambada_openai_mt_es": 0,
235
+ "lambada_openai_mt_fr": 0,
236
+ "lambada_openai_mt_it": 0
237
+ },
238
+ "config": {
239
+ "model": "hf",
240
+ "model_args": "pretrained=huggyllama/llama-7b,dtype=bfloat16,trust_remote_code=True",
241
+ "batch_size": "auto",
242
+ "batch_sizes": [
243
+ 32
244
+ ],
245
+ "device": null,
246
+ "use_cache": null,
247
+ "limit": null,
248
+ "bootstrap_iters": 100000,
249
+ "gen_kwargs": null
250
+ },
251
+ "git_hash": "9b1cd24"
252
+ }
lm-eval-output/huggyllama/llama-7b/lambada_multilingual/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b57212ed1c8fe8ebcf0e72e4b4b7f53ccc5568de4d2dc00307b4357f22419de1
3
+ size 114496
lm-eval-output/huggyllama/llama-7b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1c638a150077d635d91db5d86f0fddeb34a256051c1ac91bd5344a6590f69bb
3
+ size 2404891
lm-eval-output/huggyllama/llama-7b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,283 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "pawsx": {
4
+ "acc,none": 0.44671428571428573,
5
+ "acc_stderr,none": 0.05195047972137848,
6
+ "alias": "pawsx"
7
+ },
8
+ "paws_de": {
9
+ "acc,none": 0.4075,
10
+ "acc_stderr,none": 0.010990098549743105,
11
+ "alias": " - paws_de"
12
+ },
13
+ "paws_en": {
14
+ "acc,none": 0.3345,
15
+ "acc_stderr,none": 0.010552751076266157,
16
+ "alias": " - paws_en"
17
+ },
18
+ "paws_es": {
19
+ "acc,none": 0.398,
20
+ "acc_stderr,none": 0.010947964603728239,
21
+ "alias": " - paws_es"
22
+ },
23
+ "paws_fr": {
24
+ "acc,none": 0.517,
25
+ "acc_stderr,none": 0.01117667029931067,
26
+ "alias": " - paws_fr"
27
+ },
28
+ "paws_ja": {
29
+ "acc,none": 0.441,
30
+ "acc_stderr,none": 0.011105006104468736,
31
+ "alias": " - paws_ja"
32
+ },
33
+ "paws_ko": {
34
+ "acc,none": 0.5085,
35
+ "acc_stderr,none": 0.011181519941139164,
36
+ "alias": " - paws_ko"
37
+ },
38
+ "paws_zh": {
39
+ "acc,none": 0.5205,
40
+ "acc_stderr,none": 0.011173732641806813,
41
+ "alias": " - paws_zh"
42
+ }
43
+ },
44
+ "groups": {
45
+ "pawsx": {
46
+ "acc,none": 0.44671428571428573,
47
+ "acc_stderr,none": 0.05195047972137848,
48
+ "alias": "pawsx"
49
+ }
50
+ },
51
+ "configs": {
52
+ "paws_de": {
53
+ "task": "paws_de",
54
+ "group": "pawsx",
55
+ "dataset_path": "paws-x",
56
+ "dataset_name": "de",
57
+ "training_split": "train",
58
+ "validation_split": "validation",
59
+ "test_split": "test",
60
+ "doc_to_text": "",
61
+ "doc_to_target": "label",
62
+ "doc_to_choice": "{{[sentence1+\", richtig? Ja, \"+sentence2, sentence1+\", richtig? Nein, \"+sentence2]}}",
63
+ "description": "",
64
+ "target_delimiter": " ",
65
+ "fewshot_delimiter": "\n\n",
66
+ "metric_list": [
67
+ {
68
+ "metric": "acc",
69
+ "aggregation": "mean",
70
+ "higher_is_better": true
71
+ }
72
+ ],
73
+ "output_type": "multiple_choice",
74
+ "repeats": 1,
75
+ "should_decontaminate": false,
76
+ "metadata": {
77
+ "version": 0.0
78
+ }
79
+ },
80
+ "paws_en": {
81
+ "task": "paws_en",
82
+ "group": "pawsx",
83
+ "dataset_path": "paws-x",
84
+ "dataset_name": "en",
85
+ "training_split": "train",
86
+ "validation_split": "validation",
87
+ "test_split": "test",
88
+ "doc_to_text": "",
89
+ "doc_to_target": "label",
90
+ "doc_to_choice": "{{[sentence1+\", right? Yes, \"+sentence2, sentence1+\", right? No, \"+sentence2]}}",
91
+ "description": "",
92
+ "target_delimiter": " ",
93
+ "fewshot_delimiter": "\n\n",
94
+ "metric_list": [
95
+ {
96
+ "metric": "acc",
97
+ "aggregation": "mean",
98
+ "higher_is_better": true
99
+ }
100
+ ],
101
+ "output_type": "multiple_choice",
102
+ "repeats": 1,
103
+ "should_decontaminate": false,
104
+ "metadata": {
105
+ "version": 0.0
106
+ }
107
+ },
108
+ "paws_es": {
109
+ "task": "paws_es",
110
+ "group": "pawsx",
111
+ "dataset_path": "paws-x",
112
+ "dataset_name": "es",
113
+ "training_split": "train",
114
+ "validation_split": "validation",
115
+ "test_split": "test",
116
+ "doc_to_text": "",
117
+ "doc_to_target": "label",
118
+ "doc_to_choice": "{{[sentence1+\", verdad? Sí, \"+sentence2, sentence1+\", verdad? No, \"+sentence2]}}",
119
+ "description": "",
120
+ "target_delimiter": " ",
121
+ "fewshot_delimiter": "\n\n",
122
+ "metric_list": [
123
+ {
124
+ "metric": "acc",
125
+ "aggregation": "mean",
126
+ "higher_is_better": true
127
+ }
128
+ ],
129
+ "output_type": "multiple_choice",
130
+ "repeats": 1,
131
+ "should_decontaminate": false,
132
+ "metadata": {
133
+ "version": 0.0
134
+ }
135
+ },
136
+ "paws_fr": {
137
+ "task": "paws_fr",
138
+ "group": "pawsx",
139
+ "dataset_path": "paws-x",
140
+ "dataset_name": "fr",
141
+ "training_split": "train",
142
+ "validation_split": "validation",
143
+ "test_split": "test",
144
+ "doc_to_text": "",
145
+ "doc_to_target": "label",
146
+ "doc_to_choice": "{{[sentence1+\", n'est-ce pas? Oui, \"+sentence2, sentence1+\", n'est-ce pas? No, \"+sentence2]}}",
147
+ "description": "",
148
+ "target_delimiter": " ",
149
+ "fewshot_delimiter": "\n\n",
150
+ "metric_list": [
151
+ {
152
+ "metric": "acc",
153
+ "aggregation": "mean",
154
+ "higher_is_better": true
155
+ }
156
+ ],
157
+ "output_type": "multiple_choice",
158
+ "repeats": 1,
159
+ "should_decontaminate": false,
160
+ "metadata": {
161
+ "version": 0.0
162
+ }
163
+ },
164
+ "paws_ja": {
165
+ "task": "paws_ja",
166
+ "group": "pawsx",
167
+ "dataset_path": "paws-x",
168
+ "dataset_name": "ja",
169
+ "training_split": "train",
170
+ "validation_split": "validation",
171
+ "test_split": "test",
172
+ "doc_to_text": "",
173
+ "doc_to_target": "label",
174
+ "doc_to_choice": "{{[sentence1+\", ですね? はい, \"+sentence2, sentence1+\", ですね? いいえ, \"+sentence2]}}",
175
+ "description": "",
176
+ "target_delimiter": " ",
177
+ "fewshot_delimiter": "\n\n",
178
+ "metric_list": [
179
+ {
180
+ "metric": "acc",
181
+ "aggregation": "mean",
182
+ "higher_is_better": true
183
+ }
184
+ ],
185
+ "output_type": "multiple_choice",
186
+ "repeats": 1,
187
+ "should_decontaminate": false,
188
+ "metadata": {
189
+ "version": 0.0
190
+ }
191
+ },
192
+ "paws_ko": {
193
+ "task": "paws_ko",
194
+ "group": "pawsx",
195
+ "dataset_path": "paws-x",
196
+ "dataset_name": "ko",
197
+ "training_split": "train",
198
+ "validation_split": "validation",
199
+ "test_split": "test",
200
+ "doc_to_text": "",
201
+ "doc_to_target": "label",
202
+ "doc_to_choice": "{{[sentence1+\", 맞죠? 예, \"+sentence2, sentence1+\", 맞죠? 아니요, \"+sentence2]}}",
203
+ "description": "",
204
+ "target_delimiter": " ",
205
+ "fewshot_delimiter": "\n\n",
206
+ "metric_list": [
207
+ {
208
+ "metric": "acc",
209
+ "aggregation": "mean",
210
+ "higher_is_better": true
211
+ }
212
+ ],
213
+ "output_type": "multiple_choice",
214
+ "repeats": 1,
215
+ "should_decontaminate": false,
216
+ "metadata": {
217
+ "version": 0.0
218
+ }
219
+ },
220
+ "paws_zh": {
221
+ "task": "paws_zh",
222
+ "group": "pawsx",
223
+ "dataset_path": "paws-x",
224
+ "dataset_name": "zh",
225
+ "training_split": "train",
226
+ "validation_split": "validation",
227
+ "test_split": "test",
228
+ "doc_to_text": "",
229
