Datasets:
ruanchaves
commited on
Commit
·
a85b37c
1
Parent(s):
1560080
Upload test_stanford.py
Browse files- test_stanford.py +123 -0
test_stanford.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Test-Stanford dataset by Bansal et al.."""
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
_CITATION = """
|
7 |
+
@misc{bansal2015deep,
|
8 |
+
title={Towards Deep Semantic Analysis Of Hashtags},
|
9 |
+
author={Piyush Bansal and Romil Bansal and Vasudeva Varma},
|
10 |
+
year={2015},
|
11 |
+
eprint={1501.03210},
|
12 |
+
archivePrefix={arXiv},
|
13 |
+
primaryClass={cs.IR}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """
|
18 |
+
Manually Annotated Stanford Sentiment Analysis Dataset by Bansal et al..
|
19 |
+
"""
|
20 |
+
_URLS = {
|
21 |
+
"test": "https://raw.githubusercontent.com/ruanchaves/hashformers/master/datasets/Test-Stanford.txt"
|
22 |
+
}
|
23 |
+
|
24 |
+
class TestStanford(datasets.GeneratorBasedBuilder):
|
25 |
+
|
26 |
+
VERSION = datasets.Version("1.0.0")
|
27 |
+
|
28 |
+
def _info(self):
|
29 |
+
return datasets.DatasetInfo(
|
30 |
+
description=_DESCRIPTION,
|
31 |
+
features=datasets.Features(
|
32 |
+
{
|
33 |
+
"index": datasets.Value("int32"),
|
34 |
+
"hashtag": datasets.Value("string"),
|
35 |
+
"segmentation": datasets.Value("string"),
|
36 |
+
"gold_position": datasets.Value("int32"),
|
37 |
+
"rank": datasets.Sequence(
|
38 |
+
{
|
39 |
+
"position": datasets.Value("int32"),
|
40 |
+
"candidate": datasets.Value("string")
|
41 |
+
}
|
42 |
+
)
|
43 |
+
}
|
44 |
+
),
|
45 |
+
supervised_keys=None,
|
46 |
+
homepage="",
|
47 |
+
citation=_CITATION,
|
48 |
+
)
|
49 |
+
|
50 |
+
def _split_generators(self, dl_manager):
|
51 |
+
downloaded_files = dl_manager.download(_URLS)
|
52 |
+
return [
|
53 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"] }),
|
54 |
+
]
|
55 |
+
|
56 |
+
def _generate_examples(self, filepath):
|
57 |
+
|
58 |
+
names = ["id","hashtag","candidate", "label"]
|
59 |
+
df = pd.read_csv(filepath, sep="\t", skiprows=1, header=None,
|
60 |
+
names=names)
|
61 |
+
|
62 |
+
for col in names[0:-1]:
|
63 |
+
df[col] = df[col].apply(lambda x: x.strip("'").strip())
|
64 |
+
|
65 |
+
records = df.to_dict('records')
|
66 |
+
|
67 |
+
output = []
|
68 |
+
|
69 |
+
current_hashtag = None
|
70 |
+
hashtag = None
|
71 |
+
candidates = []
|
72 |
+
ids = []
|
73 |
+
label = []
|
74 |
+
|
75 |
+
|
76 |
+
for row in records:
|
77 |
+
hashtag = row["hashtag"]
|
78 |
+
if current_hashtag != hashtag:
|
79 |
+
new_row = {
|
80 |
+
"hashtag": current_hashtag,
|
81 |
+
"candidate": candidates,
|
82 |
+
"id": ids,
|
83 |
+
"label": label
|
84 |
+
}
|
85 |
+
|
86 |
+
if current_hashtag:
|
87 |
+
output.append(new_row)
|
88 |
+
|
89 |
+
current_hashtag = row['hashtag']
|
90 |
+
candidates = [row["candidate"]]
|
91 |
+
ids = int(row["id"])
|
92 |
+
label = [int(row["label"])]
|
93 |
+
else:
|
94 |
+
candidates.append(row["candidate"])
|
95 |
+
label.append(int(row["label"]))
|
96 |
+
|
97 |
+
def get_gold_position(row):
|
98 |
+
try:
|
99 |
+
return row["label"].index(1)
|
100 |
+
except ValueError:
|
101 |
+
return None
|
102 |
+
|
103 |
+
def get_rank(row):
|
104 |
+
return [{
|
105 |
+
"position": idx + 1,
|
106 |
+
"candidate": item
|
107 |
+
} for idx, item in enumerate(row["candidate"])]
|
108 |
+
|
109 |
+
def get_segmentation(row):
|
110 |
+
try:
|
111 |
+
gold_idx = row["label"].index(1)
|
112 |
+
return row["candidate"][gold_idx]
|
113 |
+
except ValueError:
|
114 |
+
return None
|
115 |
+
|
116 |
+
for idx, row in enumerate(output):
|
117 |
+
yield idx, {
|
118 |
+
"index": int(row["id"]),
|
119 |
+
"hashtag": row["hashtag"],
|
120 |
+
"segmentation": get_segmentation(row),
|
121 |
+
"gold_position": get_gold_position(row),
|
122 |
+
"rank": get_rank(row)
|
123 |
+
}
|