"
],
"text/html": [
"\n",
" \n",
" \n",
"
\n",
" [1692/1692 26:18, Epoch 4/4]\n",
"
\n",
" \n",
" \n",
" \n",
" Epoch | \n",
" Training Loss | \n",
" Validation Loss | \n",
" Rouge-1 | \n",
" Rouge-2 | \n",
" Rouge-l | \n",
"
\n",
" \n",
" \n",
" \n",
" 1 | \n",
" No log | \n",
" 1.401181 | \n",
" {'r': 0.17148108927114958, 'p': 0.6379562391322167, 'f': 0.26832590357367825} | \n",
" {'r': 0.07858522178524069, 'p': 0.360154333073459, 'f': 0.12809842891548154} | \n",
" {'r': 0.1590282849180383, 'p': 0.5923933381271432, 'f': 0.24889423354088147} | \n",
"
\n",
" \n",
" 2 | \n",
" 1.594900 | \n",
" 1.367020 | \n",
" {'r': 0.1747453427909579, 'p': 0.6514125557124713, 'f': 0.2735964450128766} | \n",
" {'r': 0.08007461284714407, 'p': 0.36976837952426506, 'f': 0.1306811996198165} | \n",
" {'r': 0.16173566466180855, 'p': 0.6042644916283354, 'f': 0.2533334520400675} | \n",
"
\n",
" \n",
" 3 | \n",
" 1.461500 | \n",
" 1.354850 | \n",
" {'r': 0.17680703111550083, 'p': 0.6580227997445849, 'f': 0.27673560466849706} | \n",
" {'r': 0.08134023795336118, 'p': 0.37652148387529294, 'f': 0.13280746045720393} | \n",
" {'r': 0.1633877448233787, 'p': 0.6094888169052682, 'f': 0.2558348358355148} | \n",
"
\n",
" \n",
" 4 | \n",
" 1.434300 | \n",
" 1.352294 | \n",
" {'r': 0.17772369876428087, 'p': 0.6607516403224081, 'f': 0.27813368373818786} | \n",
" {'r': 0.08250523920949578, 'p': 0.3809083443815018, 'f': 0.13465413562180714} | \n",
" {'r': 0.16446775196350819, 'p': 0.6129784615253738, 'f': 0.2574997077652586} | \n",
"
\n",
" \n",
"
"
]
},
"metadata": {}
},
{
"output_type": "execute_result",
"data": {
"text/plain": [
"TrainOutput(global_step=1692, training_loss=1.4874611712516623, metrics={'train_runtime': 1579.3283, 'train_samples_per_second': 8.571, 'train_steps_per_second': 1.071, 'total_flos': 8232596872151040.0, 'train_loss': 1.4874611712516623, 'epoch': 4.0})"
]
},
"metadata": {},
"execution_count": 41
}
],
"source": [
"trainer.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "99V8sZT47KdC",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "7a04bc49-7413-474a-9caa-34bb0f2cdd9b"
},
"outputs": [
{
"output_type": "execute_result",
"data": {
"text/plain": [
"('t5-news/tokenizer_config.json',\n",
" 't5-news/special_tokens_map.json',\n",
" 't5-news/spiece.model',\n",
" 't5-news/added_tokens.json',\n",
" 't5-news/tokenizer.json')"
]
},
"metadata": {},
"execution_count": 42
}
],
"source": [
"# save the model\n",
"model_path = \"t5-news\"\n",
"trainer.save_model(model_path)\n",
"tokenizer.save_pretrained(model_path)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "7S8Evvp79Q_1"
},
"source": [
"T5 Inference\n",
"Try the fine-tuned T5 model for our news test set!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "wFIF0_ya7Kfp"
},
"outputs": [],
"source": [
"# load the model\n",
"model = AutoModelForSeq2SeqLM.from_pretrained(\"t5-news\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "n620-Cxc7KiL",
"colab": {
"base_uri": "https://localhost:8080/"
},
"outputId": "53fea11b-9242-497c-aaa5-b68f991c04db"
},
"outputs": [
{
"output_type": "stream",
"name": "stdout",
"text": [
"original_news: summarize: Sanjay apologises for bodyguards assaulting media persons. Sanjay Dutt, who is in Agra shooting for his comeback film Bhoomi, has run into trouble with the law again. The actor's bodyguards roughed up some local mediapersons on Thursday, who filed a police complaint. Reportedly, Sanjay was present when the attack took place, but left the spot. However, he has since issued an apology to the mediapersons.Earlier this week, the shooting of Sanjay's film was stalled when crowds which had gathered to get a glimpse of the actor went out of control.\n",
"{'summary_text': 'Actor Sanjay Dutt, who is in Agra shooting for his comeback film Bhoomi, has apologised for his bodyguards assaulting local media persons. Reportedly, he was present when the attack took place, but left the spot.'}\n",
"\n",