+ "doc_to_target": "label",
230
+ "doc_to_choice": "{{[sentence1+\", 对吧? 是, \"+sentence2, sentence1+\", 对吧? 不是, \"+sentence2]}}",
231
+ "description": "",
232
+ "target_delimiter": " ",
233
+ "fewshot_delimiter": "\n\n",
234
+ "metric_list": [
235
+ {
236
+ "metric": "acc",
237
+ "aggregation": "mean",
238
+ "higher_is_better": true
239
+ }
240
+ ],
241
+ "output_type": "multiple_choice",
242
+ "repeats": 1,
243
+ "should_decontaminate": false,
244
+ "metadata": {
245
+ "version": 0.0
246
+ }
247
+ }
248
+ },
249
+ "versions": {
250
+ "paws_de": 0.0,
251
+ "paws_en": 0.0,
252
+ "paws_es": 0.0,
253
+ "paws_fr": 0.0,
254
+ "paws_ja": 0.0,
255
+ "paws_ko": 0.0,
256
+ "paws_zh": 0.0,
257
+ "pawsx": "N/A"
258
+ },
259
+ "n-shot": {
260
+ "paws_de": 0,
261
+ "paws_en": 0,
262
+ "paws_es": 0,
263
+ "paws_fr": 0,
264
+ "paws_ja": 0,
265
+ "paws_ko": 0,
266
+ "paws_zh": 0,
267
+ "pawsx": 0
268
+ },
269
+ "config": {
270
+ "model": "hf",
271
+ "model_args": "pretrained=huggyllama/llama-7b,dtype=bfloat16,trust_remote_code=True",
272
+ "batch_size": "auto",
273
+ "batch_sizes": [
274
+ 16
275
+ ],
276
+ "device": null,
277
+ "use_cache": null,
278
+ "limit": null,
279
+ "bootstrap_iters": 100000,
280
+ "gen_kwargs": null
281
+ },
282
+ "git_hash": "9b1cd24"
283
+ }
lm-eval-output/huggyllama/llama-7b/pawsx/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:39c529453a270120fa274be1e00bbcc806a5652f93c1f758ca9b3b46294dcd12
3
+ size 80836
lm-eval-output/huggyllama/llama-7b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a39f959991979fb0c9072ba6cf5c9ddc23c706250118fbf8254693023ad6510e
3
+ size 643920
lm-eval-output/huggyllama/llama-7b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,390 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "xcopa": {
4
+ "acc,none": 0.5418181818181819,
5
+ "acc_stderr,none": 0.040717736708881784,
6
+ "alias": "xcopa"
7
+ },
8
+ "xcopa_et": {
9
+ "acc,none": 0.492,
10
+ "acc_stderr,none": 0.022380208834928028,
11
+ "alias": " - xcopa_et"
12
+ },
13
+ "xcopa_ht": {
14
+ "acc,none": 0.51,
15
+ "acc_stderr,none": 0.02237859698923078,
16
+ "alias": " - xcopa_ht"
17
+ },
18
+ "xcopa_id": {
19
+ "acc,none": 0.552,
20
+ "acc_stderr,none": 0.02226169729227013,
21
+ "alias": " - xcopa_id"
22
+ },
23
+ "xcopa_it": {
24
+ "acc,none": 0.646,
25
+ "acc_stderr,none": 0.02140758204791645,
26
+ "alias": " - xcopa_it"
27
+ },
28
+ "xcopa_qu": {
29
+ "acc,none": 0.518,
30
+ "acc_stderr,none": 0.02236856511738799,
31
+ "alias": " - xcopa_qu"
32
+ },
33
+ "xcopa_sw": {
34
+ "acc,none": 0.5,
35
+ "acc_stderr,none": 0.022383074051792257,
36
+ "alias": " - xcopa_sw"
37
+ },
38
+ "xcopa_ta": {
39
+ "acc,none": 0.544,
40
+ "acc_stderr,none": 0.02229623834840706,
41
+ "alias": " - xcopa_ta"
42
+ },
43
+ "xcopa_th": {
44
+ "acc,none": 0.558,
45
+ "acc_stderr,none": 0.02223197069632112,
46
+ "alias": " - xcopa_th"
47
+ },
48
+ "xcopa_tr": {
49
+ "acc,none": 0.556,
50
+ "acc_stderr,none": 0.02224224437573102,
51
+ "alias": " - xcopa_tr"
52
+ },
53
+ "xcopa_vi": {
54
+ "acc,none": 0.518,
55
+ "acc_stderr,none": 0.02236856511738799,
56
+ "alias": " - xcopa_vi"
57
+ },
58
+ "xcopa_zh": {
59
+ "acc,none": 0.566,
60
+ "acc_stderr,none": 0.02218721580302901,
61
+ "alias": " - xcopa_zh"
62
+ }
63
+ },
64
+ "groups": {
65
+ "xcopa": {
66
+ "acc,none": 0.5418181818181819,
67
+ "acc_stderr,none": 0.040717736708881784,
68
+ "alias": "xcopa"
69
+ }
70
+ },
71
+ "configs": {
72
+ "xcopa_et": {
73
+ "task": "xcopa_et",
74
+ "group": "xcopa",
75
+ "dataset_path": "xcopa",
76
+ "dataset_name": "et",
77
+ "validation_split": "validation",
78
+ "test_split": "test",
79
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b1f759e0>, connector={'cause': 'sest', 'effect': 'seetõttu'})",
80
+ "doc_to_target": "label",
81
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
82
+ "description": "",
83
+ "target_delimiter": " ",
84
+ "fewshot_delimiter": "\n\n",
85
+ "metric_list": [
86
+ {
87
+ "metric": "acc"
88
+ }
89
+ ],
90
+ "output_type": "multiple_choice",
91
+ "repeats": 1,
92
+ "should_decontaminate": false,
93
+ "metadata": {
94
+ "version": 1.0
95
+ }
96
+ },
97
+ "xcopa_ht": {
98
+ "task": "xcopa_ht",
99
+ "group": "xcopa",
100
+ "dataset_path": "xcopa",
101
+ "dataset_name": "ht",
102
+ "validation_split": "validation",
103
+ "test_split": "test",
104
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b80dd300>, connector={'cause': 'poukisa', 'effect': 'donk sa'})",
105
+ "doc_to_target": "label",
106
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
107
+ "description": "",
108
+ "target_delimiter": " ",
109
+ "fewshot_delimiter": "\n\n",
110
+ "metric_list": [
111
+ {
112
+ "metric": "acc"
113
+ }
114
+ ],
115
+ "output_type": "multiple_choice",
116
+ "repeats": 1,
117
+ "should_decontaminate": false,
118
+ "metadata": {
119
+ "version": 1.0
120
+ }
121
+ },
122
+ "xcopa_id": {
123
+ "task": "xcopa_id",
124
+ "group": "xcopa",
125
+ "dataset_path": "xcopa",
126
+ "dataset_name": "id",
127
+ "validation_split": "validation",
128
+ "test_split": "test",
129
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b1f740e0>, connector={'cause': 'karena', 'effect': 'maka'})",
130
+ "doc_to_target": "label",
131
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
132
+ "description": "",
133
+ "target_delimiter": " ",
134
+ "fewshot_delimiter": "\n\n",
135
+ "metric_list": [
136
+ {
137
+ "metric": "acc"
138
+ }
139
+ ],
140
+ "output_type": "multiple_choice",
141
+ "repeats": 1,
142
+ "should_decontaminate": false,
143
+ "metadata": {
144
+ "version": 1.0
145
+ }
146
+ },
147
+ "xcopa_it": {
148
+ "task": "xcopa_it",
149
+ "group": "xcopa",
150
+ "dataset_path": "xcopa",
151
+ "dataset_name": "it",
152
+ "validation_split": "validation",
153
+ "test_split": "test",
154
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b80dc180>, connector={'cause': 'perché', 'effect': 'quindi'})",
155
+ "doc_to_target": "label",
156
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
157
+ "description": "",
158
+ "target_delimiter": " ",
159
+ "fewshot_delimiter": "\n\n",
160
+ "metric_list": [
161
+ {
162
+ "metric": "acc"
163
+ }
164
+ ],
165
+ "output_type": "multiple_choice",
166
+ "repeats": 1,
167
+ "should_decontaminate": false,
168
+ "metadata": {
169
+ "version": 1.0
170
+ }
171
+ },
172
+ "xcopa_qu": {
173
+ "task": "xcopa_qu",
174
+ "group": "xcopa",
175
+ "dataset_path": "xcopa",
176
+ "dataset_name": "qu",
177
+ "validation_split": "validation",
178
+ "test_split": "test",
179
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97ba65e340>, connector={'cause': 'imataq', 'effect': 'chaymi'})",
180
+ "doc_to_target": "label",
181
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
182
+ "description": "",
183
+ "target_delimiter": " ",
184
+ "fewshot_delimiter": "\n\n",
185
+ "metric_list": [
186
+ {
187
+ "metric": "acc"
188
+ }
189
+ ],
190
+ "output_type": "multiple_choice",
191
+ "repeats": 1,
192
+ "should_decontaminate": false,
193
+ "metadata": {
194
+ "version": 1.0
