Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
asahi417 commited on
Commit
e480913
·
1 Parent(s): 3ba8c94

fix readme

Browse files
data/nell.test.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:fa48d27aba4c3b82c2369313fc7a0436103fcb27115efc4159e8b50d988a6fa3
3
- size 510425
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b60c8ecdf2b65507920b8f11a174d0bc06edc515b2362c4be65aab13fbdb2944
3
+ size 309267
data/nell.train.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:bc4c73fdae5db374da7855e421176dc09462cc72366040d39ce42d7ec333460d
3
- size 1997185
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e63db71dd103c5cb9bb96650794dcf0d198e28d737ee8f07bd73e6961ee07887
3
+ size 1206120
data/nell.validation.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c44da469d07e6c45d8bd71cf84b8abc33b0d4ecf41d395c563f055db58ed0919
3
- size 222265
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ec1b1d9c96142c349d28ae381357ed34a98e53b2e88bc4f77e7016e7545c27c
3
+ size 132754
data/nell.vocab.clean.txt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:af38d1a58200cf9a3aa0c0d5e76c30202eff02c0cbd353f1c92640fd3fb0d422
3
- size 884124
 
 
 
 
data/nell.vocab.raw.txt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:29af9862df4777ce613d72e94c460ade35e60477704fa7a48274cc803ca7ea4f
3
- size 2114701
 
 
 
 
data/nell_filter.test.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7080aa24a120c206d15c89bdeb659613f98943e1a777dc0470d2ba220789f537
3
- size 328006
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2f8255ce0bb2c77c8a82fbb561ba299189acd79c99f55d3d4beb1a30da98d023
3
+ size 197545
data/nell_filter.train.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d5c399247378d26aaf06b3d6bc4770eb861805527311b188aba9a9243b45b84b
3
- size 1303312
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:966b6dda11cec02a0b98762cd4eb277bf6a7f46eaf1f2bc4ff3a23b09a0c6a94
3
+ size 780354
data/nell_filter.validation.jsonl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:95da57e7d4674775756c8fdd3e262c1aebb094c65e4c0596a0ae0e859bf38c43
3
- size 190916
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb7d3c43f4a4558f0ae8a3908b025cdcc889de28af65441f24afacde5522169c
3
+ size 114372
data/wiki.test.jsonl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:e16fa1f1e7a2e0b6987ba4cde8944771b5b9bd3465f8b872b2cdc324eacd05f0
3
- size 2044049
 
 
 
 
data/wiki.train.jsonl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:56b7715a33bdcaced2fbfdb22784d172840c9f2c21fd168defd2e79cff93bd15
3
- size 8154793
 
 
 
 
data/wiki.validation.jsonl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:200139f320505ba16456a9b2c6e0b9eefd65c111fb990c9a06b6ea66d4d138bf
3
- size 883589
 
 
 
 
data/wiki.vocab.raw.txt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8491e7a8cd96a74c74667adfa3a8403d6040a1aaf265f8b8d2161fb2c684d119
3
- size 46168647
 
 
 
 
data/wiki.vocab.txt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:8491e7a8cd96a74c74667adfa3a8403d6040a1aaf265f8b8d2161fb2c684d119
3
- size 46168647
 
 
 
 
generate_filtered_data.py DELETED
@@ -1,87 +0,0 @@
1
- import json
2
-
3
-
4
- non_entity_types = [
5
- 'academicfield',
6
- 'agent',
7
- 'agriculturalproduct',
8
- 'amphibian',
9
- 'animal',
10
- 'aquarium',
11
- 'arachnid',
12
- 'architect',
13
- 'arthropod',
14
- 'bakedgood',
15
- 'bathroomitem',
16
- 'bedroomitem',
17
- 'beverage',
18
- 'bird',
19
- 'blog',
20
- 'bodypart',
21
- 'bone',
22
- 'candy',
23
- 'cave',
24
- 'chemical',
25
- 'clothing',
26
- 'coffeedrink',
27
- 'condiment',
28
- 'crimeorcharge',
29
- 'crustacean',
30
- 'date',
31
- 'dateliteral',
32
- 'economicsector',
33
- 'fish',
34
- 'food',
35
- 'fruit',
36
- 'fungus',
37
- 'furniture',
38
- 'grain',
39
- 'hallwayitem',
40
- 'hobby',
41
- 'insect',
42
- 'invertebrate',
43
- 'jobposition',
44
- 'kitchenitem',
45
- 'landscapefeatures',
46
- 'legume',
47
- 'location',
48
- 'mammal',
49
- 'meat',
50
- 'mlsoftware',
51
- 'mollusk',
52
- 'month',
53
- 'nut',
54
- 'officebuildingroom',
55
- 'physiologicalcondition',
56
- 'plant',
57
- 'politicsissue',
58
- 'profession',
59
- 'professionalorganization',
60
- 'reptile',
61
- 'room',
62
- 'sport',
63
- 'tableitem',
64
- 'tradeunion',
65
- 'vegetable',
66
- 'vehicle',
67
- 'vertebrate',
68
- 'weapon',
69
- 'wine'
70
- ]
71
-
72
- full_data = {}
73
- for s in ["train", "validation", "test"]:
74
- with open(f"data/nell.{s}.jsonl") as f:
75
- data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
76
- data = [i for i in data if i['head_type'] not in non_entity_types and i['tail_type'] not in non_entity_types]
77
- with open(f"data/nell_filter.{s}.jsonl", "w") as f:
78
- f.write('\n'.join([json.dumps(i) for i in data]))
79
-
80
-
81
- with open("data/nell.vocab.txt") as f:
82
- vocab = [i.split("\t") for i in f.read().split('\n')]
83
-
84
- vocab = ["\t".join([a, b]) for a, b in vocab if b not in non_entity_types]
85
- with open("data/nell_filter.vocab.txt", 'w') as f:
86
- f.write('\n'.join(vocab))
87
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
nell.py CHANGED
@@ -5,7 +5,7 @@ import datasets
5
  logger = datasets.logging.get_logger(__name__)
6
  _DESCRIPTION = """Few shots link prediction dataset. """
7
  _NAME = "nell"
8
- _VERSION = "0.0.6"
9
  _CITATION = """
10
  @inproceedings{xiong-etal-2018-one,
11
  title = "One-Shot Relational Learning for Knowledge Graphs",
@@ -28,12 +28,6 @@ _CITATION = """
28
 
