fix readme
Browse files
README.md
CHANGED
@@ -7,27 +7,166 @@ multilinguality:
|
|
7 |
- monolingual
|
8 |
size_categories:
|
9 |
- n<1K
|
10 |
-
pretty_name: nell
|
11 |
---
|
12 |
|
13 |
# Dataset Card for "relbert/nell"
|
14 |
## Dataset Description
|
15 |
- **Repository:** [https://github.com/xwhan/One-shot-Relational-Learning](https://github.com/xwhan/One-shot-Relational-Learning)
|
16 |
- **Paper:** [https://aclanthology.org/D18-1223/](https://aclanthology.org/D18-1223/)
|
17 |
-
- **Dataset:**
|
18 |
|
19 |
### Dataset Summary
|
20 |
This is NELL-ONE dataset for the few-shots link prediction proposed in [https://aclanthology.org/D18-1223/](https://aclanthology.org/D18-1223/).
|
21 |
Please see [NELL paper](https://www.cs.cmu.edu/~tom/pubs/NELL_aaai15.pdf) to know more about the original dataset.
|
22 |
|
23 |
-
|
24 |
-
|------:|-----------:|-----:|
|
25 |
-
|8,526 | 1,004 | 2,158 |
|
26 |
-
|5,498 | 878 | 1,352 |
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
## Dataset Structure
|
30 |
-
### Data Instances
|
31 |
An example of `test` looks as follows.
|
32 |
```
|
33 |
{
|
|
|
7 |
- monolingual
|
8 |
size_categories:
|
9 |
- n<1K
|
10 |
+
pretty_name: relbert/nell
|
11 |
---
|
12 |
|
13 |
# Dataset Card for "relbert/nell"
|
14 |
## Dataset Description
|
15 |
- **Repository:** [https://github.com/xwhan/One-shot-Relational-Learning](https://github.com/xwhan/One-shot-Relational-Learning)
|
16 |
- **Paper:** [https://aclanthology.org/D18-1223/](https://aclanthology.org/D18-1223/)
|
17 |
+
- **Dataset:** Never Ending Language Learner (NELL) dataset for one-shot link prediction.
|
18 |
|
19 |
### Dataset Summary
|
20 |
This is NELL-ONE dataset for the few-shots link prediction proposed in [https://aclanthology.org/D18-1223/](https://aclanthology.org/D18-1223/).
|
21 |
Please see [NELL paper](https://www.cs.cmu.edu/~tom/pubs/NELL_aaai15.pdf) to know more about the original dataset.
|
22 |
|
23 |
+
- Number of instances
|
|
|
|
|
|
|
24 |
|
25 |
+
| | train | validation | test |
|
26 |
+
|:----------------|--------:|-------------:|-------:|
|
27 |
+
| number of pairs | 5498 | 878 | 1352 |
|
28 |
+
|
29 |
+
- Number of pairs in each relation type
|
30 |
+
|
31 |
+
| | number of pairs (train) | number of pairs (validation) | number of pairs (test) |
|
32 |
+
|:---------------------------------------------------|--------------------------:|-------------------------------:|-------------------------:|
|
33 |
+
| concept:airportincity | 210 | 0 | 0 |
|
34 |
+
| concept:athleteledsportsteam | 424 | 0 | 0 |
|
35 |
+
| concept:automobilemakercardealersinstateorprovince | 78 | 0 | 0 |
|
36 |
+
| concept:bankboughtbank | 58 | 0 | 0 |
|
37 |
+
| concept:ceoof | 271 | 0 | 0 |
|
38 |
+
| concept:cityradiostation | 99 | 0 | 0 |
|
39 |
+
| concept:citytelevisionstation | 316 | 0 | 0 |
|
40 |