195
+ }
196
+ },
197
+ "xcopa_sw": {
198
+ "task": "xcopa_sw",
199
+ "group": "xcopa",
200
+ "dataset_path": "xcopa",
201
+ "dataset_name": "sw",
202
+ "validation_split": "validation",
203
+ "test_split": "test",
204
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b80dc0e0>, connector={'cause': 'kwa sababu', 'effect': 'kwa hiyo'})",
205
+ "doc_to_target": "label",
206
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
207
+ "description": "",
208
+ "target_delimiter": " ",
209
+ "fewshot_delimiter": "\n\n",
210
+ "metric_list": [
211
+ {
212
+ "metric": "acc"
213
+ }
214
+ ],
215
+ "output_type": "multiple_choice",
216
+ "repeats": 1,
217
+ "should_decontaminate": false,
218
+ "metadata": {
219
+ "version": 1.0
220
+ }
221
+ },
222
+ "xcopa_ta": {
223
+ "task": "xcopa_ta",
224
+ "group": "xcopa",
225
+ "dataset_path": "xcopa",
226
+ "dataset_name": "ta",
227
+ "validation_split": "validation",
228
+ "test_split": "test",
229
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b80de480>, connector={'cause': 'காரணமாக', 'effect': 'எனவே'})",
230
+ "doc_to_target": "label",
231
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
232
+ "description": "",
233
+ "target_delimiter": " ",
234
+ "fewshot_delimiter": "\n\n",
235
+ "metric_list": [
236
+ {
237
+ "metric": "acc"
238
+ }
239
+ ],
240
+ "output_type": "multiple_choice",
241
+ "repeats": 1,
242
+ "should_decontaminate": false,
243
+ "metadata": {
244
+ "version": 1.0
245
+ }
246
+ },
247
+ "xcopa_th": {
248
+ "task": "xcopa_th",
249
+ "group": "xcopa",
250
+ "dataset_path": "xcopa",
251
+ "dataset_name": "th",
252
+ "validation_split": "validation",
253
+ "test_split": "test",
254
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b80932e0>, connector={'cause': 'เพราะ', 'effect': 'ดังนั้น'})",
255
+ "doc_to_target": "label",
256
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
257
+ "description": "",
258
+ "target_delimiter": " ",
259
+ "fewshot_delimiter": "\n\n",
260
+ "metric_list": [
261
+ {
262
+ "metric": "acc"
263
+ }
264
+ ],
265
+ "output_type": "multiple_choice",
266
+ "repeats": 1,
267
+ "should_decontaminate": false,
268
+ "metadata": {
269
+ "version": 1.0
270
+ }
271
+ },
272
+ "xcopa_tr": {
273
+ "task": "xcopa_tr",
274
+ "group": "xcopa",
275
+ "dataset_path": "xcopa",
276
+ "dataset_name": "tr",
277
+ "validation_split": "validation",
278
+ "test_split": "test",
279
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b80562a0>, connector={'cause': 'çünkü', 'effect': 'bu yüzden'})",
280
+ "doc_to_target": "label",
281
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
282
+ "description": "",
283
+ "target_delimiter": " ",
284
+ "fewshot_delimiter": "\n\n",
285
+ "metric_list": [
286
+ {
287
+ "metric": "acc"
288
+ }
289
+ ],
290
+ "output_type": "multiple_choice",
291
+ "repeats": 1,
292
+ "should_decontaminate": false,
293
+ "metadata": {
294
+ "version": 1.0
295
+ }
296
+ },
297
+ "xcopa_vi": {
298
+ "task": "xcopa_vi",
299
+ "group": "xcopa",
300
+ "dataset_path": "xcopa",
301
+ "dataset_name": "vi",
302
+ "validation_split": "validation",
303
+ "test_split": "test",
304
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97b8090900>, connector={'cause': 'bởi vì', 'effect': 'vì vậy'})",
305
+ "doc_to_target": "label",
306
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
307
+ "description": "",
308
+ "target_delimiter": " ",
309
+ "fewshot_delimiter": "\n\n",
310
+ "metric_list": [
311
+ {
312
+ "metric": "acc"
313
+ }
314
+ ],
315
+ "output_type": "multiple_choice",
316
+ "repeats": 1,
317
+ "should_decontaminate": false,
318
+ "metadata": {
319
+ "version": 1.0
320
+ }
321
+ },
322
+ "xcopa_zh": {
323
+ "task": "xcopa_zh",
324
+ "group": "xcopa",
325
+ "dataset_path": "xcopa",
326
+ "dataset_name": "zh",
327
+ "validation_split": "validation",
328
+ "test_split": "test",
329
+ "doc_to_text": "functools.partial(<function doc_to_text at 0x7f97ba65d800>, connector={'cause': '因为', 'effect': '所以'})",
330
+ "doc_to_target": "label",
331
+ "doc_to_choice": "def doc_to_choice(doc):\n return [convert_choice(doc[\"choice1\"]), convert_choice(doc[\"choice2\"])]\n",
332
+ "description": "",
333
+ "target_delimiter": " ",
334
+ "fewshot_delimiter": "\n\n",
335
+ "metric_list": [
336
+ {
337
+ "metric": "acc"
338
+ }
339
+ ],
340
+ "output_type": "multiple_choice",
341
+ "repeats": 1,
342
+ "should_decontaminate": false,
343
+ "metadata": {
344
+ "version": 1.0
345
+ }
346
+ }
347
+ },
348
+ "versions": {
349
+ "xcopa": "N/A",
350
+ "xcopa_et": 1.0,
351
+ "xcopa_ht": 1.0,
352
+ "xcopa_id": 1.0,
353
+ "xcopa_it": 1.0,
354
+ "xcopa_qu": 1.0,
355
+ "xcopa_sw": 1.0,
356
+ "xcopa_ta": 1.0,
357
+ "xcopa_th": 1.0,
358
+ "xcopa_tr": 1.0,
359
+ "xcopa_vi": 1.0,
360
+ "xcopa_zh": 1.0
361
+ },
362
+ "n-shot": {
363
+ "xcopa": 0,
364
+ "xcopa_et": 0,
365
+ "xcopa_ht": 0,
366
+ "xcopa_id": 0,
367
+ "xcopa_it": 0,
368
+ "xcopa_qu": 0,
369
+ "xcopa_sw": 0,
370
+ "xcopa_ta": 0,
371
+ "xcopa_th": 0,
372
+ "xcopa_tr": 0,
373
+ "xcopa_vi": 0,
374
+ "xcopa_zh": 0
375
+ },
376
+ "config": {
377
+ "model": "hf",
378
+ "model_args": "pretrained=huggyllama/llama-7b,dtype=bfloat16,trust_remote_code=True",
379
+ "batch_size": "auto",
380
+ "batch_sizes": [
381
+ 32
382
+ ],
383
+ "device": null,
384
+ "use_cache": null,
385
+ "limit": null,
386
+ "bootstrap_iters": 100000,
387
+ "gen_kwargs": null
388
+ },
389
+ "git_hash": "9b1cd24"
390
+ }
lm-eval-output/huggyllama/llama-7b/xcopa/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab1eabeb856196d8e50313c8ceb1b6965bce88355d71e7f9c28cc52b0dda4cb9
3
+ size 96756
lm-eval-output/huggyllama/llama-7b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f56265d76e97b401029f3f26aad99b156400be6a7a0e0f76f4cb98842139d4a6
3
+ size 7098708
lm-eval-output/huggyllama/llama-7b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,548 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "xnli": {
4
+ "acc,none": 0.38867469879518074,
5
+ "acc_stderr,none": 0.05695391505524146,
6
+ "alias": "xnli"
7
+ },
8
+ "xnli_ar": {
9
+ "acc,none": 0.3397590361445783,
10
+ "acc_stderr,none": 0.009493454925438252,
11
+ "alias": " - xnli_ar"
12
+ },
13
+ "xnli_bg": {
14
+ "acc,none": 0.38032128514056224,
15
+ "acc_stderr,none": 0.009730746464767608,
16
+ "alias": " - xnli_bg"
17
+ },
18
+ "xnli_de": {
19
+ "acc,none": 0.463855421686747,
20
+ "acc_stderr,none": 0.00999585228282238,
21
+ "alias": " - xnli_de"
22
+ },
23
+ "xnli_el": {
24
+ "acc,none": 0.3389558232931727,
25
+ "acc_stderr,none": 0.009487992732201524,
26
+ "alias": " - xnli_el"
27
+ },
28
+ "xnli_en": {
29
+ "acc,none": 0.5389558232931727,
30
+ "acc_stderr,none": 0.009991608448389058,
31
+ "alias": " - xnli_en"
32
+ },
33
+ "xnli_es": {
34
+ "acc,none": 0.43253012048192774,
35
+ "acc_stderr,none": 0.009930409027139452,
36
+ "alias": " - xnli_es"
37
+ },
38
+ "xnli_fr": {
39
+ "acc,none": 0.4779116465863454,
40
+ "acc_stderr,none": 0.010012288645591786,
41
+ "alias": " - xnli_fr"
42
+ },
43
+ "xnli_hi": {
44