29
  _HOME_PAGE = "https://github.com/asahi417/relbert"
30
  _URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/data'
31
- # _TYPES = ["nell_filter", "nell", "wiki"]
32
- # _URLS = {i: {
33
- # str(datasets.Split.TRAIN): [f'{_URL}/{i}.train.jsonl'],
34
- # str(datasets.Split.VALIDATION): [f'{_URL}/{i}.validation.jsonl'],
35
- # str(datasets.Split.TEST): [f'{_URL}/{i}.test.jsonl']
36
- # } for i in _TYPES}
37
  _TYPE = "nell_filter"
38
  _URLS = {
39
  str(datasets.Split.TRAIN): [f'{_URL}/{_TYPE}.train.jsonl'],
 
5
  logger = datasets.logging.get_logger(__name__)
6
  _DESCRIPTION = """Few shots link prediction dataset. """
7
  _NAME = "nell"
8
+ _VERSION = "0.0.7"
9
  _CITATION = """
10
  @inproceedings{xiong-etal-2018-one,
11
  title = "One-Shot Relational Learning for Knowledge Graphs",
 
28
 
29
  _HOME_PAGE = "https://github.com/asahi417/relbert"
30
  _URL = f'https://huggingface.co/datasets/relbert/{_NAME}/resolve/main/data'
 
 
 
 
 
 
31
  _TYPE = "nell_filter"
32
  _URLS = {
33
  str(datasets.Split.TRAIN): [f'{_URL}/{_TYPE}.train.jsonl'],
process.py CHANGED
@@ -15,7 +15,6 @@ import re
15
  from itertools import chain
16
 
17
  data_dir_nell = "NELL"
18
- data_dir_wiki = "Wiki"
19
  os.makedirs("data", exist_ok=True)
20
 
21
  short = ['alcs', "uk", "us", "usa", "npr", "nbc", "bbc", "cnn", "abc", "cbs", "nfl", "mlb", "nba", "nhl", "pga", "ncaa",
@@ -114,19 +113,11 @@ if not os.path.exists(data_dir_nell):
114
  "wget https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz\n"
115
  "tar -xzf nell.tar.gz")
116
 
117
- if not os.path.exists(data_dir_wiki):
118
- raise ValueError("Please download the dataset first\n"
119
- "wget https://sites.cs.ucsb.edu/~xwhan/datasets/wiki.tar.gz\n"
120
- "tar -xzf wiki.tar.gz")
121
-
122
 
123
  def read_file(_file):
124
  with open(_file, 'r') as f_reader:
125
  tmp = json.load(f_reader)
126
  flatten = list(chain(*[[{"relation": r, "head": h, "tail": t} for (h, r, t) in v] for v in tmp.values()]))
127
- # flatten = {}
128
- # for k, v in tmp.items():
129
- # flatten[k] = [{"relation": r, "head": h, "tail": t} for (h, r, t) in v]
130
  return flatten
131
 
132
 
@@ -137,37 +128,47 @@ def read_vocab(_file):
137
 
138
 
139
  if __name__ == '__main__':
 
140
  vocab = read_vocab(f"{data_dir_nell}/ent2ids")
141
- with open("data/nell.vocab.raw.txt", 'w') as f:
142
- f.write("\n".join(vocab))
143
  vocab = [clean(i) for i in vocab if len(i.split(":")) > 2]
144
  vocab = ["\t".join(i) for i in vocab if len(i[0]) > 0 and len(i[1]) > 0]
145
  with open("data/nell.vocab.txt", 'w') as f:
146
  f.write("\n".join(vocab))
147
-
148
- vocab = read_vocab(f"{data_dir_wiki}/ent2ids")
149
- with open("data/wiki.vocab.raw.txt", 'w') as f:
150
- f.write("\n".join(vocab))
151
 
152
  for i, s in zip(['dev_tasks.json', 'test_tasks.json', 'train_tasks.json'], ['validation', 'test', 'train']):
153
  d = read_file(f"{data_dir_nell}/{i}")
 
154
  for _d in d:
155
- head_entity, head_type = clean(_d['head'])
156
- _d['head_entity'] = head_entity
 
 
 
157
  _d['head_type'] = head_type
 
158
 
159
- tail_entity, tail_type = clean(_d['tail'])
160
- _d['tail_entity'] = tail_entity
161
  _d['tail_type'] = tail_type
 
162
 
163
  with open(f"data/nell.{s}.jsonl", "w") as f:
164
  f.write("\n".join([json.dumps(_d) for _d in d]))
165
 
166
- d = read_file(f"{data_dir_wiki}/{i}")
167
- for _d in d:
168
- _d['head_entity'] = ''
169
- _d['head_type'] = ''
170
- _d['tail_entity'] = ''
171
- _d['tail_type'] = ''
172
- with open(f"data/wiki.{s}.jsonl", "w") as f:
173
- f.write("\n".join([json.dumps(_d) for _d in d]))
 
 
 
 
 
 
 
 
 
15
  from itertools import chain
16
 
17
  data_dir_nell = "NELL"
 
18
  os.makedirs("data", exist_ok=True)
19
 
20
  short = ['alcs', "uk", "us", "usa", "npr", "nbc", "bbc", "cnn", "abc", "cbs", "nfl", "mlb", "nba", "nhl", "pga", "ncaa",
 
113
  "wget https://sites.cs.ucsb.edu/~xwhan/datasets/nell.tar.gz\n"
114
  "tar -xzf nell.tar.gz")
115
 
 
 
 
 
 
116
 
117
  def read_file(_file):
118
  with open(_file, 'r') as f_reader:
119
  tmp = json.load(f_reader)
120
  flatten = list(chain(*[[{"relation": r, "head": h, "tail": t} for (h, r, t) in v] for v in tmp.values()]))
 
 
 
121
  return flatten
122
 
123
 
 
128
 
129
 
130
  if __name__ == '__main__':
131
+ # Process raw data
132
  vocab = read_vocab(f"{data_dir_nell}/ent2ids")
 
 
133
  vocab = [clean(i) for i in vocab if len(i.split(":")) > 2]
134
  vocab = ["\t".join(i) for i in vocab if len(i[0]) > 0 and len(i[1]) > 0]
135
  with open("data/nell.vocab.txt", 'w') as f:
136
  f.write("\n".join(vocab))
137
+ vocab_term = [i.split('\t')[0] for i in vocab]
 
 
 
