system HF staff commited on
Commit
ecaa33f
·
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

Files changed (5) hide show
  1. .gitattributes +27 -0
  2. README.md +153 -0
  3. arsentd_lev.py +83 -0
  4. dataset_infos.json +1 -0
  5. dummy/1.1.0/dummy_data.zip +3 -0
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - found
6
+ languages:
7
+ - apc
8
+ - apj
9
+ licenses:
10
+ - other-Copyright-2018-by-[American-University-of-Beirut]
11
+ multilinguality:
12
+ - monolingual
13
+ size_categories:
14
+ - 1K<n<10K"
15
+ source_datasets:
16
+ - original
17
+ task_categories:
18
+ - text-classification
19
+ task_ids:
20
+ - sentiment-classification
21
+ - topic-classification
22
+ ---
23
+
24
+ # Dataset Card for ArSenTD-LEV
25
+
26
+ ## Table of Contents
27
+ - [Dataset Description](#dataset-description)
28
+ - [Dataset Summary](#dataset-summary)
29
+ - [Supported Tasks](#supported-tasks-and-leaderboards)
30
+ - [Languages](#languages)
31
+ - [Dataset Structure](#dataset-structure)
32
+ - [Data Instances](#data-instances)
33
+ - [Data Fields](#data-instances)
34
+ - [Data Splits](#data-instances)
35
+ - [Dataset Creation](#dataset-creation)
36
+ - [Curation Rationale](#curation-rationale)
37
+ - [Source Data](#source-data)
38
+ - [Annotations](#annotations)
39
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
40
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
41
+ - [Social Impact of Dataset](#social-impact-of-dataset)
42
+ - [Discussion of Biases](#discussion-of-biases)
43
+ - [Other Known Limitations](#other-known-limitations)
44
+ - [Additional Information](#additional-information)
45
+ - [Dataset Curators](#dataset-curators)
46
+ - [Licensing Information](#licensing-information)
47
+ - [Citation Information](#citation-information)
48
+
49
+ ## Dataset Description
50
+
51
+ - **Homepage:** [ArSenTD-LEV homepage](http://oma-project.com/)
52
+ - **Paper:** [ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets](https://arxiv.org/abs/1906.01830)
53
+
54
+ ### Dataset Summary
55
+
56
+ The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria.
57
+
58
+ ### Supported Tasks and Leaderboards
59
+
60
+ Sentriment analysis
61
+
62
+ ### Languages
63
+
64
+ Arabic Levantine Dualect
65
+
66
+ ## Dataset Structure
67
+
68
+ ### Data Instances
69
+
70
+ {'Country': 0,
71
+ 'Sentiment': 3,
72
+ 'Sentiment_Expression': 0,
73
+ 'Sentiment_Target': 'هاي سوالف عصابات ارهابية',
74
+ 'Topic': 'politics',
75
+ 'Tweet': 'ثلاث تفجيرات في #كركوك الحصيلة قتيل و 16 جريح بدأت اكلاوات كركوك كانت امان قبل دخول القوات العراقية ، هاي سوالف عصابات ارهابية'}
76
+
77
+ ### Data Fields
78
+
79
+ `Tweet`: the text content of the tweet \
80
+ `Country`: the country from which the tweet was collected ('jordan', 'lebanon', 'syria', 'palestine')\
81
+ `Topic`: the topic being discussed in the tweet (personal, politics, religion, sports, entertainment and others) \
82
+ `Sentiment`: the overall sentiment expressed in the tweet (very_negative, negative, neutral, positive and very_positive) \
83
+ `Sentiment_Expression`: the way how the sentiment was expressed: explicit, implicit, or none (the latter when sentiment is neutral) \
84
+ `Sentiment_Target`: the segment from the tweet to which sentiment is expressed. If sentiment is neutral, this field takes the 'none' value.
85
+
86
+ ### Data Splits
87
+
88
+ No standard splits are provided
89
+
90
+ ## Dataset Creation
91
+
92
+ ### Curation Rationale
93
+
94
+ [More Information Needed]
95
+
96
+ ### Source Data
97
+
98
+ #### Initial Data Collection and Normalization
99
+
100
+ [More Information Needed]
101
+
102
+ #### Who are the source language producers?
103
+
104
+ [More Information Needed]
105
+
106
+ ### Annotations
107
+
108
+ #### Annotation process
109
+
110
+ [More Information Needed]
111
+
112
+ #### Who are the annotators?