+ "acc,none": 0.3493975903614458,
45
+ "acc_stderr,none": 0.009556642460138152,
46
+ "alias": " - xnli_hi"
47
+ },
48
+ "xnli_ru": {
49
+ "acc,none": 0.4389558232931727,
50
+ "acc_stderr,none": 0.009947100105978365,
51
+ "alias": " - xnli_ru"
52
+ },
53
+ "xnli_sw": {
54
+ "acc,none": 0.3365461847389558,
55
+ "acc_stderr,none": 0.009471423054177119,
56
+ "alias": " - xnli_sw"
57
+ },
58
+ "xnli_th": {
59
+ "acc,none": 0.3192771084337349,
60
+ "acc_stderr,none": 0.009344511873557408,
61
+ "alias": " - xnli_th"
62
+ },
63
+ "xnli_tr": {
64
+ "acc,none": 0.3506024096385542,
65
+ "acc_stderr,none": 0.009564237156206103,
66
+ "alias": " - xnli_tr"
67
+ },
68
+ "xnli_ur": {
69
+ "acc,none": 0.3373493975903614,
70
+ "acc_stderr,none": 0.009476976849778591,
71
+ "alias": " - xnli_ur"
72
+ },
73
+ "xnli_vi": {
74
+ "acc,none": 0.37710843373493974,
75
+ "acc_stderr,none": 0.009714644211180594,
76
+ "alias": " - xnli_vi"
77
+ },
78
+ "xnli_zh": {
79
+ "acc,none": 0.3485943775100402,
80
+ "acc_stderr,none": 0.009551542053301817,
81
+ "alias": " - xnli_zh"
82
+ }
83
+ },
84
+ "groups": {
85
+ "xnli": {
86
+ "acc,none": 0.38867469879518074,
87
+ "acc_stderr,none": 0.05695391505524146,
88
+ "alias": "xnli"
89
+ }
90
+ },
91
+ "configs": {
92
+ "xnli_ar": {
93
+ "task": "xnli_ar",
94
+ "group": "xnli",
95
+ "dataset_path": "xnli",
96
+ "dataset_name": "ar",
97
+ "training_split": "train",
98
+ "validation_split": "validation",
99
+ "doc_to_text": "",
100
+ "doc_to_target": "label",
101
+ "doc_to_choice": "{{[premise+\", صحيح? نعم, \"+hypothesis,premise+\", صحيح? لذا, \"+hypothesis,premise+\", صحيح? رقم, \"+hypothesis]}}",
102
+ "description": "",
103
+ "target_delimiter": " ",
104
+ "fewshot_delimiter": "\n\n",
105
+ "metric_list": [
106
+ {
107
+ "metric": "acc",
108
+ "aggregation": "mean",
109
+ "higher_is_better": true
110
+ }
111
+ ],
112
+ "output_type": "multiple_choice",
113
+ "repeats": 1,
114
+ "should_decontaminate": false,
115
+ "metadata": {
116
+ "version": 1.0
117
+ }
118
+ },
119
+ "xnli_bg": {
120
+ "task": "xnli_bg",
121
+ "group": "xnli",
122
+ "dataset_path": "xnli",
123
+ "dataset_name": "bg",
124
+ "training_split": "train",
125
+ "validation_split": "validation",
126
+ "doc_to_text": "",
127
+ "doc_to_target": "label",
128
+ "doc_to_choice": "{{[premise+\", правилно? да, \"+hypothesis,premise+\", правилно? така, \"+hypothesis,premise+\", правилно? не, \"+hypothesis]}}",
129
+ "description": "",
130
+ "target_delimiter": " ",
131
+ "fewshot_delimiter": "\n\n",
132
+ "metric_list": [
133
+ {
134
+ "metric": "acc",
135
+ "aggregation": "mean",
136
+ "higher_is_better": true
137
+ }
138
+ ],
139
+ "output_type": "multiple_choice",
140
+ "repeats": 1,
141
+ "should_decontaminate": false,
142
+ "metadata": {
143
+ "version": 1.0
144
+ }
145
+ },
146
+ "xnli_de": {
147
+ "task": "xnli_de",
148
+ "group": "xnli",
149
+ "dataset_path": "xnli",
150
+ "dataset_name": "de",
151
+ "training_split": "train",
152
+ "validation_split": "validation",
153
+ "doc_to_text": "",
154
+ "doc_to_target": "label",
155
+ "doc_to_choice": "{{[premise+\", richtig? Ja, \"+hypothesis,premise+\", richtig? Auch, \"+hypothesis,premise+\", richtig? Nein, \"+hypothesis]}}",
156
+ "description": "",
157
+ "target_delimiter": " ",
158
+ "fewshot_delimiter": "\n\n",
159
+ "metric_list": [
160
+ {
161
+ "metric": "acc",
162
+ "aggregation": "mean",
163
+ "higher_is_better": true
164
+ }
165
+ ],
166
+ "output_type": "multiple_choice",
167
+ "repeats": 1,
168
+ "should_decontaminate": false,
169
+ "metadata": {
170
+ "version": 1.0
171
+ }
172
+ },
173
+ "xnli_el": {
174
+ "task": "xnli_el",
175
+ "group": "xnli",
176
+ "dataset_path": "xnli",
177
+ "dataset_name": "el",
178
+ "training_split": "train",
179
+ "validation_split": "validation",
180
+ "doc_to_text": "",
181
+ "doc_to_target": "label",
182
+ "doc_to_choice": "{{[premise+\", σωστός? Ναί, \"+hypothesis,premise+\", σωστός? Έτσι, \"+hypothesis,premise+\", σωστός? όχι, \"+hypothesis]}}",
183
+ "description": "",
184
+ "target_delimiter": " ",
185
+ "fewshot_delimiter": "\n\n",
186
+ "metric_list": [
187
+ {
188
+ "metric": "acc",
189
+ "aggregation": "mean",
190
+ "higher_is_better": true
191
+ }
192
+ ],
193
+ "output_type": "multiple_choice",
194
+ "repeats": 1,
195
+ "should_decontaminate": false,
196
+ "metadata": {
197
+ "version": 1.0
198
+ }
199
+ },
200
+ "xnli_en": {
201
+ "task": "xnli_en",
202
+ "group": "xnli",
203
+ "dataset_path": "xnli",
204
+ "dataset_name": "en",
205
+ "training_split": "train",
206
+ "validation_split": "validation",
207
+ "doc_to_text": "",
208
+ "doc_to_target": "label",
209
+ "doc_to_choice": "{{[premise+\", right? Yes, \"+hypothesis,premise+\", right? Also, \"+hypothesis,premise+\", right? No, \"+hypothesis]}}",
210
+ "description": "",
211
+ "target_delimiter": " ",
212
+ "fewshot_delimiter": "\n\n",
213
+ "metric_list": [
214
+ {
215
+ "metric": "acc",
216
+ "aggregation": "mean",
217
+ "higher_is_better": true
218
+ }
219
+ ],
220
+ "output_type": "multiple_choice",
221
+ "repeats": 1,
222
+ "should_decontaminate": false,
223
+ "metadata": {
224
+ "version": 1.0
225
+ }
226
+ },
227
+ "xnli_es": {
228
+ "task": "xnli_es",
229
+ "group": "xnli",
230
+ "dataset_path": "xnli",
231
+ "dataset_name": "es",
232
+ "training_split": "train",
233
+ "validation_split": "validation",
234
+ "doc_to_text": "",
235
+ "doc_to_target": "label",
236
+ "doc_to_choice": "{{[premise+\", correcto? Sí, \"+hypothesis,premise+\", correcto? Asi que, \"+hypothesis,premise+\", correcto? No, \"+hypothesis]}}",
237
+ "description": "",
238
+ "target_delimiter": " ",
239
+ "fewshot_delimiter": "\n\n",
240
+ "metric_list": [
241
+ {
242
+ "metric": "acc",
243
+ "aggregation": "mean",
244
+ "higher_is_better": true
245
+ }
246
+ ],
247
+ "output_type": "multiple_choice",
248
+ "repeats": 1,
249
+ "should_decontaminate": false,
250
+ "metadata": {
251
+ "version": 1.0
252
+ }
253
+ },
254
+ "xnli_fr": {
255
+ "task": "xnli_fr",
256
+ "group": "xnli",
257
+ "dataset_path": "xnli",
258
+ "dataset_name": "fr",
259
+ "training_split": "train",
260
+ "validation_split": "validation",
261
+ "doc_to_text": "",
262
+ "doc_to_target": "label",
263
+ "doc_to_choice": "{{[premise+\", correct? Oui, \"+hypothesis,premise+\", correct? Aussi, \"+hypothesis,premise+\", correct? Non, \"+hypothesis]}}",
264
+ "description": "",
265
+ "target_delimiter": " ",
266
+ "fewshot_delimiter": "\n\n",
267
+ "metric_list": [
268
+ {
269
+ "metric": "acc",
270
+ "aggregation": "mean",
271
+ "higher_is_better": true
272
+ }
273
+ ],
274
+ "output_type": "multiple_choice",
275
+ "repeats": 1,
276
+ "should_decontaminate": false,
277
+ "metadata": {
278
+ "version": 1.0
279
+ }
280
+ },
281
+ "xnli_hi": {
282
+ "task": "xnli_hi",
283
+ "group": "xnli",
284
+ "dataset_path": "xnli",
285
+ "dataset_name": "hi",
286
+ "training_split": "train",
287
+ "validation_split": "validation",
288
+ "doc_to_text": "",
289
+ "doc_to_target": "label",
290
