Datasets:
dainis-boumber
commited on
Commit
·
5fb457d
1
Parent(s):
31c1ef4
DiFrauD
Browse files
gdds.py
CHANGED
@@ -1,6 +1,3 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
import csv
|
5 |
import json
|
6 |
import os
|
@@ -9,59 +6,57 @@ import datasets
|
|
9 |
|
10 |
|
11 |
# TODO: Add BibTeX citation
|
12 |
-
|
13 |
-
_CITATION = """\
|
14 |
TODO: Add citation here
|
15 |
"""
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
21 |
"""
|
22 |
|
23 |
-
|
24 |
-
_HOMEPAGE = ""
|
25 |
-
|
26 |
-
# TODO: Add the licence for the dataset here if you can find it
|
27 |
-
_LICENSE = ""
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
|
31 |
-
|
32 |
-
|
33 |
-
"""TODO: Short description of my dataset."""
|
34 |
|
35 |
VERSION = datasets.Version("2.1.0")
|
36 |
-
|
37 |
-
# This is an example of a dataset with multiple configurations.
|
38 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
39 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
40 |
-
|
41 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
42 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
43 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
44 |
-
|
45 |
-
# You will be able to load one or the other configurations in the following list with
|
46 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
47 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
48 |
BUILDER_CONFIGS = [
|
49 |
-
datasets.BuilderConfig(name="fake_news", version=VERSION, description="
|
50 |
-
datasets.BuilderConfig(name="job_scams", version=VERSION, description="
|
51 |
-
datasets.BuilderConfig(name="phishing", version=VERSION, description="
|
52 |
-
datasets.BuilderConfig(name="political_statements", version=VERSION, description="
|
53 |
-
datasets.BuilderConfig(name="product_reviews", version=VERSION, description="
|
54 |
-
datasets.BuilderConfig(name="sms", version=VERSION, description="
|
55 |
-
datasets.BuilderConfig(name="twitter_rumours", version=VERSION,
|
|
|
56 |
]
|
57 |
|
58 |
def _info(self):
|
59 |
-
#
|
60 |
features = datasets.Features(
|
61 |
{
|
62 |
"text": datasets.Value("string"),
|
63 |
"label": datasets.Value("string"),
|
64 |
-
# These are the features of your dataset
|
65 |
}
|
66 |
)
|
67 |
return datasets.DatasetInfo(
|
@@ -71,7 +66,7 @@ class GDDS(datasets.GeneratorBasedBuilder):
|
|
71 |
features=features, # Here we define them above because they are different between the two configurations
|
72 |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
73 |
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
74 |
-
|
75 |
# Homepage of the dataset for documentation
|
76 |
homepage=_HOMEPAGE,
|
77 |
# License for the dataset if available
|
@@ -105,7 +100,6 @@ class GDDS(datasets.GeneratorBasedBuilder):
|
|
105 |
),
|
106 |
datasets.SplitGenerator(
|
107 |
name=datasets.Split.VALIDATION,
|
108 |
-
# These kwargs will be passed to _generate_examples
|
109 |
gen_kwargs={
|
110 |
"filepath": os.path.join(data_dir['validation']),
|
111 |
"split": "validation",
|
@@ -113,7 +107,6 @@ class GDDS(datasets.GeneratorBasedBuilder):
|
|
113 |
),
|
114 |
datasets.SplitGenerator(
|
115 |
name=datasets.Split.TEST,
|
116 |
-
# These kwargs will be passed to _generate_examples
|
117 |
gen_kwargs={
|
118 |
"filepath": os.path.join(data_dir['test']),
|
119 |
"split": "test"
|
@@ -123,7 +116,7 @@ class GDDS(datasets.GeneratorBasedBuilder):
|
|
123 |
|
124 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
125 |
def _generate_examples(self, filepath, split):
|
126 |
-
#
|
127 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
128 |
with open(filepath, encoding="utf-8") as f:
|
129 |
for key, row in enumerate(f):
|
|
|
|
|
|
|
|
|
1 |
import csv
|
2 |
import json
|
3 |
import os
|
|
|
6 |
|
7 |
|
8 |
# TODO: Add BibTeX citation
|
9 |
+
_CITATION = """
|
|
|
10 |
TODO: Add citation here
|
11 |
"""
|
12 |
|
13 |
+
_DESCRIPTION = """
|
14 |
+
DIFrauD -- Domain Independent Fraud Detection dataset -- is a labeled corpus containing over 95000 samples
|
15 |
+
of deceptive and truthful texts from 7 independent domains.