"original_news: summarize: Tharoor 'categorically' denies reports of him joining BJP. Congress MP and former Union Minister Shashi Tharoor denied reports that he was joining the BJP.In a Facebook post, he said: \"In view of the number of people asking, let me repeat that my convictions are a matter of record and they do not match those of Bharatiya Janata Party (BJP)\".\"For 40+years I have spoken and written in defence of a pluralist India with equal rights for all its citizens and communities,\" Tharoor, also a former UN diplomat, said.\"On this, no compromise. Rumours of my joining BJP have been floated periodically with no basis whatsoever. I deny them categorically and without qualification,\" he said.The Congress MP's clarification comes in the backdrop of a statement by CPI(M) state secretary Kodiyeri Balakrishnan that four Congress leaders, including Tharoor, planned to join the BJP.Balakrishnan had said there are reports that four Congress leaders from Kerala are joining the BJP and that KPCC president M M Hassan had said that one of them was Tharoor.However, Hassan denied having made any such remarks when contacted.\"When media persons asked me whether the reports about four Congress leaders joining the BJP has come to his notice, I said there is no such thing,\" Hassan told PTI.\"There are no fortune seekers in Kerala like S M Krishna and Jaffer Sharif,\" the KPCC president said.Tharoor campaigned for the Congress-led UDF candidate for the April 12 bypoll in Malappuram, Hassan said.\n",
"{'summary_text': 'Congress MP and former Union Minister Shashi Tharoor has denied reports of him joining the Bharatiya Janata Party (BJP). \"In view of the number of people asking, let me repeat that my convictions are a matter of record and they do not match those of BJP,\" he added. \"On this, no compromise. Rumours of my joining BJP have been floated periodically with no basis whatsoever. I deny them categ'}\n",
"\n",
"original_news: summarize: Where would Apple, IBM be without global talent: Urjit Patel. As the US under Donald Trump moves to make it difficult for Indians to get H-1B visa, RBI Governor Urjit Patel has warned against protectionism. Speaking in New York Patel said that big American tech companies are maintained and powered by talented Indians and without access to such skilled workers these companies may suffer.\"Where would Apple be, where would Cisco be, where would IBM be if they were not sourcing the best products and talent from across the world. And if policies come in the way of that, then the big wealth creators in a country that advocates protectionism are ultimately affected,\" he said.\"I don't think that we have heard the last word on US policy talk about this because there is a push back internationally that the world has benefited from an open trading system,\" the RBI governor said.Also Read: Trump to sign order that will make getting H1B visa harder for IndiansPatel's statement comes weeks after US president Donald Trump signed an executive order emphasising that the H-1B should be used to bring on only very specialised workers in the US and not generic programmers and coders. The move is aimed at companies like Infosys and TCS that often hire Indian programmers and coders in the US instead of hiring locals, who may demand higher wages for the similar job.Many in the US government also believe that Indian companies game the H-1B visa system and get disproportionate share of these visas. Nasscom, an industry body of IT companies in India, however, denies the allegations. \"NASSCOM would like to clarify on the statements made by the White House on Indian Companies getting the lion's share of H-1B visas; and highlight that in FY 2015 only 6 of the top 20 H-1B recipients were Indian companies. Further, among the companies named, the two Indian companies namely TCS and Infosys together received 7,504 approved H-1B visas in FY 2015; which is only 8.8 per cent of the total approved H-1B visas,\" noted a Nasscom spokesperson.\n",
"{'summary_text': 'RBI Governor Urjit Patel has said that big American tech companies are maintained and powered by talented Indians and without access to such skilled workers these companies may suffer. \"I don\\'t think that we have heard the last word on US policy talk about this because there is a push back internationally that the world has benefited from an open trading system,\" he added.'}\n",
"\n",
"original_news: summarize: Pak faked nuclear missile Babur-3 launch, claim experts. Hours after Pakistan proudly announced the launch of the nuclear-capable Babur-3 cruise missile, reports today suggested that Islamabad may have faked the launch video. Experts, including a satellite imagery analyst based in Pathankot, have put out technical evidence to suggest that Pakistan has faked the missile video and used computer graphics to depict much of the weapon's flight. The analyst, in a series of tweets, claimed that Pakistan insidiously used a computer generated image of a missile over the background to show that Babur-3 was successful. #Pakistan#SLCM#Babur3 Fake video clip uses CGI. Geo-location coming up shortly. https://t.co/26ysrUQDrc#Pakistan#Nuclear#SLCM#Babur3 Notice video closely at 7s. Missile was