+ "doc_to_choice": "{{[premise+\", सही? हाँ, \"+hypothesis,premise+\", सही? इसलिए, \"+hypothesis,premise+\", सही? नहीं, \"+hypothesis]}}",
291
+ "description": "",
292
+ "target_delimiter": " ",
293
+ "fewshot_delimiter": "\n\n",
294
+ "metric_list": [
295
+ {
296
+ "metric": "acc",
297
+ "aggregation": "mean",
298
+ "higher_is_better": true
299
+ }
300
+ ],
301
+ "output_type": "multiple_choice",
302
+ "repeats": 1,
303
+ "should_decontaminate": false,
304
+ "metadata": {
305
+ "version": 1.0
306
+ }
307
+ },
308
+ "xnli_ru": {
309
+ "task": "xnli_ru",
310
+ "group": "xnli",
311
+ "dataset_path": "xnli",
312
+ "dataset_name": "ru",
313
+ "training_split": "train",
314
+ "validation_split": "validation",
315
+ "doc_to_text": "",
316
+ "doc_to_target": "label",
317
+ "doc_to_choice": "{{[premise+\", правильно? Да, \"+hypothesis,premise+\", правильно? Так, \"+hypothesis,premise+\", правильно? Нет, \"+hypothesis]}}",
318
+ "description": "",
319
+ "target_delimiter": " ",
320
+ "fewshot_delimiter": "\n\n",
321
+ "metric_list": [
322
+ {
323
+ "metric": "acc",
324
+ "aggregation": "mean",
325
+ "higher_is_better": true
326
+ }
327
+ ],
328
+ "output_type": "multiple_choice",
329
+ "repeats": 1,
330
+ "should_decontaminate": false,
331
+ "metadata": {
332
+ "version": 1.0
333
+ }
334
+ },
335
+ "xnli_sw": {
336
+ "task": "xnli_sw",
337
+ "group": "xnli",
338
+ "dataset_path": "xnli",
339
+ "dataset_name": "sw",
340
+ "training_split": "train",
341
+ "validation_split": "validation",
342
+ "doc_to_text": "",
343
+ "doc_to_target": "label",
344
+ "doc_to_choice": "{{[premise+\", sahihi? Ndiyo, \"+hypothesis,premise+\", sahihi? Hivyo, \"+hypothesis,premise+\", sahihi? Hapana, \"+hypothesis]}}",
345
+ "description": "",
346
+ "target_delimiter": " ",
347
+ "fewshot_delimiter": "\n\n",
348
+ "metric_list": [
349
+ {
350
+ "metric": "acc",
351
+ "aggregation": "mean",
352
+ "higher_is_better": true
353
+ }
354
+ ],
355
+ "output_type": "multiple_choice",
356
+ "repeats": 1,
357
+ "should_decontaminate": false,
358
+ "metadata": {
359
+ "version": 1.0
360
+ }
361
+ },
362
+ "xnli_th": {
363
+ "task": "xnli_th",
364
+ "group": "xnli",
365
+ "dataset_path": "xnli",
366
+ "dataset_name": "th",
367
+ "training_split": "train",
368
+ "validation_split": "validation",
369
+ "doc_to_text": "",
370
+ "doc_to_target": "label",
371
+ "doc_to_choice": "{{[premise+\", ถูกต้อง? ใช่, \"+hypothesis,premise+\", ถูกต้อง? ดังนั้น, \"+hypothesis,premise+\", ถูกต้อง? ไม่, \"+hypothesis]}}",
372
+ "description": "",
373
+ "target_delimiter": " ",
374
+ "fewshot_delimiter": "\n\n",
375
+ "metric_list": [
376
+ {
377
+ "metric": "acc",
378
+ "aggregation": "mean",
379
+ "higher_is_better": true
380
+ }
381
+ ],
382
+ "output_type": "multiple_choice",
383
+ "repeats": 1,
384
+ "should_decontaminate": false,
385
+ "metadata": {
386
+ "version": 1.0
387
+ }
388
+ },
389
+ "xnli_tr": {
390
+ "task": "xnli_tr",
391
+ "group": "xnli",
392
+ "dataset_path": "xnli",
393
+ "dataset_name": "tr",
394
+ "training_split": "train",
395
+ "validation_split": "validation",
396
+ "doc_to_text": "",
397
+ "doc_to_target": "label",
398
+ "doc_to_choice": "{{[premise+\", doğru? Evet, \"+hypothesis,premise+\", doğru? Böylece, \"+hypothesis,premise+\", doğru? Hayır, \"+hypothesis]}}",
399
+ "description": "",
400
+ "target_delimiter": " ",
401
+ "fewshot_delimiter": "\n\n",
402
+ "metric_list": [
403
+ {
404
+ "metric": "acc",
405
+ "aggregation": "mean",
406
+ "higher_is_better": true
407
+ }
408
+ ],
409
+ "output_type": "multiple_choice",
410
+ "repeats": 1,
411
+ "should_decontaminate": false,
412
+ "metadata": {
413
+ "version": 1.0
414
+ }
415
+ },
416
+ "xnli_ur": {
417
+ "task": "xnli_ur",
418
+ "group": "xnli",
419
+ "dataset_path": "xnli",
420
+ "dataset_name": "ur",
421
+ "training_split": "train",
422
+ "validation_split": "validation",
423
+ "doc_to_text": "",
424
+ "doc_to_target": "label",
425
+ "doc_to_choice": "{{[premise+\", صحیح? جی ہاں, \"+hypothesis,premise+\", صحیح? اس لئے, \"+hypothesis,premise+\", صحیح? نہیں, \"+hypothesis]}}",
426
+ "description": "",
427
+ "target_delimiter": " ",
428
+ "fewshot_delimiter": "\n\n",
429
+ "metric_list": [
430
+ {
431
+ "metric": "acc",
432
+ "aggregation": "mean",
433
+ "higher_is_better": true
434
+ }
435
+ ],
436
+ "output_type": "multiple_choice",
437
+ "repeats": 1,
438
+ "should_decontaminate": false,
439
+ "metadata": {
440
+ "version": 1.0
441
+ }
442
+ },
443
+ "xnli_vi": {
444
+ "task": "xnli_vi",
445
+ "group": "xnli",
446
+ "dataset_path": "xnli",
447
+ "dataset_name": "vi",
448
+ "training_split": "train",
449
+ "validation_split": "validation",
450
+ "doc_to_text": "",
451
+ "doc_to_target": "label",
452
+ "doc_to_choice": "{{[premise+\", đúng? Vâng, \"+hypothesis,premise+\", đúng? Vì vậy, \"+hypothesis,premise+\", đúng? Không, \"+hypothesis]}}",
453
+ "description": "",
454
+ "target_delimiter": " ",
455
+ "fewshot_delimiter": "\n\n",
456
+ "metric_list": [
457
+ {
458
+ "metric": "acc",
459
+ "aggregation": "mean",
460
+ "higher_is_better": true
461
+ }
462
+ ],
463
+ "output_type": "multiple_choice",
464
+ "repeats": 1,
465
+ "should_decontaminate": false,
466
+ "metadata": {
467
+ "version": 1.0
468
+ }
469
+ },
470
+ "xnli_zh": {
471
+ "task": "xnli_zh",
472
+ "group": "xnli",
473
+ "dataset_path": "xnli",
474
+ "dataset_name": "zh",
475
+ "training_split": "train",
476
+ "validation_split": "validation",
477
+ "doc_to_text": "",
478
+ "doc_to_target": "label",
479
+ "doc_to_choice": "{{[premise+\", 正确? 是的, \"+hypothesis,premise+\", 正确? 所以, \"+hypothesis,premise+\", 正确? 不是的, \"+hypothesis]}}",
480
+ "description": "",
481
+ "target_delimiter": " ",
482
+ "fewshot_delimiter": "\n\n",
483
+ "metric_list": [
484
+ {
485
+ "metric": "acc",
486
+ "aggregation": "mean",
487
+ "higher_is_better": true
488
+ }
489
+ ],
490
+ "output_type": "multiple_choice",
491
+ "repeats": 1,
492
+ "should_decontaminate": false,
493
+ "metadata": {
494
+ "version": 1.0
495
+ }
496
+ }
497
+ },
498
+ "versions": {
499
+ "xnli": "N/A",
500
+ "xnli_ar": 1.0,
501
+ "xnli_bg": 1.0,
502
+ "xnli_de": 1.0,
503
+ "xnli_el": 1.0,
504
+ "xnli_en": 1.0,
505
+ "xnli_es": 1.0,
506
+ "xnli_fr": 1.0,
507
+ "xnli_hi": 1.0,
508
+ "xnli_ru": 1.0,
509
+ "xnli_sw": 1.0,
510
+ "xnli_th": 1.0,
511
+ "xnli_tr": 1.0,
512
+ "xnli_ur": 1.0,
513
+ "xnli_vi": 1.0,
514
+ "xnli_zh": 1.0
515
+ },
516
+ "n-shot": {
517
+ "xnli": 0,
518
+ "xnli_ar": 0,
519
+ "xnli_bg": 0,
520
+ "xnli_de": 0,
521
+ "xnli_el": 0,
522
+ "xnli_en": 0,
523
+ "xnli_es": 0,
524
+ "xnli_fr": 0,
525
+ "xnli_hi": 0,
526
+ "xnli_ru": 0,
527
+ "xnli_sw": 0,
528
+ "xnli_th": 0,
529
+ "xnli_tr": 0,
530
+ "xnli_ur": 0,
531
+ "xnli_vi": 0,
532
+ "xnli_zh": 0
533
+ },
534
+ "config": {
535
+ "model": "hf",
536
+ "model_args": "pretrained=huggyllama/llama-7b,dtype=bfloat16,trust_remote_code=True",
537
+ "batch_size": "auto",
538
+ "batch_sizes": [
539
+ 16
540
+ ],
541
+ "device": null,
542
+ "use_cache": null,
543
+ "limit": null,
544
+ "bootstrap_iters": 100000,