138
 
139
  for i, s in zip(['dev_tasks.json', 'test_tasks.json', 'train_tasks.json'], ['validation', 'test', 'train']):
140
  d = read_file(f"{data_dir_nell}/{i}")
141
+
142
  for _d in d:
143
+ head = _d.pop("head")
144
+ tail = _d.pop("tail")
145
+
146
+ head_entity, head_type = clean(head)
147
+ _d['head'] = head_entity
148
  _d['head_type'] = head_type
149
+ assert head_entity in vocab_term, head_entity
150
 
151
+ tail_entity, tail_type = clean(tail)
152
+ _d['tail'] = tail_entity
153
  _d['tail_type'] = tail_type
154
+ assert tail_entity in vocab_term, tail_entity
155
 
156
  with open(f"data/nell.{s}.jsonl", "w") as f:
157
  f.write("\n".join([json.dumps(_d) for _d in d]))
158
 
159
+ # Filter entity relation
160
+ full_data = {}
161
+ for s in ["train", "validation", "test"]:
162
+ with open(f"data/nell.{s}.jsonl") as f:
163
+ data = [json.loads(i) for i in f.read().split('\n') if len(i) > 0]
164
+ data = [i for i in data if i['head_type'] not in non_entity_types and i['tail_type'] not in non_entity_types]
165
+ with open(f"data/nell_filter.{s}.jsonl", "w") as f:
166
+ f.write('\n'.join([json.dumps(i) for i in data]))
167
+
168
+ with open("data/nell.vocab.txt") as f:
169
+ vocab = [i.split("\t") for i in f.read().split('\n')]
170
+
171
+ vocab = ["\t".join([a, b]) for a, b in vocab if b not in non_entity_types]
172
+ with open("data/nell_filter.vocab.txt", 'w') as f:
173
+ f.write('\n'.join(vocab))
174
+
stats/stats.test.entity.csv DELETED
@@ -1,64 +0,0 @@
1
- entity_type,nell (head),nell_filter (head),nell (tail),nell_filter (tail)
2
- politicianus,352,352,360,360
3
- sportsteam,295,295,0,0
4
- automobilemaker,274,273,54,54
5
- insect,230,0,270,0
6
- automobilemodel,100,100,0,0
7
- animal,97,0,30,0
8
- sport,93,0,74,0
9
- agriculturalproduct,87,0,0,0
10
- sportsgame,74,0,0,0
11
- product,62,62,0,0
12
- software,42,42,0,0
13
- city,42,42,161,161
14
- stateorprovince,38,38,0,0
15
- athlete,34,0,59,59
16
- arthropod,32,0,41,0
17
- organization,32,32,2,2
18
- beverage,27,0,0,0
19
- country,27,27,317,91
20
- geopoliticallocation,24,24,14,8
21
- mammal,23,0,0,0
22
- politician,23,23,58,58
23
- person,14,0,96,96
24
- invertebrate,14,0,43,0
25
- personmexico,13,0,20,20
26
- coffeedrink,11,0,0,0
27
- school,11,11,0,0
28
- crustacean,11,0,25,0
29
- county,10,10,4,4
30
- hobby,10,0,0,0
31
- vegetable,8,0,0,0
32
- personaustralia,4,0,5,5
33
- videogame,4,4,0,0
34
- reptile,4,0,0,0
35
- celebrity,4,4,2,2
36
- food,4,0,0,0
37
- male,3,1,5,5
38
- visualizablescene,3,3,3,3
39
- female,3,3,3,3
40
- vehicle,2,0,0,0
41
- amphibian,2,0,0,0
42
- grain,2,0,0,0
43
- arachnid,1,0,6,0
44
- drug,1,1,0,0
45
- personus,1,1,6,6
46
- professor,1,1,0,0
47
- legume,1,0,0,0
48
- coach,1,0,245,245
49
- chemical,1,0,0,0
50
- company,1,1,147,144
51
- mlsoftware,1,0,0,0
52
- island,1,1,0,0
53
- geopoliticalorganization,1,1,17,7
54
- personnorthamerica,1,0,3,3
55
- fruit,1,0,0,0
56
- planet,0,0,1,1
57
- biotechcompany,0,0,11,10
58
- bodypart,0,0,69,0
59
- location,0,0,2,0
60
- journalist,0,0,1,1
61
- astronaut,0,0,1,1
62
- director,0,0,1,1
63
- personeurope,0,0,1,1
64
- criminal,0,0,1,1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stats/stats.test.relation.csv DELETED
@@ -1,12 +0,0 @@
1
- relation_type,nell,nell_filter
2
- concept:animalsuchasinvertebrate,415,0
3
- concept:politicianusendorsespoliticianus,386,386
4
- concept:teamcoach,341,341
5
- concept:producedby,213,209
6
- concept:automobilemakerdealersincity,178,177
7
- concept:geopoliticallocationresidenceofpersion,143,143
8
- concept:agriculturalproductcamefromcountry,140,0
9
- concept:sportschoolincountry,103,0
10
- concept:automobilemakerdealersincountry,96,96
11
- concept:sportsgamesport,74,0
12
- concept:athleteinjuredhisbodypart,69,0
 
 
 
 
 
 
 
 
 
 
 
 
 