|
|
|
16 |
"""
|
17 |
|
18 |
+
_HOMEPAGE = "http://cs.uh.edu/~rmverma/ra2.html"
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
_LICENSE = """
|
21 |
+
Copyright 2023 University of Houston
|
22 |
+
|
23 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files
|
24 |
+
(the “Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge,
|
25 |
+
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so,
|
26 |
+
subject to the following conditions:
|
27 |
+
|
28 |
+
The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
|
29 |
+
|
30 |
+
THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
|
31 |
+
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
|
32 |
+
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
|
33 |
+
IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
34 |
+
"""
|
35 |
|
36 |
|
37 |
+
class DIFrauD(datasets.GeneratorBasedBuilder):
|
38 |
+
"""Multi-Domain Deception -- a Large English Text Corpus"""
|
|
|
39 |
|
40 |
VERSION = datasets.Version("2.1.0")
|
41 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
BUILDER_CONFIGS = [
|
43 |
+
datasets.BuilderConfig(name="fake_news", version=VERSION, description="Fake News domain"),
|
44 |
+
datasets.BuilderConfig(name="job_scams", version=VERSION, description="Online Job Scams"),
|
45 |
+
datasets.BuilderConfig(name="phishing", version=VERSION, description="Email phishing attacks"),
|
46 |
+
datasets.BuilderConfig(name="political_statements", version=VERSION, description="Statements by various politicians"),
|
47 |
+
datasets.BuilderConfig(name="product_reviews", version=VERSION, description="Amazon product reviews"),
|
48 |
+
datasets.BuilderConfig(name="sms", version=VERSION, description="SMS spam and phishing attacks"),
|
49 |
+
datasets.BuilderConfig(name="twitter_rumours", version=VERSION,
|
50 |
+
description="Collection of rumours from twitter spanning several years and topics"),
|
51 |
]
|
52 |
|
53 |
def _info(self):
|
54 |
+
# This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
|
55 |
features = datasets.Features(
|
56 |
{
|
57 |
"text": datasets.Value("string"),
|
58 |
"label": datasets.Value("string"),
|
59 |
+
# These are the features of your dataset ...
|
60 |
}
|
61 |
)
|
62 |
return datasets.DatasetInfo(
|
|
|
66 |
features=features, # Here we define them above because they are different between the two configurations
|
67 |
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
68 |
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
69 |
+
supervised_keys=("text", "label"),
|
70 |
# Homepage of the dataset for documentation
|
71 |
homepage=_HOMEPAGE,
|
72 |
# License for the dataset if available
|
|
|
100 |
),
|
101 |
datasets.SplitGenerator(
|
102 |
name=datasets.Split.VALIDATION,
|
|
|
103 |
gen_kwargs={
|
104 |
"filepath": os.path.join(data_dir['validation']),
|
105 |
"split": "validation",
|
|
|
107 |
),
|
108 |
datasets.SplitGenerator(
|
109 |
name=datasets.Split.TEST,
|
|
|
110 |
gen_kwargs={
|
111 |
"filepath": os.path.join(data_dir['test']),
|
112 |
"split": "test"
|
|
|
116 |
|
117 |
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
118 |
def _generate_examples(self, filepath, split):
|
119 |
+
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
120 |
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
121 |
with open(filepath, encoding="utf-8") as f:
|
122 |
for key, row in enumerate(f):
|