flying with canister for almost 8 secs? Cavitation canister?? pic.twitter.com/zIwIZzmfr1#Pakistan#SLCM#Babur3 Geo-located CGI 25°20'13\"N 64°53'18\"E. Missile moves 15kms in 8sec speed 6750kmph. pic.twitter.com/Dc3TV6zVvd Colonel (retired) Vinayak Bhat, an imagery expert, has told India Today TV that the video of the launch released by the Pakistan Army appears to be computer-generated. He also said the colour of the missile changes from white to orange in the video released by Pakistan. Even the speed of the missile is impossibly high, he said.ABOUT BABUR-3 The nuclear-capable Babur-3 missile, which has a range of 450 km (280 miles) was fired from an undisclosed location in the Indian Ocean.India successfully test-fired a nuclear-capable, submarine-launched missile in 2008 and tested a submarine-launched cruise missile in 2013.The Pakistani military said the Babur-3 missile was \"capable of delivering various types of payloads and will provide Pakistan with a Credible Second Strike Capability, augmenting deterrence\".An army spokesman later confirmed the language meant the missile was equipped to carry nuclear warheads.The Babur-3 is a sea-based variant of the ground-launched Babur-2 missile, which was tested in December. The military said the missile had features such as \"underwater controlled propulsion and advanced guidance and navigation\".Last year, Pakistan said it was \"seriously concerned\" by India's test of anti-ballistic missiles which media reports said could intercept incoming nuclear weapons. According to media reports, on May 15 India tested a locally designed Anti-Ballistic Missile system which could in theory intercept a nuclear-carrying ballistic missile. (With inputs from Reuters) ALSO READ: Pakistan fires Babur-3, its first submarine-launched nuclear-capable missile\n",
"{'summary_text': 'Experts have put out technical evidence to suggest that Pakistan has faked the launch video of the nuclear-capable cruise missile Babur-3. They claim that Pakistan insidiously used a computer generated image of a missile over the background to show that the missile was successful. The video, which was released by the Pakistan Army, appears to be computer-generated.'}\n",
"\n",
"original_news: summarize: If BJP wins in UP, farmers' loan will be waived first: Modi. Rounding off a day of hectic electioneering in Uttar Pradesh, Prime Minster Narendra Modi has arrived for a town hall rally in Varanasi, his Lok Sabha constituency.Earlier in the day, Modi Akhilesh Yadav and Rahul Gandhi held separate road shows in the holy city. BSP supremo Mayawati also held a rally on the outskirts. After Samajwadi Party and Congress supporters were pelted with stones during their joint roadshow in Varanasi, the city police asked Akhilesh Yadav and Rahul Gandhi to speed up the event. Prime Minister Modi, who also addressed a rally in Jaupur, attacked the Samajwadi Party saying, \"BJP will celebrate Holi with the party's victory in UP. Farmers' loan waiver to be the first decision after we come to power.\"The BJP is aiming for a revival in the state where it was in decline for more than a decade, before making a dramatic comeback in the 2014 general elections - when it won a stunning 71 Lok Sabha seats, its best-ever performance till date.Here are the live updates:Dimple Yadav joins CM Akhilesh Yadav and Rahul Gandhi's roadshow in Varanasi #uppolls2017pic.twitter.com/Z5TCVObTvMCongress VP Rahul Gandhi and UP CM Akhilesh Yadav hold joint roadshow in Varanasi pic.twitter.com/JbH3u69SZ3PM Narendra Modi offered prayers at the Kaal Bhairav temple in Varanasi pic.twitter.com/2bN5rvsWSwPM Narendra Modi's roadshow to reach Kaal Bhairav temple in Varanasi shortly pic.twitter.com/fxj3L2LGV1#WATCH: Supporters cheer 'Modi Modi' as Prime Minister's roadshow proceeds towards Kashi Vishwanath temple in Varanasi. pic.twitter.com/CWZJHVdGlw#UttarPradesh: PM Modi to reach Kashi Vishwanath temple covering Ravidas gate Lanka, Assi, Madani, Sonarpura, Godowlia and Basphatak areas pic.twitter.com/BzjaElUbItPM Narendra Modi's roadshow underway in Varanasi, supporters raise slogans 'Har har Modi, Ghar ghar Modi' pic.twitter.com/n8YwQYepPiPM Narendra Modi arrives at Banaras Hindu University, Varanasi pic.twitter.com/uUhQZsYD9sPM Narendra Modi arrives at Banaras Hindu University, Varanasi pic.twitter.com/uUhQZsYD9sAlso read:Uttar Pradesh elections: PM Modi mocks Rahul Gandhi's 'factory' ideasUttar Pradesh election: Varanasi doesn't need to be Kyoto, city's top mahant slams PM Modi's idea\n",