stats/stats.train.entity.csv DELETED
@@ -1,150 +0,0 @@
1
- entity_type,nell (head),nell_filter (head),nell (tail),nell_filter (tail)
2
- insect,782,0,904,0
3
- country,774,755,885,455
4
- ceo,433,423,1,0
5
- politicianus,416,408,25,12
6
- sportsteam,392,392,430,430
7
- academicfield,388,0,377,0
8
- sportsleague,356,356,12,12
9
- athlete,353,353,22,21
10
- city,352,342,864,852
11
- person,351,350,296,256
12
- weapon,339,0,0,0
13
- stateorprovince,263,254,736,602
14
- animal,245,0,23,0
15
- geopoliticallocation,195,184,135,112
16
- agriculturalproduct,170,0,56,0
17
- food,163,0,58,0
18
- airport,152,152,0,0
19
- sport,139,0,0,0
20
- male,132,132,81,78
21
- automobilemaker,131,131,29,29
22
- musicartist,121,118,5,5
23
- female,117,116,8,8
24
- bank,109,109,126,126
25
- musicgenre,107,107,107,107
26
- politician,107,107,10,5
27
- arthropod,103,0,86,0
28
- drug,92,91,0,0
29
- crimeorcharge,83,0,0,0
30
- vegetable,81,0,145,0
31
- company,79,76,549,549
32
- mammal,72,0,31,0
33
- personmexico,57,57,16,14
34
- school,54,54,1,1
35
- clothing,52,0,0,0
36
- crustacean,46,0,31,0
37
- personus,42,41,25,21
38
- transportation,38,36,2,2
39
- personaustralia,38,38,6,5
40
- county,36,36,39,39
41
- candy,34,0,0,0
42
- geopoliticalorganization,32,28,90,68
43
- beverage,30,0,20,0
44
- grain,29,0,6,0
45
- coach,29,29,62,61
46
- invertebrate,28,0,8,0
47
- arachnid,25,0,17,0
48
- governmentorganization,25,25,95,95
49
- organization,24,23,87,86
50
- fish,21,0,75,0
51
- visualizablescene,20,20,7,7
52
- personcanada,19,19,15,14
53
- meat,19,0,0,0
54
- island,15,15,4,4
55
- hobby,15,0,0,0
56
- biotechcompany,14,14,80,80
57
- economicsector,12,0,14,0
58
- bathroomitem,11,0,0,0
59
- website,10,7,32,31
60
- personnorthamerica,10,9,7,6
61
- personeurope,9,9,8,7
62
- professor,7,7,2,2
63
- port,7,7,0,0
64
- university,6,3,15,15
65
- celebrity,6,6,5,5
66
- actor,6,6,3,2
67
- scientist,5,5,2,2
68
- wine,5,0,4,0
69
- musician,5,5,124,124
70
- bakedgood,4,0,0,0
71
- bone,4,0,0,0
72
- attraction,4,4,2,1
73
- astronaut,4,4,0,0
74
- coffeedrink,4,0,0,0
75
- building,4,4,2,0
76
- monarch,4,4,3,3
77
- journalist,4,4,1,0
78
- fruit,3,0,0,0
79
- newspaper,3,3,2,2
80
- bird,3,0,22,0
81
- vertebrate,3,0,18,0
82
- criminal,3,3,1,0
83
- amphibian,3,0,6,0
84
- winery,2,0,0,0
85
- director,2,2,0,0
86
- mollusk,2,0,0,0
87
- bedroomitem,2,0,0,0
88
- politicsblog,2,2,6,3
89
- kitchenitem,2,0,0,0
90
- visualizablething,2,1,3,1
91
- model,2,2,0,0
92
- bodypart,1,0,0,0
93
- visualizableobject,1,0,1,0
94
- politicsissue,1,0,10,0
95
- recordlabel,1,1,13,13
96
- personafrica,1,1,4,3
97
- continent,1,0,1,1
98
- furniture,1,0,0,0
99
- reptile,1,0,12,0
100
- retailstore,1,1,15,15
101
- personasia,1,1,3,3
102
- location,1,0,6,0
103
- fungus,1,0,0,0
104
- writer,1,0,6,3
105
- creditunion,1,1,0,0
106
- condiment,1,0,0,0
107
- hallwayitem,1,0,0,0
108
- comedian,1,1,1,0
109
- tableitem,1,0,0,0
110
- publication,1,1,21,21
111
- planet,1,1,0,0
112
- museum,1,1,5,5
113
- personsouthamerica,1,1,1,1
114
- legume,0,0,6,0
115
- petroleumrefiningcompany,0,0,6,6
116
- tradeunion,0,0,2,0
117
- televisionnetwork,0,0,1,1
118
- nut,0,0,1,0
119
- blog,0,0,17,0
120
- disease,0,0,269,92
121
- architect,0,0,1,0
122
- profession,0,0,1,0
123
- televisionstation,0,0,221,221
124
- nongovorganization,0,0,5,4
125
- physiologicalcondition,0,0,2,0
126
- cave,0,0,1,0
127
- zoo,0,0,1,1
128
- caf_,0,0,1,1
129
- visualartist,0,0,1,0
130
- magazine,0,0,5,5
131
- nonprofitorganization,0,0,2,2
132
- hotel,0,0,3,1
133
- park,0,0,1,1
134
- professionalorganization,0,0,9,0
135
- plant,0,0,82,0
136
- landscapefeatures,0,0,8,0
137
- aquarium,0,0,1,0
138
- trainstation,0,0,2,2
139
- agent,0,0,1,0
140
- month,0,0,48,0
141
- date,0,0,2,0
142
- politicalparty,0,0,6,6
143
- radiostation,0,0,93,93
144
- officebuildingroom,0,0,6,0
145
- jobposition,0,0,5,0
