"""BT11""" import datasets import pandas as pd from collections import deque _CITATION = """ @inproceedings{li2018helpful, title={Helpful or Not? An investigation on the feasibility of identifier splitting via CNN-BiLSTM-CRF.}, author={Li, Jiechu and Du, Qingfeng and Shi, Kun and He, Yu and Wang, Xin and Xu, Jincheng}, booktitle={SEKE}, pages={175--174}, year={2018} } """ _DESCRIPTION = """ In programming languages, identifiers are tokens (also called symbols) which name language entities. Some of the kinds of entities an identifier might denote include variables, types, labels, subroutines, and packages. Binkley is a dataset for identifier segmentation, i.e. the task of adding spaces between the words on a identifier. """ _URL = "https://raw.githubusercontent.com/ruanchaves/hashformers/master/datasets/binkley.csv" class Binkley(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "index": datasets.Value("int32"), "identifier": datasets.Value("string"), "segmentation": datasets.Value("string") } ), supervised_keys=None, homepage="", citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download(_URL) return [ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files}), ] def _generate_examples(self, filepath): def get_segmentation(needle, haystack, sep="-"): output = haystack needle = needle.lower() haystack = haystack.lower() counter = 0 pos = deque() iterator = iter(haystack) for char in needle: if char == sep: pos.appendleft(counter) continue while True: try: next_char = next(iterator) counter += 1 if next_char == char: break except StopIteration: break while pos: next_pos = pos.popleft() output = output[:next_pos] + " " + output[next_pos:] return output df = pd.read_csv(filepath, header=None)[[0,1]] df = df.dropna() records = df.to_dict("records") for idx, item in enumerate(records): yield idx, { "index": idx, "identifier": item[0], "segmentation": get_segmentation(item[1], item[0]) }