545
+ "gen_kwargs": null
546
+ },
547
+ "git_hash": "9b1cd24"
548
+ }
lm-eval-output/huggyllama/llama-7b/xnli/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b070e6e7185c6c880ca2997c77499c347f243d6c89480cf5d8a43601529ab45a
3
+ size 179982
lm-eval-output/huggyllama/llama-7b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:06bb427a580eee30342b22c99f6d903395d6c06552f2e9178d714fb9d3706be1
3
+ size 4415514
lm-eval-output/huggyllama/llama-7b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "xstorycloze": {
4
+ "acc,none": 0.5594729558991636,
5
+ "acc_stderr,none": 0.0737928797468809,
6
+ "alias": "xstorycloze"
7
+ },
8
+ "xstorycloze_ar": {
9
+ "acc,none": 0.48444738583719393,
10
+ "acc_stderr,none": 0.012860899111470791,
11
+ "alias": " - xstorycloze_ar"
12
+ },
13
+ "xstorycloze_en": {
14
+ "acc,none": 0.7657180675049636,
15
+ "acc_stderr,none": 0.010899720775371961,
16
+ "alias": " - xstorycloze_en"
17
+ },
18
+ "xstorycloze_es": {
19
+ "acc,none": 0.6578424884182661,
20
+ "acc_stderr,none": 0.012209152707472842,
21
+ "alias": " - xstorycloze_es"
22
+ },
23
+ "xstorycloze_eu": {
24
+ "acc,none": 0.4990072799470549,
25
+ "acc_stderr,none": 0.012867099955422921,
26
+ "alias": " - xstorycloze_eu"
27
+ },
28
+ "xstorycloze_hi": {
29
+ "acc,none": 0.5254798146922568,
30
+ "acc_stderr,none": 0.012850407240776846,
31
+ "alias": " - xstorycloze_hi"
32
+ },
33
+ "xstorycloze_id": {
34
+ "acc,none": 0.5268034414295168,
35
+ "acc_stderr,none": 0.012848623899505768,
36
+ "alias": " - xstorycloze_id"
37
+ },
38
+ "xstorycloze_my": {
39
+ "acc,none": 0.48378557246856385,
40
+ "acc_stderr,none": 0.012860357805055867,
41
+ "alias": " - xstorycloze_my"
42
+ },
43
+ "xstorycloze_ru": {
44
+ "acc,none": 0.6221045665122436,
45
+ "acc_stderr,none": 0.01247754207299466,
46
+ "alias": " - xstorycloze_ru"
47
+ },
48
+ "xstorycloze_sw": {
49
+ "acc,none": 0.5076108537392455,
50
+ "acc_stderr,none": 0.012865634571114485,
51
+ "alias": " - xstorycloze_sw"
52
+ },
53
+ "xstorycloze_te": {
54
+ "acc,none": 0.5314361350099271,
55
+ "acc_stderr,none": 0.012841668760976905,
56
+ "alias": " - xstorycloze_te"
57
+ },
58
+ "xstorycloze_zh": {
59
+ "acc,none": 0.5499669093315684,
60
+ "acc_stderr,none": 0.012802713598219839,
61
+ "alias": " - xstorycloze_zh"
62
+ }
63
+ },
64
+ "groups": {
65
+ "xstorycloze": {
66
+ "acc,none": 0.5594729558991636,
67
+ "acc_stderr,none": 0.0737928797468809,
68
+ "alias": "xstorycloze"
69
+ }
70
+ },
71
+ "configs": {
72
+ "xstorycloze_ar": {
73
+ "task": "xstorycloze_ar",
74
+ "group": "xstorycloze",
75
+ "dataset_path": "juletxara/xstory_cloze",
76
+ "dataset_name": "ar",
77
+ "training_split": "train",
78
+ "validation_split": "eval",
79
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
80
+ "doc_to_target": "{{answer_right_ending-1}}",
81
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
82
+ "description": "",
83
+ "target_delimiter": " ",
84
+ "fewshot_delimiter": "\n\n",
85
+ "metric_list": [
86
+ {
87
+ "metric": "acc",
88
+ "aggregation": "mean",
89
+ "higher_is_better": true
90
+ }
91
+ ],
92
+ "output_type": "multiple_choice",
93
+ "repeats": 1,
94
+ "should_decontaminate": true,
95
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
96
+ "metadata": {
97
+ "version": 1.0
98
+ }
99
+ },
100
+ "xstorycloze_en": {
101
+ "task": "xstorycloze_en",
102
+ "group": "xstorycloze",
103
+ "dataset_path": "juletxara/xstory_cloze",
104
+ "dataset_name": "en",
105
+ "training_split": "train",
106
+ "validation_split": "eval",
107
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
108
+ "doc_to_target": "{{answer_right_ending-1}}",
109
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
110
+ "description": "",
111
+ "target_delimiter": " ",
112
+ "fewshot_delimiter": "\n\n",
113
+ "metric_list": [
114
+ {
115
+ "metric": "acc",
116
+ "aggregation": "mean",
117
+ "higher_is_better": true
118
+ }
119
+ ],
120
+ "output_type": "multiple_choice",
121
+ "repeats": 1,
122
+ "should_decontaminate": true,
123
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
124
+ "metadata": {
125
+ "version": 1.0
126
+ }
127
+ },
128
+ "xstorycloze_es": {
129
+ "task": "xstorycloze_es",
130
+ "group": "xstorycloze",
131
+ "dataset_path": "juletxara/xstory_cloze",
132
+ "dataset_name": "es",
133
+ "training_split": "train",
134
+ "validation_split": "eval",
135
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
136
+ "doc_to_target": "{{answer_right_ending-1}}",
137
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
138
+ "description": "",
139
+ "target_delimiter": " ",
140
+ "fewshot_delimiter": "\n\n",
141
+ "metric_list": [
142
+ {
143
+ "metric": "acc",
144
+ "aggregation": "mean",
145
+ "higher_is_better": true
146
+ }
147
+ ],
148
+ "output_type": "multiple_choice",
149
+ "repeats": 1,
150
+ "should_decontaminate": true,
151
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
152
+ "metadata": {
153
+ "version": 1.0
154
+ }
155
+ },
156
+ "xstorycloze_eu": {
157
+ "task": "xstorycloze_eu",
158
+ "group": "xstorycloze",
159
+ "dataset_path": "juletxara/xstory_cloze",
160
+ "dataset_name": "eu",
161
+ "training_split": "train",
162
+ "validation_split": "eval",
163
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
164
+ "doc_to_target": "{{answer_right_ending-1}}",
165
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
166
+ "description": "",
167
+ "target_delimiter": " ",
168
+ "fewshot_delimiter": "\n\n",
169
+ "metric_list": [
170
+ {
171
+ "metric": "acc",
172
+ "aggregation": "mean",
173
+ "higher_is_better": true
174
+ }
175
+ ],
176
+ "output_type": "multiple_choice",
177
+ "repeats": 1,
178
+ "should_decontaminate": true,
179
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
180
+ "metadata": {
181
+ "version": 1.0
182
+ }
183
+ },
184
+ "xstorycloze_hi": {
185
+ "task": "xstorycloze_hi",
186
+ "group": "xstorycloze",
187
+ "dataset_path": "juletxara/xstory_cloze",
188
+ "dataset_name": "hi",
189
+ "training_split": "train",
190
+ "validation_split": "eval",
191
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
192
+ "doc_to_target": "{{answer_right_ending-1}}",
193
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
194
+ "description": "",
195
+ "target_delimiter": " ",
196
+ "fewshot_delimiter": "\n\n",
197
+ "metric_list": [
198
+ {
199
+ "metric": "acc",
200
+ "aggregation": "mean",
201
+ "higher_is_better": true
202
+ }
203
+ ],
204
+ "output_type": "multiple_choice",
205
+ "repeats": 1,
206
+ "should_decontaminate": true,
207
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
208
+ "metadata": {
209
+ "version": 1.0
210
+ }
211
+ },
212
+ "xstorycloze_id": {
213
+ "task": "xstorycloze_id",
214
+ "group": "xstorycloze",
215
+ "dataset_path": "juletxara/xstory_cloze",
216
+ "dataset_name": "id",
217
+ "training_split": "train",
218
+ "validation_split": "eval",
219
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
220
+ "doc_to_target": "{{answer_right_ending-1}}",
221
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