146
- river,0,0,4,4
147
- dateliteral,0,0,1,0
148
- stadiumoreventvenue,0,0,417,417
149
- room,0,0,10,0
150
- politicaloffice,0,0,216,216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stats/stats.train.relation.csv DELETED
@@ -1,52 +0,0 @@
1
- relation_type,nell,nell_filter
2
- concept:athleteledsportsteam,424,424
3
- concept:academicfieldsuchasacademicfield,401,0
4
- concept:topmemberoforganization,364,354
5
- concept:teamplaysincity,338,338
6
- concept:citytelevisionstation,316,316
7
- concept:animalsuchasinsect,291,0
8
- concept:hasofficeincountry,283,283
9
- concept:leaguestadiums,279,279
10
- concept:ceoof,276,271
11
- concept:politicianrepresentslocation,260,258
12
- concept:weaponmadeincountry,257,0
13
- concept:animalthatfeedoninsect,238,0
14
- concept:personmovedtostateorprovince,225,225
15
- concept:arthropodandotherarthropod,222,0
16
- concept:politicianusholdsoffice,222,216
17
- concept:countrycapital,213,211
18
- concept:airportincity,210,210
19
- concept:inverseofarthropodcalledarthropod,199,0
20
- concept:countryhascitizen,183,182
21
- concept:countryoforganizationheadquarters,181,166
22
- concept:animaleatvegetable,178,0
23
- concept:countrystates,169,169
24
- concept:sportfansincountry,154,0
25
- concept:statehascapital,151,151
26
- concept:teamhomestadium,138,138
27
- concept:invertebratefeedonfood,136,0
28
- concept:agriculturalproductcomingfromvertebrate,125,0
29
- concept:fooddecreasestheriskofdisease,122,1
30
- concept:personleadsgeopoliticalorganization,120,120
31
- concept:stateorprovinceoforganizationheadquarters,120,118
32
- concept:musicartistmusician,118,118
33
- concept:itemexistsatlocation,110,0
34
- concept:fatherofperson,108,108
35
- concept:musicgenressuchasmusicgenres,107,107
36
- concept:countriessuchascountries,100,100
37
- concept:cityradiostation,99,99
38
- concept:wifeof,99,99
39
- concept:agriculturalproducttoattractinsect,97,0
40
- concept:drugpossiblytreatsphysiologicalcondition,92,91
41
- concept:crimeorchargeofperson,83,0
42
- concept:agriculturalproductgrowinginstateorprovince,79,0
43
- concept:automobilemakercardealersinstateorprovince,78,78
44
- concept:personalsoknownas,78,78
45
- concept:animalsuchasfish,74,0
46
- concept:leaguecoaches,71,71
47
- concept:organizationnamehasacronym,61,61
48
- concept:bankboughtbank,59,58
49
- concept:foodcancausedisease,57,0
50
- concept:vegetableproductioninstateorprovince,56,0
51
- concept:clothingmadefromplant,54,0
52
- concept:organizationdissolvedatdate,51,0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stats/stats.validation.entity.csv DELETED
@@ -1,32 +0,0 @@
1
- entity_type,nell (head),nell_filter (head),nell (tail),nell_filter (tail)
2
- city,316,316,316,316
3
- bank,144,144,0,0
4
- sport,125,0,0,0
5
- person,116,116,131,131
6
- geopoliticallocation,96,96,29,29
7
- governmentorganization,74,74,0,0
8
- female,38,38,9,9
9
- male,37,37,52,52
10
- personeurope,14,14,4,4
11
- county,11,11,11,11
12
- geopoliticalorganization,8,8,21,21
13
- monarch,4,4,1,1
14
- island,4,4,6,6
15
- politicianus,3,3,71,71
16
- visualizablescene,3,3,3,3
17
- personus,2,2,0,0
18
- politicalparty,2,2,0,0
19
- writer,1,1,0,0
20
- room,1,0,0,0
21
- visualizablething,1,1,1,1
22
- organization,1,1,1,1
23
- criminal,1,1,0,0
24
- company,1,1,0,0
25
- athlete,1,1,2,2
26
- scientist,0,0,1,1
27
- coach,0,0,3,3
28
- astronaut,0,0,1,1
29
- politician,0,0,1,1
30
- stadiumoreventvenue,0,0,125,0
31
- personsouthamerica,0,0,17,17
32
- country,0,0,198,197
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
stats/stats.validation.relation.csv DELETED
@@ -1,6 +0,0 @@
1
- relation_type,nell,nell_filter
2
- concept:cityalsoknownas,356,356
3
- concept:bankbankincountry,230,229
4
- concept:parentofperson,217,217
5
- concept:sportusesstadium,125,0
6
- concept:politicalgroupofpoliticianus,76,76
 
