Datasets:
File size: 7,717 Bytes
f5c1b35 ad2469c f5c1b35 ad2469c f5c1b35 ad2469c f5c1b35 bb1f4b4 f5c1b35 a6515ed f5c1b35 a6515ed f5c1b35 285bdcd f5c1b35 986ffd1 f5c1b35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
---
license: apache-2.0
dataset_info:
features:
- name: image
dtype: image
- name: annotations
dtype: string
- name: image_name
dtype: string
- name: partner
dtype: string
- name: camera
dtype: string
- name: date
dtype: string
splits:
- name: train
num_bytes: 3073513876.487
num_examples: 29537
- name: val
num_bytes: 412525894.663
num_examples: 4099
download_size: 3425969785
dataset_size: 3486039771.15
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: val
path: data/val-*
tags:
- wildfire
- smoke
- yolo
- pyronear
- ultralytics
size_categories:
- 10K<n<100K
---
# Pyro-SDIS Dataset
![Pyronear Logo](https://huggingface.co/datasets/pyronear/pyro-sdis/resolve/main/logo.png)
⚠️ **Warning: This is a pre-release version of the Pyro-SDIS dataset.**
This subset is provided for early access and experimentation. Not all images are currently included, and there may still be annotation errors. The full release of the 2025 version of Pyro-SDIS (based on images collected in 2024) will be available in **January 2025**.
---
## About the Dataset
Pyro-SDIS is a dataset designed for wildfire smoke detection using AI models. It is developed in collaboration with the Fire and Rescue Services (SDIS) in France and the dedicated volunteers of the Pyronear association.
The images in this dataset come from Pyronear cameras installed with the support of our SDIS partners. These images have been carefully annotated by Pyronear volunteers, whose tireless efforts we deeply appreciate.
We extend our heartfelt thanks to all Pyronear volunteers and our SDIS partners for their trust and support:
- **Force 06**
- **SDIS 07**
- **SDIS 12**
- **SDIS 77**
Additionally, we express our gratitude to the DINUM for their financial and strategic support through the AIC, Etalab, and the Legal Service. Special thanks also go to the Mission Stratégie Prospective (MSP) for their guidance and collaboration.
The Pyro-SDIS Subset contains **33,636 images**, including:
- **28,103 images with smoke**
- **31,975 smoke instances**
This dataset is formatted to be compatible with the Ultralytics YOLO framework, enabling efficient training of object detection models.
---
Stay tuned for the full release in **January 2025**, which will include additional images and refined annotations. Thank you for your interest and support in advancing wildfire detection technologies!
## Dataset Overview
### Contents
The Pyro-SDIS Subset contains images and annotations for wildfire smoke detection. The dataset is structured with the following metadata for each image:
- **Image Path**: File path to the image.
- **Annotations**: YOLO-format bounding box annotations for smoke detection:
- `class_id`: Class label (e.g., smoke).
- `x_center`, `y_center`: Normalized center coordinates of the bounding box.
- `width`, `height`: Normalized width and height of the bounding box.
- **Metadata**:
- `partner`: Partner organization responsible for the camera (e.g., SDIS 07, Force 06).
- `camera`: Camera identifier.
- `date`: Date of image capture (formatted as `YYYY-MM-DDTHH-MM-SS`).
- `image_name`: Original file name of the image.
- **Split**: Indicates whether the image belongs to the training or validation set (`train` or `val`).
### Example Record
Each record in the dataset contains the following structure:
```json
{
"image": "./images/train/partner_camera_date.jpg",
"annotations": "0 0.5 0.5 0.1 0.2",
"split": "train",
"image_name": "partner_camera_date.jpg",
"partner": "partner",
"camera": "camera",
"date": "YYYY-MM-DDTHH-MM-SS"
}
```
---
Let me know if you’d like further refinements or if you want me to include specific numbers/statistics for the dataset.
### Splits
The dataset is divided into:
- **Training split**: Used for training the model.
- **Validation split**: Used to evaluate model performance.
## Exporting the Dataset for Ultralytics Training
To train a YOLO model using the Ultralytics framework, the dataset must be structured as follows:
- **Images**: Stored in `images/train/` and `images/val/` directories.
- **Annotations**: Stored in YOLO-compatible format in `labels/train/` and `labels/val/` directories.
### Steps to Export the Dataset
1. **Install Required Libraries**:
```bash
pip install datasets ultralytics
```
2. **Define Paths**:
Set up the directory structure for the Ultralytics dataset:
```python
import os
from datasets import load_dataset
# Define paths
REPO_ID = "pyronear/pyro-sdis"
OUTPUT_DIR = "./pyro-sdis"
IMAGE_DIR = os.path.join(OUTPUT_DIR, "images")
LABEL_DIR = IMAGE_DIR.replace("images", "labels")
# Create the directory structure
for split in ["train", "val"]:
os.makedirs(os.path.join(IMAGE_DIR, split), exist_ok=True)
os.makedirs(os.path.join(LABEL_DIR, split), exist_ok=True)
# Load the dataset from the Hugging Face Hub
dataset = load_dataset(REPO_ID)
```
3. **Export Dataset**:
Use the following function to save the dataset in Ultralytics format:
```python
def save_ultralytics_format(dataset_split, split):
"""
Save a dataset split into the Ultralytics format.
Args:
dataset_split: The dataset split (e.g., dataset["train"])
split: "train" or "val"
"""
for example in dataset_split:
# Save the image to the appropriate folder
image = example["image"] # PIL.Image.Image
image_name = example["image_name"] # Original file name
output_image_path = os.path.join(IMAGE_DIR, split, image_name)
# Save the image object to disk
image.save(output_image_path)
# Save label
annotations = example["annotations"]
label_name = image_name.replace(".jpg", ".txt").replace(".png", ".txt")
output_label_path = os.path.join(LABEL_DIR, split, label_name)
with open(output_label_path, "w") as label_file:
label_file.write(annotations)
# Save train and validation splits
save_ultralytics_format(dataset["train"], "train")
save_ultralytics_format(dataset["val"], "val")
print("Dataset exported to Ultralytics format.")
```
4. **Directory Structure**:
After running the script, the dataset will have the following structure:
```
pyro-sdis/
├── images/
│ ├── train/
│ ├── val/
├── labels/
│ ├── train/
│ ├── val/
```
---
### Training with Ultralytics YOLO
1. **Download the `data.yaml` File**:
Use the following code to download the configuration file:
```python
from huggingface_hub import hf_hub_download
# Correctly set repo_id and repo_type
repo_id = "pyronear/pyro-sdis"
filename = "data.yaml"
# Download data.yaml to the current directory
yaml_path = hf_hub_download(repo_id=repo_id, filename=filename, repo_type="dataset", local_dir=".")
print(f"data.yaml downloaded to: {yaml_path}")
```
2. **Train the Model**:
Install the Ultralytics YOLO framework and train the model:
```bash
pip install ultralytics
yolo task=detect mode=train data=data.yaml model=yolov8n.pt epochs=50 imgsz=640 single_cls=True
```
## License
The dataset is released under the [Apache-2.0 License](https://www.apache.org/licenses/LICENSE-2.0).
## Citation
If you use this dataset, please cite:
```
@dataset{pyro-sdis,
author = {Pyronear Team},
title = {Pyro-SDIS Dataset},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/pyronear/pyro-sdis}
}
``` |