222
+ "description": "",
223
+ "target_delimiter": " ",
224
+ "fewshot_delimiter": "\n\n",
225
+ "metric_list": [
226
+ {
227
+ "metric": "acc",
228
+ "aggregation": "mean",
229
+ "higher_is_better": true
230
+ }
231
+ ],
232
+ "output_type": "multiple_choice",
233
+ "repeats": 1,
234
+ "should_decontaminate": true,
235
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
236
+ "metadata": {
237
+ "version": 1.0
238
+ }
239
+ },
240
+ "xstorycloze_my": {
241
+ "task": "xstorycloze_my",
242
+ "group": "xstorycloze",
243
+ "dataset_path": "juletxara/xstory_cloze",
244
+ "dataset_name": "my",
245
+ "training_split": "train",
246
+ "validation_split": "eval",
247
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
248
+ "doc_to_target": "{{answer_right_ending-1}}",
249
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
250
+ "description": "",
251
+ "target_delimiter": " ",
252
+ "fewshot_delimiter": "\n\n",
253
+ "metric_list": [
254
+ {
255
+ "metric": "acc",
256
+ "aggregation": "mean",
257
+ "higher_is_better": true
258
+ }
259
+ ],
260
+ "output_type": "multiple_choice",
261
+ "repeats": 1,
262
+ "should_decontaminate": true,
263
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
264
+ "metadata": {
265
+ "version": 1.0
266
+ }
267
+ },
268
+ "xstorycloze_ru": {
269
+ "task": "xstorycloze_ru",
270
+ "group": "xstorycloze",
271
+ "dataset_path": "juletxara/xstory_cloze",
272
+ "dataset_name": "ru",
273
+ "training_split": "train",
274
+ "validation_split": "eval",
275
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
276
+ "doc_to_target": "{{answer_right_ending-1}}",
277
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
278
+ "description": "",
279
+ "target_delimiter": " ",
280
+ "fewshot_delimiter": "\n\n",
281
+ "metric_list": [
282
+ {
283
+ "metric": "acc",
284
+ "aggregation": "mean",
285
+ "higher_is_better": true
286
+ }
287
+ ],
288
+ "output_type": "multiple_choice",
289
+ "repeats": 1,
290
+ "should_decontaminate": true,
291
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
292
+ "metadata": {
293
+ "version": 1.0
294
+ }
295
+ },
296
+ "xstorycloze_sw": {
297
+ "task": "xstorycloze_sw",
298
+ "group": "xstorycloze",
299
+ "dataset_path": "juletxara/xstory_cloze",
300
+ "dataset_name": "sw",
301
+ "training_split": "train",
302
+ "validation_split": "eval",
303
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
304
+ "doc_to_target": "{{answer_right_ending-1}}",
305
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
306
+ "description": "",
307
+ "target_delimiter": " ",
308
+ "fewshot_delimiter": "\n\n",
309
+ "metric_list": [
310
+ {
311
+ "metric": "acc",
312
+ "aggregation": "mean",
313
+ "higher_is_better": true
314
+ }
315
+ ],
316
+ "output_type": "multiple_choice",
317
+ "repeats": 1,
318
+ "should_decontaminate": true,
319
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
320
+ "metadata": {
321
+ "version": 1.0
322
+ }
323
+ },
324
+ "xstorycloze_te": {
325
+ "task": "xstorycloze_te",
326
+ "group": "xstorycloze",
327
+ "dataset_path": "juletxara/xstory_cloze",
328
+ "dataset_name": "te",
329
+ "training_split": "train",
330
+ "validation_split": "eval",
331
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
332
+ "doc_to_target": "{{answer_right_ending-1}}",
333
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
334
+ "description": "",
335
+ "target_delimiter": " ",
336
+ "fewshot_delimiter": "\n\n",
337
+ "metric_list": [
338
+ {
339
+ "metric": "acc",
340
+ "aggregation": "mean",
341
+ "higher_is_better": true
342
+ }
343
+ ],
344
+ "output_type": "multiple_choice",
345
+ "repeats": 1,
346
+ "should_decontaminate": true,
347
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
348
+ "metadata": {
349
+ "version": 1.0
350
+ }
351
+ },
352
+ "xstorycloze_zh": {
353
+ "task": "xstorycloze_zh",
354
+ "group": "xstorycloze",
355
+ "dataset_path": "juletxara/xstory_cloze",
356
+ "dataset_name": "zh",
357
+ "training_split": "train",
358
+ "validation_split": "eval",
359
+ "doc_to_text": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
360
+ "doc_to_target": "{{answer_right_ending-1}}",
361
+ "doc_to_choice": "{{[sentence_quiz1, sentence_quiz2]}}",
362
+ "description": "",
363
+ "target_delimiter": " ",
364
+ "fewshot_delimiter": "\n\n",
365
+ "metric_list": [
366
+ {
367
+ "metric": "acc",
368
+ "aggregation": "mean",
369
+ "higher_is_better": true
370
+ }
371
+ ],
372
+ "output_type": "multiple_choice",
373
+ "repeats": 1,
374
+ "should_decontaminate": true,
375
+ "doc_to_decontamination_query": "{{[input_sentence_1, input_sentence_2, input_sentence_3, input_sentence_4]|join(' ')}}",
376
+ "metadata": {
377
+ "version": 1.0
378
+ }
379
+ }
380
+ },
381
+ "versions": {
382
+ "xstorycloze": "N/A",
383
+ "xstorycloze_ar": 1.0,
384
+ "xstorycloze_en": 1.0,
385
+ "xstorycloze_es": 1.0,
386
+ "xstorycloze_eu": 1.0,
387
+ "xstorycloze_hi": 1.0,
388
+ "xstorycloze_id": 1.0,
389
+ "xstorycloze_my": 1.0,
390
+ "xstorycloze_ru": 1.0,
391
+ "xstorycloze_sw": 1.0,
392
+ "xstorycloze_te": 1.0,
393
+ "xstorycloze_zh": 1.0
394
+ },
395
+ "n-shot": {
396
+ "xstorycloze": 0,
397
+ "xstorycloze_ar": 0,
398
+ "xstorycloze_en": 0,
399
+ "xstorycloze_es": 0,
400
+ "xstorycloze_eu": 0,
401
+ "xstorycloze_hi": 0,
402
+ "xstorycloze_id": 0,
403
+ "xstorycloze_my": 0,
404
+ "xstorycloze_ru": 0,
405
+ "xstorycloze_sw": 0,
406
+ "xstorycloze_te": 0,
407
+ "xstorycloze_zh": 0
408
+ },
409
+ "config": {
410
+ "model": "hf",
411
+ "model_args": "pretrained=huggyllama/llama-7b,dtype=bfloat16,trust_remote_code=True",
412
+ "batch_size": "auto",
413
+ "batch_sizes": [
414
+ 8
415
+ ],
416
+ "device": null,
417
+ "use_cache": null,
418
+ "limit": null,
419
+ "bootstrap_iters": 100000,
420
+ "gen_kwargs": null
421
+ },
422
+ "git_hash": "9b1cd24"
423
+ }
lm-eval-output/huggyllama/llama-7b/xstorycloze/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd307979e78e81a7c67d5382b4b799268fbc747cb7a3b14753524853f9052358
3
+ size 45665
lm-eval-output/huggyllama/llama-7b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/result-jsonl.tar.gz ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed5d5ab6595623f1188a5b64004801c5494876b68d4442cc20a8bc024439ccb5
3
+ size 606624
lm-eval-output/huggyllama/llama-7b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/results.json ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "results": {
3
+ "xwinograd": {
4
+ "acc,none": 0.7597212856821758,
5
+ "acc_stderr,none": 0.07621979232315931,
6
+ "alias": "xwinograd"
7
+ },
8
+ "xwinograd_en": {
9
+ "acc,none": 0.88,
10
+ "acc_stderr,none": 0.006740838111907554,
11
+ "alias": " - xwinograd_en"
12
+ },
13
+ "xwinograd_fr": {
14
+ "acc,none": 0.6987951807228916,
15
+ "acc_stderr,none": 0.05066394254941721,
16
+ "alias": " - xwinograd_fr"
17
+ },
18
+ "xwinograd_jp": {
19
+ "acc,none": 0.5922836287799792,
20
+ "acc_stderr,none": 0.015876734592302294,
21
+ "alias": " - xwinograd_jp"
22
+ },
23
+ "xwinograd_pt": {
24