 
 
 
 
 
 
stats/stats.vocab.csv DELETED
@@ -1,280 +0,0 @@
1
- entity_type,nell,nell_filter,sample
2
- person,4026,4026,"George P Schultz, Arthur, Les Miserables"
3
- book,3835,3835,"The Heart Of The Matter, Leadership, Battlefield Earth"
4
- city,3020,3020,"Kyoto, Maryville, Name"
5
- athlete,2965,2965,"Linas Kleiza, Josh Butler, Jose Acevedo"
6
- company,2520,2520,"Dialogic, Kfqx, Kdse"
7
- sportsteam,1799,1799,"Crew, Winston Salem State Rams, Se Missouri State Indians"
8
- clothing,1589,0,"calico, mini skirt, bag"
9
- writer,1345,1345,"Max Frisch, Michael J Fox, Joyce Grenfell"
10
- academicfield,1154,0,"resource management, wellness, communications studies"
11
- drug,1030,1030,"Diltiazem, Tambocor, Trazodone"
12
- televisionstation,1018,1018,"Wutb, Wfft Tv, Wvny Tv"
13
- geopoliticallocation,1016,1016,"Baltic States, Macau, Sides"
14
- personus,996,996,"Gore Vidal, Khaled Hosseini, Tommy Shaw"
15
- weapon,932,0,"gas imports, battle ready swords, pulse rifles"
16
- coach,924,924,"Shanahan, Jeff Turner, Washington Redskins"
17
- journalist,875,875,"Mara Liasson, Patient, Scott Bordow"
18
- room,848,0,"study, open plan bedroom, second living area"
19
- musicartist,814,814,"Howard, Black Uhuru, Michael Schenker"
20
- politicianus,713,713,"Kevin Johnson, Dianne Feinstein, Richard Daley"
21
- stadiumoreventvenue,648,648,"Coliseum, Scottrade Center, Nippert Stadium"
22
- officebuildingroom,636,0,"one bedroom cottages, third guest bedroom, deluxe master bath"
23
- movie,620,620,"City Of God, Rope, Halloween"
24
- chemical,620,0,"atmospheric pollution, alkaline, oil"
25
- ceo,619,619,"Kerry Killinger, Herbert Hainer, Use Send"
26
- musician,619,619,"Tom Morello, Elgar, Steve Lacy"
27
- university,616,616,"Leiden University, Fiu, Hebrew Union College Jewish Institute Of Religion"
28
- geopoliticalorganization,612,612,"Pacific Grove, Waxahachie, Ibaraki Prefecture"
29
- stateorprovince,600,600,"Himachal Pradesh, Kashmir, Massachussetts"
30
- profession,592,0,"neurosurgeons, professional staff, sales"
31
- plant,568,0,"ancient oak, water oaks, skunk cabbage"
32
- aquarium,535,0,"saarbrucken zoo, turtle aquarium, 500 gallon aquarium"
33
- website,533,533,"Www Philly Com Inquirer, Memory, News Search"
34
- county,522,522,"Korea University, Boise City, Hopkinton"
35
- disease,510,510,"Headaches, Ain, Illness"
36
- male,484,484,"Library, Rick Davis, Gym Class Heroes"
37
- radiostation,476,476,"Wclj, Kvct, Knbr"
38
- country,472,472,"Netherland, Bfpo Addresses, Top States"
39
- jobposition,458,0,"ballerina, senior associate, economist"
40
- agriculturalproduct,449,0,"oilseeds, butter, mint leaves"
41
- biotechcompany,435,435,"Elan Pharmaceuticals, Bache Halsey Stuart Shields, Agouron Pharmaceutical"
42
- bank,430,430,"Bayern, Wachovia Securities, Cs First Boston"
43
- bakedgood,430,0,"sponge cake, puddings, hay"
44
- hotel,428,428,"Sands, Holiday Inn Express, London House"
45
- organization,424,424,"Orbimed Advisors, Protection The Department, General Electric Co"
46
- actor,418,418,"John Travolta, Sally Field, Uma Thurman"
47
- governmentorganization,409,409,"States Supreme Court, California Department, Democratic National Committee"
48
- personeurope,402,402,"Noel Streatfield, Pat Robertson, Jeffrey Archer"
49
- food,393,0,"mix, sausages, sucker"
50
- female,390,390,"Hera, Mary, Myla Goldberg"
51
- visualizablething,386,386,"Pesto, Bentley Gt, Resource Revenues"
52
- personcanada,365,365,"Michael Hyatt, Dan Harris, Self"
53
- visualizablescene,357,357,"Birthplace, Hyannis, Contest"
54
- newspaper,357,357,"Business News, Krqe Tv, New York Times"
55
- river,344,344,"Rogue River, Coco River, Mandovi"
56
- politician,342,342,"Alan Keyes, Aid, Representative George Miller"
57
- attraction,339,339,"Secred Garden, Kimmel Center, La Aurora International Airport"
58
- politicsblog,335,335,"Daily Record, New Statesman, Service Corps Of Retired Executives"
59
- animal,312,0,"pet ferrets, goat, racoons"
60
- celebrity,307,307,"Seton Hall Pirates, Wilson Pickett, Harvard Crimson"
61
- blog,306,0,"christian broadcasting network, cnet, sunday express"
62
- building,304,304,"Las Vegas Hilton, White House, Baker Berry Library"
63
- mammal,304,0,"1 million children, boomtown rats, buffalo"
64
- director,299,299,"Quentin Tarantino, John Schlesinger, Vincenzo Natali"
65
- bodypart,299,0,"organ systems, system, genital area"
66
- scientificterm,294,294,"Conditional Expectation, Probabilistic Pca, Support Vector Regression"
67
- personmexico,274,274,"Ollie Linton, Justin Bass, Fernando Cabrera"
68
- island,270,270,"Santa Cruz Del Islote, Obwalden, Joint Chiefs"
69
- personaustralia,263,263,"Brent Johnson, Malcolm Lowry, David Muir"
70
- hobby,258,0,"winter sports, writers, skydiving"
71
- transportation,258,258,"Fare, Seatac Airport, Newark International Airport"
72
- musicalbum,257,257,"Martin, Years, Compilation"
73
- park,247,247,"Rides, Dulwich, Salford Quays"
74
- criminal,243,243,"Mark Bryan, John Brown, Carlinhos Beira Mar"
75
- visualartist,239,239,"Diego, Georges Seurat, Francis Ford Coppola"
76
- airport,236,236,"Air Canada, Eleftherios Venizelos, Portland International"
77
- professor,235,235,"Nancy Thomas, David Gest, James M Cain"
78
- personnorthamerica,235,235,"David M Herszenhorn, Rediff, Robert F Wagner"
79
- bathroomitem,235,0,"soaking tub, tub upstairs, lock"
80
- emotion,230,230,"Love, Charity, Defiance"
81
- school,229,229,"Southern Utah University, Rensselaer Polytechnic Institute, Berea College"
82
- sportsgame,226,226,"Alds, 1999 World Series, 1982 World Series"
83
- buildingfeature,216,216,"Change, Large Windows, Improvement"
84
- insect,214,0,"leafminers, mealworms, chopin"
85
- furniture,210,0,"large double bed, settee, sets glass top dining sets"
86
- automobilemodel,210,210,"Sunliner, Edge, Taurus X"
87
- publication,205,205,"Financial Mail, Data Domain, Industry Standard"
88
- scientist,204,204,"Calvin, Klaus, Thomas Kuhn"
89
