Datasets:
ruanchaves
commited on
Commit
·
e34d40c
1
Parent(s):
a6ed06a
Upload bt11.py
Browse files
bt11.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""BT11"""
|
2 |
+
|
3 |
+
import datasets
|
4 |
+
import pandas as pd
|
5 |
+
from collections import deque
|
6 |
+
|
7 |
+
_CITATION = """
|
8 |
+
@inproceedings{li2018helpful,
|
9 |
+
title={Helpful or Not? An investigation on the feasibility of identifier splitting via CNN-BiLSTM-CRF.},
|
10 |
+
author={Li, Jiechu and Du, Qingfeng and Shi, Kun and He, Yu and Wang, Xin and Xu, Jincheng},
|
11 |
+
booktitle={SEKE},
|
12 |
+
pages={175--174},
|
13 |
+
year={2018}
|
14 |
+
}
|
15 |
+
"""
|
16 |
+
|
17 |
+
_DESCRIPTION = """
|
18 |
+
In programming languages, identifiers are tokens (also called symbols) which name language entities.
|
19 |
+
Some of the kinds of entities an identifier might denote include variables, types, labels, subroutines, and packages.
|
20 |
+
|
21 |
+
BT11 is a dataset for identifier segmentation,
|
22 |
+
i.e. the task of adding spaces between the words on a identifier.
|
23 |
+
"""
|
24 |
+
_URL = "https://raw.githubusercontent.com/ruanchaves/hashformers/master/datasets/bt11.csv"
|
25 |
+
|
26 |
+
class BT11(datasets.GeneratorBasedBuilder):
|
27 |
+
|
28 |
+
VERSION = datasets.Version("1.0.0")
|
29 |
+
|
30 |
+
def _info(self):
|
31 |
+
return datasets.DatasetInfo(
|
32 |
+
description=_DESCRIPTION,
|
33 |
+
features=datasets.Features(
|
34 |
+
{
|
35 |
+
"index": datasets.Value("int32"),
|
36 |
+
"identifier": datasets.Value("string"),
|
37 |
+
"segmentation": datasets.Value("string")
|
38 |
+
}
|
39 |
+
),
|
40 |
+
supervised_keys=None,
|
41 |
+
homepage="",
|
42 |
+
citation=_CITATION,
|
43 |
+
)
|
44 |
+
|
45 |
+
def _split_generators(self, dl_manager):
|
46 |
+
downloaded_files = dl_manager.download(_URL)
|
47 |
+
return [
|
48 |
+
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files}),
|
49 |
+
]
|
50 |
+
|
51 |
+
def _generate_examples(self, filepath):
|
52 |
+
|
53 |
+
def get_segmentation(needle, haystack, sep="-"):
|
54 |
+
print(needle, haystack)
|
55 |
+
output = haystack
|
56 |
+
needle = needle.lower()
|
57 |
+
haystack = haystack.lower()
|
58 |
+
counter = 0
|
59 |
+
pos = deque()
|
60 |
+
iterator = iter(haystack)
|
61 |
+
for char in needle:
|
62 |
+
if char == sep:
|
63 |
+
pos.appendleft(counter)
|
64 |
+
continue
|
65 |
+
while True:
|
66 |
+
try:
|
67 |
+
next_char = next(iterator)
|
68 |
+
counter += 1
|
69 |
+
if next_char == char:
|
70 |
+
break
|
71 |
+
except StopIteration:
|
72 |
+
break
|
73 |
+
while pos:
|
74 |
+
next_pos = pos.popleft()
|
75 |
+
output = output[:next_pos] + " " + output[next_pos:]
|
76 |
+
return output
|
77 |
+
|
78 |
+
df = pd.read_csv(filepath, header=None)[[0,1]]
|
79 |
+
df = df.dropna()
|
80 |
+
records = df.to_dict("records")
|
81 |
+
|
82 |
+
for idx, item in enumerate(records):
|
83 |
+
yield idx, {
|
84 |
+
"index": idx,
|
85 |
+
"identifier": item[0],
|
86 |
+
"segmentation": get_segmentation(item[1], item[0])
|
87 |
+
}
|