113
+
114
+ [More Information Needed]
115
+
116
+ ### Personal and Sensitive Information
117
+
118
+ [More Information Needed]
119
+
120
+ ## Considerations for Using the Data
121
+
122
+ ### Social Impact of Dataset
123
+
124
+ [More Information Needed]
125
+
126
+ ### Discussion of Biases
127
+
128
+ [More Information Needed]
129
+
130
+ ### Other Known Limitations
131
+
132
+ [More Information Needed]
133
+
134
+ ## Additional Information
135
+
136
+ ### Dataset Curators
137
+
138
+ [More Information Needed]
139
+
140
+ ### Licensing Information
141
+
142
+ Make sure to read and agree to the [license](http://oma-project.com/ArSenL/ArSenTD_Lev_Intro)
143
+
144
+ ### Citation Information
145
+
146
+ ```
147
+ @article{baly2019arsentd,
148
+ title={Arsentd-lev: A multi-topic corpus for target-based sentiment analysis in arabic levantine tweets},
149
+ author={Baly, Ramy and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Shaban, Khaled Bashir},
150
+ journal={arXiv preprint arXiv:1906.01830},
151
+ year={2019}
152
+ }
153
+ ```
arsentd_lev.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """ArSenTD-Lev : Arabic Sentiment Twitter Dataset for LEVantine dialect"""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import os
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """
27
+ @article{ArSenTDLev2018,
28
+ title={ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets},
29
+ author={Baly, Ramy, and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Bashir Shaban, Khaled},
30
+ journal={OSACT3},
31
+ pages={},
32
+ year={2018}}
33
+ """
34
+
35
+ _DESCRIPTION = """
36
+ The Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria.
37
+ """
38
+
39
+ _URL = "http://oma-project.com/ArSenL/ArSenTD-LEV.zip"
40
+ _FEATURES = ["Tweet", "Country", "Topic", "Sentiment", "Sentiment_Expression", "Sentiment_Target"]
41
+
42
+
43
+ class ArsentdLev(datasets.GeneratorBasedBuilder):
44
+ """"ArSenTD-Lev Dataset"""
45
+
46
+ VERSION = datasets.Version("1.1.0")
47
+
48
+ def _info(self):
49
+ return datasets.DatasetInfo(
50
+ description=_DESCRIPTION,
51
+ features=datasets.Features(
52
+ {
53
+ "Tweet": datasets.Value("string"),
54
+ "Country": datasets.ClassLabel(names=["jordan", "lebanon", "syria", "palestine"]),
55
+ "Topic": datasets.Value("string"),
56
+ "Sentiment": datasets.ClassLabel(
57
+ names=["negative", "neutral", "positive", "very_negative", "very_positive"]
58
+ ),
59
+ "Sentiment_Expression": datasets.ClassLabel(names=["explicit", "implicit", "none"]),
60
+ "Sentiment_Target": datasets.Value("string"),
61
+ }
62
+ ),
63
+ supervised_keys=None,
64
+ homepage="http://oma-project.com/ArSenL/ArSenTD_Lev_Intro",
65
+ citation=_CITATION,
66
+ )
67
+
68
+ def _split_generators(self, dl_manager):
69
+ """Returns SplitGenerators."""
70
+ path = dl_manager.download_and_extract(_URL)
71
+ return [
72
+ datasets.SplitGenerator(
73
+ name=datasets.Split.TRAIN,
74
+ gen_kwargs={"path": os.path.join(path, "ArSenTD-LEV.tsv")},
75
+ ),
76
+ ]
77
+
78
+ def _generate_examples(self, path=None):
79
+ """Yields examples."""
80
+ with open(path, encoding="utf-8") as f:
81
+ f.readline() # skip first line
82
+ for idx, line in enumerate(f):
83
+ yield idx, {el[0]: el[1].strip() for el in zip(_FEATURES, line.split("\t"))}
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "\nThe Arabic Sentiment Twitter Dataset for Levantine dialect (ArSenTD-LEV) contains 4,000 tweets written in Arabic and equally retrieved from Jordan, Lebanon, Palestine and Syria.\n", "citation": "\n@article{ArSenTDLev2018,\ntitle={ArSentD-LEV: A Multi-Topic Corpus for Target-based Sentiment Analysis in Arabic Levantine Tweets},\nauthor={Baly, Ramy, and Khaddaj, Alaa and Hajj, Hazem and El-Hajj, Wassim and Bashir Shaban, Khaled},\njournal={OSACT3},\npages={},\nyear={2018}}\n", "homepage": "http://oma-project.com/ArSenL/ArSenTD_Lev_Intro", "license": "", "features": {"Tweet": {"dtype": "string", "id": null, "_type": "Value"}, "Country": {"num_classes": 4, "names": ["jordan", "lebanon", "syria", "palestine"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Topic": {"dtype": "string", "id": null, "_type": "Value"}, "Sentiment": {"num_classes": 5, "names": ["negative", "neutral", "positive", "very_negative", "very_positive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Sentiment_Expression": {"num_classes": 3, "names": ["explicit", "implicit", "none"], "names_file": null, "id": null, "_type": "ClassLabel"}, "Sentiment_Target": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "arsentd_lev", "config_name": "default", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1233980, "num_examples": 4000, "dataset_name": "arsentd_lev"}}, "download_checksums": {"http://oma-project.com/ArSenL/ArSenTD-LEV.zip": {"num_bytes": 392666, "checksum": "399d03bf6e8eb50415355132bc6742b2d7a9728070f6f789d705616fd12189c3"}}, "download_size": 392666, "post_processing_size": null, "dataset_size": 1233980, "size_in_bytes": 1626646}}
dummy/1.1.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d6919e2cfb30fc990dd57e20ad272dbb18bee777f674c361868818c6d5500199
3
+ size 1451