- magazine,203,203,"Fitness, Wwd, Southern Living"
90
- bird,199,0,"old world flycatchers, migratory waterfowl, black widow"
91
- product,194,194,"Samsung Electronics Co Ltd, Microsoft Windows Ce, Illustrator"
92
- professionalorganization,192,0,"maryland division, restaurant and catering association, science foundation"
93
- musicsong,186,186,"Constellation, Download, Any Way You Want Me"
94
- personafrica,185,185,"Caterpillar, Margaret Wise Brown, Anna Politkovskaya"
95
- automobilemaker,177,177,"Honda, Porsche, Used Car Search"
96
- televisionshow,176,176,"Mission, Jail, Prime Time"
97
- lake,172,172,"Lake Granby, Smith Mountain Lake, Lake Pend Oreille"
98
- museum,168,168,"New York Stock Exchange, Art, California Science Center"
99
- artery,167,167,"Vascular System, Pulmonary Valve, Major Artery"
100
- bacteria,165,165,"Echinococcus Multilocularis, Borrelia Recurrentis, Clostridium Botulinum"
101
- beverage,164,0,"sophisticated water, soymilk, mixer"
102
- language,162,162,"Gujarati, Creole, Kinyarwanda"
103
- comedian,159,159,"Warren Zevon, Clive Barker, Bob Young"
104
- politicsissue,152,0,"fiscal policy, resource services, health services"
105
- mountain,150,150,"Diamond Head, Pleasant Ridge, Great Smoky Mountain"
106
- landscapefeatures,148,0,"green pastures, hot water, renaissance"
107
- fish,146,0,"starfish, tilapia, pelagic fish"
108
- retailstore,138,138,"U S Post Office, Mcgraw Hill, Sam Walton"
109
- sportsequipment,138,138,"West, Instructions, Ball"
110
- musicinstrument,135,135,"Rock Band, Fortepiano, Menu"
111
- skiarea,132,132,"Forked River, Minnesota River, Alta"
112
- programminglanguage,131,131,"Enter, Montpellier, Site"
113
- software,130,130,"Adobe Golive, Nemo, Excel 2"
114
- winery,126,126,"Legacy, Rockland Farms Winery, Harvest"
115
- geometricshape,125,125,"Units, Rates, Cone"
116
- sport,123,0,"swimming, fantasy football, snorkelling"
117
- location,122,0,"home water, representative, ideal location"
118
- physiologicalcondition,121,0,"medical illness, male impotence, chronic arthritis"
119
- recordlabel,121,121,"Blue Note, Top Rank, Emi Group"
120
- vertebrate,120,0,"sugar gliders, animals people, tyrant flycatchers"
121
- physicalaction,115,115,"Purpose, Share, Fusion"
122
- personasia,115,115,"Chris Volstad, Gauri Khan, Ian Kinsler"
123
- musicgenre,107,107,"Glam Metal, British Folk, Power Pop"
124
- vehicle,103,0,"pumps, forklifts, animals"
125
- sportsteamposition,102,102,"Defensive Tackle, Hitters, League"
126
- date,101,0,"republic last year, the early 1990s, leonardo"
127
- eventoutcome,100,100,"Outcome, Triumph, Sales"
128
- vegetable,99,0,"peas, sweet potato, carrot"
129
- sportsleague,98,98,"Partners, Sports, Uefa"
130
- arthropod,96,0,"buckeye, verruca stroemia, tiny parasites"
131
- awardtrophytournament,95,95,"Grand Slam, U S A, Awards"
132
- politicalparty,95,95,"Page Content, Conservative Republicans, Rival Fatah Movement"
133
- politicaloffice,95,95,"Co Chair, Bill, United States Presidency"
134
- hallwayitem,93,0,"brand, foundation, fall"
135
- model,92,92,"Dan Rather, Gabriel Garc A M Rquez, Dior"
136
- shoppingmall,91,91,"Circus Circus, Real Place, Shares"
137
- terroristorganization,87,87,"Chins, Palestinian Leadership, People S Liberation Army"
138
- hospital,86,86,"Memphis, Toronto General, Memorial Sloan Kettering"
139
- economicsector,86,0,"motorcycle, computer, home"
140
- braintissue,86,86,"Genitourinary System, Experiment, Assessment"
141
- color,84,84,"Pink, Shade, Green"
142
- weatherphenomenon,83,83,"Earthquake, Clouds, Threat"
143
- bedroomitem,82,0,"sale, air conditioning, action"
144
- reptile,81,0,"arrow, short eared owl, wading birds"
145
- chef,80,80,"John Gatto, Len Deighton, Jeffrey Gettleman"
146
- currency,79,79,"American, Sierra Leone, Lloyds"
147
- invertebrate,79,0,"infusoria, sea life, egrets"
148
- amphibian,78,0,"albino fire salamander, salamanders of alabama, larval amphibians"
149
- monument,77,77,"Close, Various Times, Canada Aviation Museum"
150
- charactertrait,77,77,"Multitude, Office 2, Hoyas"
151
- street,76,76,"Middlesex Turnpike, Capitol Street, Important Step"
152
- visualizableobject,72,72,"Desktop Computer, Member, Telescope"
153
- restaurant,69,69,"Duck And Waffle, Oblix, The Range Steakhouse"
154
- wine,69,0,"burkina faso, oakville, perugia"
155
- nongovorganization,69,69,"Fee, Communications Committee, Moderate Fatah Party"
156
- buildingmaterial,68,68,"Iron, Drainage, Fibreglass"
157
- videogame,66,66,"Breath Of Fire 4, Charlie And The Chocolate Factory, Vessel"
158
- dateliteral,65,0,"1911, 1938, 2010"
159
- nerve,65,65,"Nerve Roots, Brain Function, Damage"
160
- architect,65,0,"robert t coles, hubert robert, max bond"
161
- monarch,59,59,"Peter Kropotkin, All Star, Pertinax"
162
- religion,57,57,"Firestone Park, Developments, Roman Catholic"
163
- videogamesystem,56,56,"Xboxone, Blackberry, System Maintenance"
164
- condiment,56,0,"mushroom sauce, lemon sauce, wasabi"
165
- trainstation,54,54,"Ideal Base, Needs, Sacramento Rt"
166
- mldataset,54,54,"William, Hdv, Hq"
167
- year,53,53,"1874, 90, Start"
168
- personsouthamerica,52,52,"Diesel, Gas, Iesus"
169
- beach,52,52,"Pine Valley, Daufuskie Island, Pensacola Beach"
170
- kitchenitem,52,0,"public water, copy, fridge freezer"
171
- astronaut,51,51,"Helen Sharman, Exploration, Guion Blufordand"
172
- muscle,50,50,"Dorsal Root Ganglion, Fatigue, Pectoralis Minor"
173
- crimeorcharge,50,0,"gun crimes, policy, abuse"
174
- parlourgame,50,50,"1 2 Weeks, Water, 12 Hours"
175
- ethnicgroup,50,50,"Burundi, Turkish, Realtime"
176
- zoo,49,49,"Birmingham Zoo, Ellen Trout Zoo, Aquarium Of The Americas"
177
- nonprofitorganization,49,49,"Data, Charity Navigator, South Central Los Angeles"
178
- farm,49,49,"Woodbury Farm, Farms, Cross Roads"
179
- consumerelectronicitem,47,47,"Gba Sp, Muse, Wii Games"
180
- tool,47,47,"Studs, Companies, Schedule Software"
181
- agent,47,0,"metaweb, french, dreyfus funds"
182