+
| concept:countriessuchascountries | 100 | 0 | 0 |
|
41 |
+
| concept:countrycapital | 211 | 0 | 0 |
|
42 |
+
| concept:countryhascitizen | 182 | 0 | 0 |
|
43 |
+
| concept:countryoforganizationheadquarters | 166 | 0 | 0 |
|
44 |
+
| concept:countrystates | 169 | 0 | 0 |
|
45 |
+
| concept:drugpossiblytreatsphysiologicalcondition | 91 | 0 | 0 |
|
46 |
+
| concept:fatherofperson | 108 | 0 | 0 |
|
47 |
+
| concept:fooddecreasestheriskofdisease | 1 | 0 | 0 |
|
48 |
+
| concept:hasofficeincountry | 283 | 0 | 0 |
|
49 |
+
| concept:leaguecoaches | 71 | 0 | 0 |
|
50 |
+
| concept:leaguestadiums | 279 | 0 | 0 |
|
51 |
+
| concept:musicartistmusician | 118 | 0 | 0 |
|
52 |
+
| concept:musicgenressuchasmusicgenres | 107 | 0 | 0 |
|
53 |
+
| concept:organizationnamehasacronym | 61 | 0 | 0 |
|
54 |
+
| concept:personalsoknownas | 78 | 0 | 0 |
|
55 |
+
| concept:personleadsgeopoliticalorganization | 120 | 0 | 0 |
|
56 |
+
| concept:personmovedtostateorprovince | 225 | 0 | 0 |
|
57 |
+
| concept:politicianrepresentslocation | 258 | 0 | 0 |
|
58 |
+
| concept:politicianusholdsoffice | 216 | 0 | 0 |
|
59 |
+
| concept:statehascapital | 151 | 0 | 0 |
|
60 |
+
| concept:stateorprovinceoforganizationheadquarters | 118 | 0 | 0 |
|
61 |
+
| concept:teamhomestadium | 138 | 0 | 0 |
|
62 |
+
| concept:teamplaysincity | 338 | 0 | 0 |
|
63 |
+
| concept:topmemberoforganization | 354 | 0 | 0 |
|
64 |
+
| concept:wifeof | 99 | 0 | 0 |
|
65 |
+
| concept:bankbankincountry | 0 | 229 | 0 |
|
66 |
+
| concept:cityalsoknownas | 0 | 356 | 0 |
|
67 |
+
| concept:parentofperson | 0 | 217 | 0 |
|
68 |
+
| concept:politicalgroupofpoliticianus | 0 | 76 | 0 |
|
69 |
+
| concept:automobilemakerdealersincity | 0 | 0 | 177 |
|
70 |
+
| concept:automobilemakerdealersincountry | 0 | 0 | 96 |
|
71 |
+
| concept:geopoliticallocationresidenceofpersion | 0 | 0 | 143 |
|
72 |
+
| concept:politicianusendorsespoliticianus | 0 | 0 | 386 |
|
73 |
+
| concept:producedby | 0 | 0 | 209 |
|
74 |
+
| concept:teamcoach | 0 | 0 | 341 |
|
75 |
+
|
76 |
+
- Number of entity types
|
77 |
+
|
78 |
+
| | head (train) | tail (train) | head (validation) | tail (validation) | head (test) | tail (test) |
|
79 |
+
|:-------------------------|---------------:|---------------:|--------------------:|--------------------:|--------------:|--------------:|
|
80 |
+
| actor | 6 | 2 | 0 | 0 | 0 | 0 |
|
81 |
+
| airport | 152 | 0 | 0 | 0 | 0 | 0 |
|
82 |
+
| astronaut | 4 | 0 | 0 | 1 | 0 | 1 |
|
83 |
+
| athlete | 353 | 21 | 1 | 2 | 0 | 59 |
|
84 |
+
| attraction | 4 | 1 | 0 | 0 | 0 | 0 |
|
85 |
+
| automobilemaker | 131 | 29 | 0 | 0 | 273 | 54 |
|
86 |
+
| bank | 109 | 126 | 144 | 0 | 0 | 0 |
|
87 |
+
| biotechcompany | 14 | 80 | 0 | 0 | 0 | 10 |
|
88 |
+
| building | 4 | 0 | 0 | 0 | 0 | 0 |
|
89 |
+
| celebrity | 6 | 5 | 0 | 0 | 4 | 2 |
|
90 |
+
