regisss HF staff commited on
Commit
9a71311
·
1 Parent(s): 5338902

Create librispeech_asr.py

Browse files
Files changed (1) hide show
  1. librispeech_asr.py +161 -0
librispeech_asr.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """Librispeech automatic speech recognition dataset."""
18
+
19
+
20
+ import os
21
+
22
+ import datasets
23
+ from datasets.tasks import AutomaticSpeechRecognition
24
+
25
+
26
+ _CITATION = """\
27
+ @inproceedings{panayotov2015librispeech,
28
+ title={Librispeech: an ASR corpus based on public domain audio books},
29
+ author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
30
+ booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
31
+ pages={5206--5210},
32
+ year={2015},
33
+ organization={IEEE}
34
+ }
35
+ """
36
+
37
+ _DESCRIPTION = """\
38
+ LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,
39
+ prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read
40
+ audiobooks from the LibriVox project, and has been carefully segmented and aligned.87
41
+ """
42
+
43
+ _URL = "http://www.openslr.org/12"
44
+ _DL_URL = "http://www.openslr.org/resources/12/"
45
+
46
+
47
+ _DL_URLS = {
48
+ "clean": {
49
+ "dev": _DL_URL + "dev-clean.tar.gz",
50
+ "train.100": _DL_URL + "train-clean-100.tar.gz",
51
+ },
52
+ }
53
+
54
+
55
+ class LibrispeechASRConfig(datasets.BuilderConfig):
56
+ """BuilderConfig for LibriSpeechASR."""
57
+
58
+ def __init__(self, **kwargs):
59
+ """
60
+ Args:
61
+ data_dir: `string`, the path to the folder containing the files in the
62
+ downloaded .tar
63
+ citation: `string`, citation for the data set
64
+ url: `string`, url for information about the data set
65
+ **kwargs: keyword arguments forwarded to super.
66
+ """
67
+ super(LibrispeechASRConfig, self).__init__(version=datasets.Version("2.1.0", ""), **kwargs)
68
+
69
+
70
+ class LibrispeechASR(datasets.GeneratorBasedBuilder):
71
+ """Librispeech dataset."""
72
+
73
+ DEFAULT_WRITER_BATCH_SIZE = 256
74
+ DEFAULT_CONFIG_NAME = "all"
75
+ BUILDER_CONFIGS = [
76
+ LibrispeechASRConfig(name="clean", description="'Clean' speech."),
77
+ ]
78
+
79
+ def _info(self):
80
+ return datasets.DatasetInfo(
81
+ description=_DESCRIPTION,
82
+ features=datasets.Features(
83
+ {
84
+ "file": datasets.Value("string"),
85
+ "audio": datasets.Audio(sampling_rate=16_000),
86
+ "text": datasets.Value("string"),
87
+ "speaker_id": datasets.Value("int64"),
88
+ "chapter_id": datasets.Value("int64"),
89
+ "id": datasets.Value("string"),
90
+ }
91
+ ),
92
+ supervised_keys=("file", "text"),
93
+ homepage=_URL,
94
+ citation=_CITATION,
95
+ task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
96
+ )
97
+
98
+ def _split_generators(self, dl_manager):
99
+ archive_path = dl_manager.download(_DL_URLS[self.config.name])
100
+ # (Optional) In non-streaming mode, we can extract the archive locally to have actual local audio files:
101
+ local_extracted_archive = dl_manager.extract(archive_path) if not dl_manager.is_streaming else {}
102
+
103
+ if self.config.name == "clean":
104
+ train_splits = [
105
+ datasets.SplitGenerator(
106
+ name="train.100",
107
+ gen_kwargs={
108
+ "local_extracted_archive": local_extracted_archive.get("train.100"),
109
+ "files": dl_manager.iter_archive(archive_path["train.100"]),
110
+ },
111
+ ),
112
+ ]
113
+ dev_splits = [
114
+ datasets.SplitGenerator(
115
+ name=datasets.Split.VALIDATION,
116
+ gen_kwargs={
117
+ "local_extracted_archive": local_extracted_archive.get("dev"),
118
+ "files": dl_manager.iter_archive(archive_path["dev"]),
119
+ },
120
+ )
121
+ ]
122
+
123
+ return train_splits + dev_splits
124
+
125
+ def _generate_examples(self, files, local_extracted_archive):
126
+ """Generate examples from a LibriSpeech archive_path."""
127
+ key = 0
128
+ audio_data = {}
129
+ transcripts = []
130
+ for path, f in files:
131
+ if path.endswith(".flac"):
132
+ id_ = path.split("/")[-1][: -len(".flac")]
133
+ audio_data[id_] = f.read()
134
+ elif path.endswith(".trans.txt"):
135
+ for line in f:
136
+ if line:
137
+ line = line.decode("utf-8").strip()
138
+ id_, transcript = line.split(" ", 1)
139
+ audio_file = f"{id_}.flac"
140
+ speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
141
+ audio_file = (
142
+ os.path.join(local_extracted_archive, audio_file)
143
+ if local_extracted_archive
144
+ else audio_file
145
+ )
146
+ transcripts.append(
147
+ {
148
+ "id": id_,
149
+ "speaker_id": speaker_id,
150
+ "chapter_id": chapter_id,
151
+ "file": audio_file,
152
+ "text": transcript,
153
+ }
154
+ )
155
+ if audio_data and len(audio_data) == len(transcripts):
156
+ for transcript in transcripts:
157
+ audio = {"path": transcript["file"], "bytes": audio_data[transcript["id"]]}
158
+ yield key, {"audio": audio, **transcript}
159
+ key += 1
160
+ audio_data = {}
161
+ transcripts = []