Datasets:

Modalities:
Tabular
Text
Formats:
csv
Languages:
English
ArXiv:
DOI:
Libraries:
Datasets
pandas
roupenminassian commited on
Commit
de0e697
·
verified ·
1 Parent(s): 86967e2

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -2
README.md CHANGED
@@ -11,7 +11,7 @@ language:
11
 
12
  ### Dataset Summary
13
 
14
- This dataset is a compilation of several existing datasets focused on misinformation detection, disaster-related tweets, and fact-checking. It combines data from multiple sources to create a comprehensive dataset for training misinformation detection models.
15
 
16
  ### Supported Tasks and Leaderboards
17
 
@@ -194,6 +194,22 @@ Note: This dataset is intended for academic and non-commercial use only, in comp
194
 
195
  ### Citation Information
196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
197
  ```bibtex
198
  @inproceedings{nielsen2022mumin,
199
  title={MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset},
@@ -219,4 +235,5 @@ Note: This dataset is intended for academic and non-commercial use only, in comp
219
  year={2019},
220
  publisher={Kaggle},
221
  howpublished={\url{https://kaggle.com/competitions/nlp-getting-started}}
222
- }
 
 
11
 
12
  ### Dataset Summary
13
 
14
+ This dataset is a compilation of several existing datasets focused on misinformation detection, disaster-related tweets, and fact-checking. It combines data from multiple sources to create a comprehensive dataset for training misinformation detection models. This dataset has been utilized in research studying backdoor attacks in textual content, notably in "Claim-Guided Textual Backdoor Attack for Practical Applications" (Song et al., 2024).
15
 
16
  ### Supported Tasks and Leaderboards
17
 
 
194
 
195
  ### Citation Information
196
 
197
+ If you use this dataset in your research, please cite both the original source datasets and any relevant papers using this compiled dataset:
198
+
199
+ Research Using This Dataset:
200
+ ```bibtex
201
+ @misc{song2024claimguidedtextualbackdoorattack,
202
+ title={Claim-Guided Textual Backdoor Attack for Practical Applications},
203
+ author={Minkyoo Song and Hanna Kim and Jaehan Kim and Youngjin Jin and Seungwon Shin},
204
+ year={2024},
205
+ eprint={2409.16618},
206
+ archivePrefix={arXiv},
207
+ primaryClass={cs.CL},
208
+ url={https://arxiv.org/abs/2409.16618},
209
+ }
210
+ ```
211
+
212
+ Source Datasets:
213
  ```bibtex
214
  @inproceedings{nielsen2022mumin,
215
  title={MuMiN: A Large-Scale Multilingual Multimodal Fact-Checked Misinformation Social Network Dataset},
 
235
  year={2019},
236
  publisher={Kaggle},
237
  howpublished={\url{https://kaggle.com/competitions/nlp-getting-started}}
238
+ }
239
+ ```