| ceo | 423 | 0 | 0 | 0 | 0 | 0 |
|
91 |
+
| city | 342 | 852 | 316 | 316 | 42 | 161 |
|
92 |
+
| coach | 29 | 61 | 0 | 3 | 0 | 245 |
|
93 |
+
| comedian | 1 | 0 | 0 | 0 | 0 | 0 |
|
94 |
+
| company | 76 | 549 | 1 | 0 | 1 | 144 |
|
95 |
+
| country | 755 | 455 | 0 | 197 | 27 | 91 |
|
96 |
+
| county | 36 | 39 | 11 | 11 | 10 | 4 |
|
97 |
+
| creditunion | 1 | 0 | 0 | 0 | 0 | 0 |
|
98 |
+
| criminal | 3 | 0 | 1 | 0 | 0 | 1 |
|
99 |
+
| director | 2 | 0 | 0 | 0 | 0 | 1 |
|
100 |
+
| drug | 91 | 0 | 0 | 0 | 1 | 0 |
|
101 |
+
| female | 116 | 8 | 38 | 9 | 3 | 3 |
|
102 |
+
| geopoliticallocation | 184 | 112 | 96 | 29 | 24 | 8 |
|
103 |
+
| geopoliticalorganization | 28 | 68 | 8 | 21 | 1 | 7 |
|
104 |
+
| governmentorganization | 25 | 95 | 74 | 0 | 0 | 0 |
|
105 |
+
| island | 15 | 4 | 4 | 6 | 1 | 0 |
|
106 |
+
| journalist | 4 | 0 | 0 | 0 | 0 | 1 |
|
107 |
+
| male | 132 | 78 | 37 | 52 | 1 | 5 |
|
108 |
+
| model | 2 | 0 | 0 | 0 | 0 | 0 |
|
109 |
+
| monarch | 4 | 3 | 4 | 1 | 0 | 0 |
|
110 |
+
| museum | 1 | 5 | 0 | 0 | 0 | 0 |
|
111 |
+
| musicartist | 118 | 5 | 0 | 0 | 0 | 0 |
|
112 |
+
| musicgenre | 107 | 107 | 0 | 0 | 0 | 0 |
|
113 |
+
| musician | 5 | 124 | 0 | 0 | 0 | 0 |
|
114 |
+
| newspaper | 3 | 2 | 0 | 0 | 0 | 0 |
|
115 |
+
| organization | 23 | 86 | 1 | 1 | 32 | 2 |
|
116 |
+
| person | 350 | 256 | 116 | 131 | 0 | 96 |
|
117 |
+
| personafrica | 1 | 3 | 0 | 0 | 0 | 0 |
|
118 |
+
| personasia | 1 | 3 | 0 | 0 | 0 | 0 |
|
119 |
+
| personaustralia | 38 | 5 | 0 | 0 | 0 | 5 |
|
120 |
+
| personcanada | 19 | 14 | 0 | 0 | 0 | 0 |
|
121 |
+
| personeurope | 9 | 7 | 14 | 4 | 0 | 1 |
|
122 |
+
| personmexico | 57 | 14 | 0 | 0 | 0 | 20 |
|
123 |
+
| personnorthamerica | 9 | 6 | 0 | 0 | 0 | 3 |
|
124 |
+
| personsouthamerica | 1 | 1 | 0 | 17 | 0 | 0 |
|
125 |
+
| personus | 41 | 21 | 2 | 0 | 1 | 6 |
|
126 |
+
| planet | 1 | 0 | 0 | 0 | 0 | 1 |
|
127 |
+
| politician | 107 | 5 | 0 | 1 | 23 | 58 |
|
128 |
+
| politicianus | 408 | 12 | 3 | 71 | 352 | 360 |
|
129 |
+
| politicsblog | 2 | 3 | 0 | 0 | 0 | 0 |
|
130 |
+
| port | 7 | 0 | 0 | 0 | 0 | 0 |
|
131 |
+
| professor | 7 | 2 | 0 | 0 | 1 | 0 |
|
132 |
+
| publication | 1 | 21 | 0 | 0 | 0 | 0 |
|
133 |
+
| recordlabel | 1 | 13 | 0 | 0 | 0 | 0 |
|
134 |
+
| retailstore | 1 | 15 | 0 | 0 | 0 | 0 |
|
135 |
+
| school | 54 | 1 | 0 | 0 | 11 | 0 |
|
136 |
+
| scientist | 5 | 2 | 0 | 1 | 0 | 0 |
|
137 |
+
| sportsleague | 356 | 12 | 0 | 0 | 0 | 0 |
|
138 |
+
| sportsteam | 392 | 430 | 0 | 0 | 295 | 0 |
|
139 |
+
| stateorprovince | 254 | 602 | 0 | 0 | 38 | 0 |
|
140 |
+
| transportation | 36 | 2 | 0 | 0 | 0 | 0 |
|
141 |
+
| university | 3 | 15 | 0 | 0 | 0 | 0 |
|
142 |
+
| visualizablescene | 20 | 7 | 3 | 3 | 3 | 3 |
|
143 |
+
| visualizablething | 1 | 1 | 1 | 1 | 0 | 0 |
|
144 |
+
| website | 7 | 31 | 0 | 0 | 0 | 0 |
|
145 |
+
| caf_ | 0 | 1 | 0 | 0 | 0 | 0 |