- mollusk,46,0,"domesticated animals, survey, sea anemones"
183
- port,46,46,"Southampton, Port Clinton, Andalucia"
184
- meat,46,0,"ham, whole chicken, ground chicken"
185
- mlauthor,46,46,"Carlos Brito, Web Search, Roy Williams"
186
- crustacean,45,0,"gulf, function, white"
187
- musicfestival,45,45,"Annual Event, Wolf Creek Inn State Heritage Site, Newport Music Hall"
188
- tableitem,43,0,"skills, dinner, laptop"
189
- planet,42,42,"Reasons, 10 0, Heaven"
190
- conference,41,41,"Filesystem, Tocs, Trsm"
191
- arachnid,40,0,"oklahoma, middle, distance charges"
192
- protein,40,40,"Proteases, Vitamin D, Effect"
193
- tradeunion,40,0,"streets, program, legend"
194
- skyscraper,40,40,"Property Types, Landmark Skyscraper, Citigroup Center"
195
- nondiseasecondition,39,39,"Urinary Tract Infections, Symptom, Development Corporation"
196
- visualartform,36,36,"Materials, Contemporary Art, Friends"
197
- grain,35,0,"hrs, oil, pole beans"
198
- visualartmovement,34,34,"Cubism, Palm Springs, United States"
199
- fruit,34,0,"flax seed, black cherries, pineapple"
200
- wallitem,33,33,"Description, East, Output"
201
- candy,33,0,"gathering, peanut butter and jelly fudge, starbucks coffee"
202
- bone,32,0,"two, ligament, chemotherapy"
203
- highway,30,30,"Gas, Crestline, Disability"
204
- election,30,30,"Republican, The National, Users"
205
- mlsoftware,30,0,"mallet, p g, favorite social bookmarking websites comments"
206
- event,29,29,"Pearl Harbour, Events Click, System Improvements"
207
- nonneginteger,28,28,"90, Person Time, Great Time"
208
- placeofworship,28,28,"Sleepy Hollow Presbyterian Church, Banteay Srei, Law Society"
209
- boardgame,27,27,"Life, Computer, Anagrams"
210
- visualizableattribute,27,27,"Dark Green Foliage, Northern States, Colour"
211
- politicsbill,26,26,"Pennsylvania Law, States Constitution, Activesync"
212
- householditem,26,26,"Brockton House Inn Bed, Home Office, Size Beds"
213
- creditunion,25,25,"Good Deal, Arizona, Missouri"
214
- perceptionaction,25,25,"Prior Approval, Mom, Waterloo"
215
- creativework,24,24,"Uncle Silas, Print The Application, Future U S"
216
- automobileengine,24,24,"Ford Ranger, Ford Five Hundred, Publishing"
217
- mlalgorithm,22,22,"2 0, Murcia, 8 25"
218
- race,22,22,"Toulouse, Dates, Morbihan"
219
- mlarea,22,22,"Analyses, Roles, Transactions"
220
- personalcareitem,22,22,"Lancaster, Body Parts, Hairdryer"
221
- nut,22,0,"horses, hazelnuts, heath"
222
- researchproject,21,21,"Wonders, Jersey Research, Consultants"
223
- sociopolitical,21,21,"Welcome Thing, Memoirs Of A Revolutionist, Good Idea"
224
- vein,21,21,"Section, Pituitary Gland, Macula"
225
- archaea,20,20,"Haloarcula Strains, Mesophile Ferroplasma Acidarmanus, Acidophilic Archaea"
226
- bridge,20,20,"Tower Bridge, Lincoln Tunnel, Life Sciences Institute"
227
- cheese,19,19,"Close Up, Boursin Cheese, Ricotta Cheese"
228
- legume,19,0,"close, wide screen, color television"
229
- mountainrange,17,17,"England Mountains, Smith River, Point Hope"
230
- physicalcharacteristic,17,17,"Possibility, Scientific Advisory, Hurst"
231
- sportsevent,16,16,"Sarthe, Series Championship, Premier"
232
- medicalprocedure,16,16,"Cpr, The Breast, Follow Up Study"
233
- cardgame,16,16,"Hearts, Vegas Casino, Numbers"
234
- militaryconflict,15,15,"Eight Years, United States Territory, War"
235
- mlmetric,15,15,"7, 13 5, 9 11"
236
- celltype,14,14,"Liver, Capacity, State"
237
- petroleumrefiningcompany,14,14,"Arcelormittal, Valero, Exxon Mobil Corp"
238
- mlconference,13,13,"Kingman, Change, Coordination"
239
- traditionalgame,13,13,"Betfair, 3 4, 2 1 2"
240
- meetingeventtitle,12,12,"Holey Grail The Mechanism Of Transport Through The Nuclear Pore Of Cells, Brain Maps To Mechanisms Neural Circuit Molecular Architecture, Rsa In The Real World"
241
- convention,12,12,"Space, Excaliber, Technorati"
242
- meetingeventtype,11,11,"Vasc Sminar, Special Sdi Seminar, Scs Author Presentation Booksigning"
243
- judge,11,11,"The California, Great Judge, Personnel"
244
- trail,11,11,"Carroll, Campground, Burlington"
245
- cognitiveactions,10,10,"Learning, Crisis, Three Hours"
246
- mediatype,10,10,"Singles, Clicks, Irrigation"
247
- month,10,0,"november, january, december"
248
- coffeedrink,10,0,"espresso, mocha, chocolate raspberry"
249
- zipcode,10,10,"33701, 80202, 20505"
250
- physicsterm,10,10,"15 Miles, 19 9 Percent, Gravity"
251
- perceptionevent,9,9,"Improvements, Macromedia Flash, Beep"
252
- cave,8,0,"will, w d, anyone"
253
- lymphnode,8,8,"Lymph Nodes, Enzymes, Nodes"
254
- filmfestival,7,7,"Igoogle, Beginning, Venice"
255
- fungus,7,0,"compound, enrichment, mushrooms"
256
- officeitem,7,7,"Oracle Corporation White Paper, Capacities, York Page"
257
- continent,7,7,"South America, Africa, Antarctica"
258
- olympics,6,6,"CBS Television Network, Palestinian National Authority, Mayor"
259
- url,6,6,"Links Links, Numerous Links, Google Link"
260
- game,6,6,"Designee The Vice, Team Plays, Aspects"
261
- flooritem,5,5,"Size Sleeper Sofa, Size Sofa Bed, Water Quality"
262
- televisionnetwork,5,5,"Cw, Upn, CNN PBS"
263
- mediacompany,4,4,"Vibrant Media, Demand Media, Media Public"
264
- dayofweek,4,4,"Monday, Tuesday, Wednesday"
265
- time,4,4,"4 00 P M Contact, 9 00 Pm, 7 Click"
266
- caf_,3,3,"Starbucks Coffee Company, Sbux, Tim Hortons"
267
- item,3,3,"Dishes, Laptop, Laundry Detergent"
268
- militaryeventtype,3,3,"Clashes, Attacks, Regimes"
269
- victim,3,3,"Resources Students, Technology Students, Health Sciences Students"
270
- geolocatablething,3,3,"Buildings, Iquique, Cars"
271
- grandprix,2,2,"Bernie Ecclestone, Renault"
272
- politicsgroup,2,2,"Description, Moveon Org"
273
- gamescore,2,2,"4 5, 2 3"
274
- refineryproduct,2,2,"East Coast Ports, Coolant"
275
- recipe,1,1,Rice
276
- virus,1,1,Safe Drinking Water
277
- humanagent,1,1,Monsanto Co S G D Searle Division
278
- species,1,1,Marine Flora
279
- personbylocation,1,1,Dan Garton
280
- SUM,68518,53887,