"{'summary_text': 'Prime Minister Narendra Modi has arrived for a town hall rally in Varanasi, his Lok Sabha constituency. He said, \"BJP will celebrate Holi with the party\\'s victory in UP. Farmers\\' loan waiver to be the first decision after we come to power.\" Akhilesh Yadav and Rahul Gandhi also held separate road shows in the holy city.'}\n",
"\n"
]
}
],
"source": [
"#for i in range(len(test_df['news']):\n",
"for i in range(5):\n",
" print(\"original_news: \",test_df['news'].iloc[i])\n",
" summarizer = pipeline(\"summarization\", model = model,tokenizer = tokenizer, max_length = 100)\n",
" summary = summarizer(test_df['news'].iloc[i])\n",
" print(summary[0])\n",
" print()"
]
}
],
"metadata": {
"colab": {
"provenance": [],
"gpuType": "T4"
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
},
"accelerator": "GPU",
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"85bebc3260064661bd2bd1d4fd759eef": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_aa82a212a4b54f32832e2f2d2e94ba1c",
"IPY_MODEL_18927ad3cee041e99fdea050ad82405d",
"IPY_MODEL_4a2d2287b3e3420b94b6555bb3c442b0"
],
"layout": "IPY_MODEL_5b711e84e61a4a489944995890354b23"
}
},
"aa82a212a4b54f32832e2f2d2e94ba1c": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_eabfae4947614ec287dc36aaea0268be",
"placeholder": "",
"style": "IPY_MODEL_1dda3f61e7f04b2ab0188342eeba0fe5",
"value": "Map: 100%"
}
},
"18927ad3cee041e99fdea050ad82405d": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_f7c6918e2e524d44b76420c6120481ee",
"max": 3384,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_732814f97e7041738e6eefa6764c9fa0",
"value": 3384
}
},
"4a2d2287b3e3420b94b6555bb3c442b0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_83cb8ea9cb0c4755adc75539f59fedba",
"placeholder": "",
"style": "IPY_MODEL_eff40297f07d4c558893d279b2cffc32",
"value": " 3384/3384 [00:07<00:00, 414.87 examples/s]"
}
},
"5b711e84e61a4a489944995890354b23": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"eabfae4947614ec287dc36aaea0268be": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"1dda3f61e7f04b2ab0188342eeba0fe5": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"f7c6918e2e524d44b76420c6120481ee": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"732814f97e7041738e6eefa6764c9fa0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"83cb8ea9cb0c4755adc75539f59fedba": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"eff40297f07d4c558893d279b2cffc32": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"b347b157e0064086a939452ccb1eea5e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HBoxModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_eaea7cad953946af84e91eed86b7e7f0",
"IPY_MODEL_2c96658b00fa4dafa592c400a87c53bf",
"IPY_MODEL_ee02e82102dd41658817fbaca810ae36"
],
"layout": "IPY_MODEL_8566af85bf0d4892a0062250969430dd"
}
},
"eaea7cad953946af84e91eed86b7e7f0": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_848541f2ca43478598070da3cf784a59",
"placeholder": "",
"style": "IPY_MODEL_33f69b6e4e7b4088a2d90050178ec514",
"value": "Map: 100%"
}
},
"2c96658b00fa4dafa592c400a87c53bf": {
"model_module": "@jupyter-widgets/controls",
"model_name": "FloatProgressModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a202da32379a42fb9d325e5812a61dd3",
"max": 847,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_92e62c794f4243df8c8a1071642f105e",
"value": 847
}
},
"ee02e82102dd41658817fbaca810ae36": {
"model_module": "@jupyter-widgets/controls",
"model_name": "HTMLModel",
"model_module_version": "1.5.0",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_08a4c22f140c4907a020d6c19e1274a9",
"placeholder": "",
"style": "IPY_MODEL_bc7406c23a1e4c7b9de7de918978200f",
"value": " 847/847 [00:01<00:00, 527.01 examples/s]"
}
},
"8566af85bf0d4892a0062250969430dd": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"848541f2ca43478598070da3cf784a59": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"33f69b6e4e7b4088a2d90050178ec514": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a202da32379a42fb9d325e5812a61dd3": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"92e62c794f4243df8c8a1071642f105e": {
"model_module": "@jupyter-widgets/controls",
"model_name": "ProgressStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"08a4c22f140c4907a020d6c19e1274a9": {
"model_module": "@jupyter-widgets/base",
"model_name": "LayoutModel",
"model_module_version": "1.2.0",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"bc7406c23a1e4c7b9de7de918978200f": {
"model_module": "@jupyter-widgets/controls",
"model_name": "DescriptionStyleModel",
"model_module_version": "1.5.0",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}