|
146 |
+
| continent | 0 | 1 | 0 | 0 | 0 | 0 |
|
147 |
+
| disease | 0 | 92 | 0 | 0 | 0 | 0 |
|
148 |
+
| hotel | 0 | 1 | 0 | 0 | 0 | 0 |
|
149 |
+
| magazine | 0 | 5 | 0 | 0 | 0 | 0 |
|
150 |
+
| nongovorganization | 0 | 4 | 0 | 0 | 0 | 0 |
|
151 |
+
| nonprofitorganization | 0 | 2 | 0 | 0 | 0 | 0 |
|
152 |
+
| park | 0 | 1 | 0 | 0 | 0 | 0 |
|
153 |
+
| petroleumrefiningcompany | 0 | 6 | 0 | 0 | 0 | 0 |
|
154 |
+
| politicaloffice | 0 | 216 | 0 | 0 | 0 | 0 |
|
155 |
+
| politicalparty | 0 | 6 | 2 | 0 | 0 | 0 |
|
156 |
+
| radiostation | 0 | 93 | 0 | 0 | 0 | 0 |
|
157 |
+
| river | 0 | 4 | 0 | 0 | 0 | 0 |
|
158 |
+
| stadiumoreventvenue | 0 | 417 | 0 | 0 | 0 | 0 |
|
159 |
+
| televisionnetwork | 0 | 1 | 0 | 0 | 0 | 0 |
|
160 |
+
| televisionstation | 0 | 221 | 0 | 0 | 0 | 0 |
|
161 |
+
| trainstation | 0 | 2 | 0 | 0 | 0 | 0 |
|
162 |
+
| writer | 0 | 3 | 1 | 0 | 0 | 0 |
|
163 |
+
| zoo | 0 | 1 | 0 | 0 | 0 | 0 |
|
164 |
+
| automobilemodel | 0 | 0 | 0 | 0 | 100 | 0 |
|
165 |
+
| product | 0 | 0 | 0 | 0 | 62 | 0 |
|
166 |
+
| software | 0 | 0 | 0 | 0 | 42 | 0 |
|
167 |
+
| videogame | 0 | 0 | 0 | 0 | 4 | 0 |
|
168 |
|
169 |
## Dataset Structure
|
|
|
170 |
An example of `test` looks as follows.
|
171 |
```
|
172 |
{
|
stats.py
CHANGED
@@ -3,11 +3,27 @@ from itertools import chain
|
|
3 |
import pandas as pd
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
def get_stats(split):
|
7 |
-
data = load_dataset("relbert/nell", split=split)
|
8 |
-
df = data.to_pandas()
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
|
|
|
|
|
13 |
|
|
|
3 |
import pandas as pd
|
4 |
from datasets import load_dataset
|
5 |
|
|
|
|
|
|
|
6 |
|
7 |
+
def get_stats():
|
8 |
+
relation = []
|
9 |
+
entity = []
|
10 |
+
size = {}
|
11 |
+
data = load_dataset("relbert/nell")
|
12 |
+
splits = data.keys()
|
13 |
+
for split in splits:
|
14 |
+
df = data[split].to_pandas()
|
15 |
+
size[split] = len(df)
|
16 |
+
relation.append(df.groupby('relation')['head'].count().to_dict())
|
17 |
+
entity += [df.groupby('head_type')['head'].count().to_dict(), df.groupby('tail_type')['tail'].count().to_dict()]
|
18 |
+
relation = pd.DataFrame(relation, index=[f"number of pairs ({s})" for s in splits]).T
|
19 |
+
relation = relation.fillna(0).astype(int)
|
20 |
+
entity = pd.DataFrame(entity, index=list(chain(*[[f"head ({s})", f"tail ({s})"] for s in splits]))).T
|
21 |
+
entity = entity.fillna(0).astype(int)
|
22 |
+
size = pd.DataFrame([size], index=["number of pairs"])
|
23 |
+
return relation, entity, size
|
24 |
|
25 |
+
df_relation, df_entity, df_size = get_stats()
|
26 |
+
print(f"\n- Number of instances\n\n {df_size.to_markdown()}")
|
27 |
+
print(f"\n- Number of pairs in each relation type\n\n {df_relation.to_markdown()}")
|
28 |
+
print(f"\n- Number of entity types\n\n {df_entity.to_markdown()}")
|
29 |
|