+ "acc,none": 0.7300380228136882,
25
+ "acc_stderr,none": 0.027426689796728774,
26
+ "alias": " - xwinograd_pt"
27
+ },
28
+ "xwinograd_ru": {
29
+ "acc,none": 0.6317460317460317,
30
+ "acc_stderr,none": 0.027219500732466696,
31
+ "alias": " - xwinograd_ru"
32
+ },
33
+ "xwinograd_zh": {
34
+ "acc,none": 0.628968253968254,
35
+ "acc_stderr,none": 0.02153951426767635,
36
+ "alias": " - xwinograd_zh"
37
+ }
38
+ },
39
+ "groups": {
40
+ "xwinograd": {
41
+ "acc,none": 0.7597212856821758,
42
+ "acc_stderr,none": 0.07621979232315931,
43
+ "alias": "xwinograd"
44
+ }
45
+ },
46
+ "configs": {
47
+ "xwinograd_en": {
48
+ "task": "xwinograd_en",
49
+ "group": [
50
+ "xwinograd"
51
+ ],
52
+ "dataset_path": "Muennighoff/xwinograd",
53
+ "dataset_name": "en",
54
+ "test_split": "test",
55
+ "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
56
+ "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
57
+ "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
58
+ "description": "",
59
+ "target_delimiter": " ",
60
+ "fewshot_delimiter": "\n\n",
61
+ "metric_list": [
62
+ {
63
+ "metric": "acc",
64
+ "aggregation": "mean",
65
+ "higher_is_better": true
66
+ }
67
+ ],
68
+ "output_type": "multiple_choice",
69
+ "repeats": 1,
70
+ "should_decontaminate": false,
71
+ "metadata": {
72
+ "version": 1.0
73
+ }
74
+ },
75
+ "xwinograd_fr": {
76
+ "task": "xwinograd_fr",
77
+ "group": [
78
+ "xwinograd"
79
+ ],
80
+ "dataset_path": "Muennighoff/xwinograd",
81
+ "dataset_name": "fr",
82
+ "test_split": "test",
83
+ "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
84
+ "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
85
+ "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
86
+ "description": "",
87
+ "target_delimiter": " ",
88
+ "fewshot_delimiter": "\n\n",
89
+ "metric_list": [
90
+ {
91
+ "metric": "acc",
92
+ "aggregation": "mean",
93
+ "higher_is_better": true
94
+ }
95
+ ],
96
+ "output_type": "multiple_choice",
97
+ "repeats": 1,
98
+ "should_decontaminate": false,
99
+ "metadata": {
100
+ "version": 1.0
101
+ }
102
+ },
103
+ "xwinograd_jp": {
104
+ "task": "xwinograd_jp",
105
+ "group": [
106
+ "xwinograd"
107
+ ],
108
+ "dataset_path": "Muennighoff/xwinograd",
109
+ "dataset_name": "jp",
110
+ "test_split": "test",
111
+ "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
112
+ "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
113
+ "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
114
+ "description": "",
115
+ "target_delimiter": " ",
116
+ "fewshot_delimiter": "\n\n",
117
+ "metric_list": [
118
+ {
119
+ "metric": "acc",
120
+ "aggregation": "mean",
121
+ "higher_is_better": true
122
+ }
123
+ ],
124
+ "output_type": "multiple_choice",
125
+ "repeats": 1,
126
+ "should_decontaminate": false,
127
+ "metadata": {
128
+ "version": 1.0
129
+ }
130
+ },
131
+ "xwinograd_pt": {
132
+ "task": "xwinograd_pt",
133
+ "group": [
134
+ "xwinograd"
135
+ ],
136
+ "dataset_path": "Muennighoff/xwinograd",
137
+ "dataset_name": "pt",
138
+ "test_split": "test",
139
+ "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
140
+ "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
141
+ "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
142
+ "description": "",
143
+ "target_delimiter": " ",
144
+ "fewshot_delimiter": "\n\n",
145
+ "metric_list": [
146
+ {
147
+ "metric": "acc",
148
+ "aggregation": "mean",
149
+ "higher_is_better": true
150
+ }
151
+ ],
152
+ "output_type": "multiple_choice",
153
+ "repeats": 1,
154
+ "should_decontaminate": false,
155
+ "metadata": {
156
+ "version": 1.0
157
+ }
158
+ },
159
+ "xwinograd_ru": {
160
+ "task": "xwinograd_ru",
161
+ "group": [
162
+ "xwinograd"
163
+ ],
164
+ "dataset_path": "Muennighoff/xwinograd",
165
+ "dataset_name": "ru",
166
+ "test_split": "test",
167
+ "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
168
+ "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
169
+ "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
170
+ "description": "",
171
+ "target_delimiter": " ",
172
+ "fewshot_delimiter": "\n\n",
173
+ "metric_list": [
174
+ {
175
+ "metric": "acc",
176
+ "aggregation": "mean",
177
+ "higher_is_better": true
178
+ }
179
+ ],
180
+ "output_type": "multiple_choice",
181
+ "repeats": 1,
182
+ "should_decontaminate": false,
183
+ "metadata": {
184
+ "version": 1.0
185
+ }
186
+ },
187
+ "xwinograd_zh": {
188
+ "task": "xwinograd_zh",
189
+ "group": [
190
+ "xwinograd"
191
+ ],
192
+ "dataset_path": "Muennighoff/xwinograd",
193
+ "dataset_name": "zh",
194
+ "test_split": "test",
195
+ "doc_to_text": "def doc_to_text(doc: Dict) -> int:\n \"\"\"\n Return index of the correct choice.\n\n Note: We are using the \"multiple input\" mode of the multiple-choice\n output-type, which means we use different contexts with the same target\n for the different choices, rather than the same context and different targets.\n \"\"\"\n answer_to_num = {\"1\": 0, \"2\": 1}\n return answer_to_num[doc[\"answer\"]]\n",
196
+ "doc_to_target": "def doc_to_target(doc: Dict) -> str:\n \"\"\"\n Return the target completion.\n\n Note that this does not depend on the correct choice as we are using\n \"multiple input\" mode.\n \"\"\"\n idx = doc[\"sentence\"].index(\"_\") + 1\n return doc[\"sentence\"][idx:].strip()\n",
197
+ "doc_to_choice": "def doc_to_choice(doc: Dict) -> List[str]:\n \"\"\"Return the choices that will be used as contexts in \"multiple input\" mode.\"\"\"\n idx = doc[\"sentence\"].index(\"_\")\n options = [doc[\"option1\"], doc[\"option2\"]]\n return [doc[\"sentence\"][:idx] + opt for opt in options]\n",
198
+ "description": "",
199
+ "target_delimiter": " ",
200
+ "fewshot_delimiter": "\n\n",
201
+ "metric_list": [
202
+ {
203
+ "metric": "acc",
204
+ "aggregation": "mean",
205
+ "higher_is_better": true
206
+ }
207
+ ],
208
+ "output_type": "multiple_choice",
209
+ "repeats": 1,
210
+ "should_decontaminate": false,
211
+ "metadata": {
212
+ "version": 1.0
213
+ }
214
+ }
215
+ },
216
+ "versions": {
217
+ "xwinograd": "N/A",
218
+ "xwinograd_en": 1.0,
219
+ "xwinograd_fr": 1.0,
220
+ "xwinograd_jp": 1.0,
221
+ "xwinograd_pt": 1.0,
222
+ "xwinograd_ru": 1.0,
223
+ "xwinograd_zh": 1.0
224
+ },
225
+ "n-shot": {
226
+ "xwinograd": 0,
227
+ "xwinograd_en": 0,
228
+ "xwinograd_fr": 0,
229
+ "xwinograd_jp": 0,
230
+ "xwinograd_pt": 0,
231
+ "xwinograd_ru": 0,
232
+ "xwinograd_zh": 0
233
+ },
234
+ "config": {
235
+ "model": "hf",
236
+ "model_args": "pretrained=huggyllama/llama-7b,dtype=bfloat16,trust_remote_code=True",
237
+ "batch_size": "auto",
238
+ "batch_sizes": [
239
+ 32
240
+ ],
241
+ "device": null,
242
+ "use_cache": null,
243
+ "limit": null,
244
+ "bootstrap_iters": 100000,
245
+ "gen_kwargs": null
246
+ },
247
+ "git_hash": "9b1cd24"
248
+ }
lm-eval-output/huggyllama/llama-7b/xwinograd/dtype=bfloat16,trust_remote_code=True-num_fewshot=-1-nvidia-gpu/taskrun.log ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ce6fb59079d066e20a80464d99eb987dde5588c40eb826ca5ddd5b9fd713ff7c
3
+ size 37738