projectlosangeles commited on
Commit
3e3cb7a
·
1 Parent(s): 0c995cd

Upload 9 files

Browse files
Los_Angeles_MIDI_Dataset_Maker.ipynb CHANGED
@@ -11,7 +11,7 @@
11
  "id": "SiTIpPjArIyr"
12
  },
13
  "source": [
14
- "# Los Angeles MIDI Dataset Maker (ver. 1.0)\n",
15
  "\n",
16
  "***\n",
17
  "\n",
@@ -76,7 +76,7 @@
76
  "source": [
77
  "#@title Import all needed modules\n",
78
  "\n",
79
- "print('Loading needed modules. Please wait...')\n",
80
  "import os\n",
81
  "\n",
82
  "import math\n",
@@ -84,15 +84,23 @@
84
  "import random\n",
85
  "from collections import Counter\n",
86
  "import shutil\n",
87
- "import difflib\n",
88
  "from tqdm import tqdm\n",
89
  "\n",
 
 
90
  "if not os.path.exists('/content/Dataset'):\n",
91
  " os.makedirs('/content/Dataset')\n",
92
  "\n",
93
  "if not os.path.exists('/content/Output'):\n",
94
  " os.makedirs('/content/Output')\n",
95
  "\n",
 
 
 
 
 
 
96
  "print('Loading TMIDIX module...')\n",
97
  "os.chdir('/content/tegridy-tools/tegridy-tools')\n",
98
  "\n",
@@ -204,12 +212,6 @@
204
  },
205
  {
206
  "cell_type": "code",
207
- "execution_count": null,
208
- "metadata": {
209
- "id": "CeGo7CruaCJQ",
210
- "cellView": "form"
211
- },
212
- "outputs": [],
213
  "source": [
214
  "#@title Process MIDIs with TMIDIX MIDI processor\n",
215
  "\n",
@@ -229,12 +231,10 @@
229
  "\n",
230
  "melody_chords_f = []\n",
231
  "\n",
232
- "pitches_sums = []\n",
233
- "pitches_counts = []\n",
234
- "\n",
235
- "pitches_data = []\n",
236
- "\n",
237
- "stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]\n",
238
  "\n",
239
  "print('Processing MIDI files. Please wait...')\n",
240
  "print('=' * 70)\n",
@@ -244,85 +244,86 @@
244
  " input_files_count += 1\n",
245
  "\n",
246
  " fn = os.path.basename(f)\n",
247
- " fn1 = fn.split('.mid')[0]\n",
 
 
248
  "\n",
249
- " #=======================================================\n",
250
- " # START PROCESSING\n",
 
251
  "\n",
252
- " # Convering MIDI to ms score with MIDI.py module\n",
253
- " score = TMIDIX.midi2ms_score(open(f, 'rb').read())\n",
254
  "\n",
255
- " events_matrix = []\n",
256
- " itrack = 1\n",
257
- " \n",
258
- " while itrack < len(score):\n",
259
- " for event in score[itrack]: \n",
260
- " if event[0] == 'note':\n",
261
- " if event[3] == 9:\n",
262
- " event[4] = (event[4] % 128)+128\n",
263
- " else:\n",
264
- " event[4] = (event[4] % 128)\n",
265
- " \n",
266
- " events_matrix.append(event)\n",
267
- " itrack += 1\n",
268
- " \n",
269
- " if len(events_matrix) >= 256:\n",
270
  "\n",
271
  " events_matrix.sort(key=lambda x: x[1])\n",
272
  "\n",
273
- " times = [e[1] for e in events_matrix]\n",
274
- " durs = [e[2] for e in events_matrix]\n",
275
- "\n",
276
- " if min(times) >= 0 and min(durs) >= 0:\n",
277
- " if len([k for k,v in Counter(times).items() if v>1]) != 0:\n",
278
- " \n",
279
- " pitches = [e[4] for e in events_matrix]\n",
280
- " pitches_sum = sum(pitches)\n",
281
- " pitches_number = len(pitches)\n",
282
- "\n",
283
- " if pitches_sum not in pitches_sums:\n",
284
- " pitches_count = sorted([[key, val] for key,val in Counter(pitches).most_common()], reverse=True)\n",
285
- " #=======================================================\n",
286
- " \n",
287
- " if [y[1] for y in pitches_count] not in pitches_counts:\n",
288
- "\n",
289
- " # Saving every 5000 processed files\n",
290
- " if files_count % 50000 == 0:\n",
291
- " dir_count = ((files_count // 50000)+1) * 50000\n",
292
- " dir_count_str = str(dir_count).zfill(7)\n",
293
- " copy_path = '/content/Output/'+dir_count_str\n",
294
- " if not os.path.exists(copy_path):\n",
295
- " os.mkdir(copy_path)\n",
296
- " print('SAVING !!!')\n",
297
- " print('=' * 70)\n",
298
- " print('Saving processed files...')\n",
299
- " print('=' * 70)\n",
300
- " print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
301
- " print('=' * 70)\n",
302
- "\n",
303
- " if files_count % 5000 == 0:\n",
304
- " print('=' * 70)\n",
305
- " print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
306
- " print('=' * 70)\n",
307
- " TMIDIX.Tegridy_Any_Pickle_File_Writer(pitches_data, '/content/Output/pitches_data')\n",
308
- "\n",
309
- " shutil.copy2(f, copy_path+'/'+fn)\n",
310
- "\n",
311
- " # Processed files counter\n",
312
- " files_count += 1\n",
313
- " \n",
314
- " data = []\n",
315
- " \n",
316
- " data = [fn.split('.mid')[0], times[-1], len(set(times))]\n",
317
- " for p in pitches_count:\n",
318
- " data.extend(p)\n",
319
- " \n",
320
- " pitches_data.append(data)\n",
321
- " \n",
322
- " pitches_sums.append(pitches_sum)\n",
323
- " pitches_counts.append([y[1] for y in pitches_count])\n",
324
  "\n",
 
 
325
  "\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
326
  " except KeyboardInterrupt:\n",
327
  " print('Saving current progress and quitting...')\n",
328
  " break \n",
@@ -335,15 +336,13 @@
335
  " print('=' * 70)\n",
336
  " continue\n",
337
  "\n",
338
- "# Saving last processed files...\n",
339
  "print('=' * 70)\n",
340
- "print('Saving processed files...')\n",
341
  "print('=' * 70)\n",
342
- "print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
343
  "print('=' * 70)\n",
344
- "TMIDIX.Tegridy_Any_Pickle_File_Writer(pitches_data, '/content/Output/pitches_data')\n",
345
- "\n",
346
- "# Displaying resulting processing stats...\n",
347
  "print('=' * 70)\n",
348
  "print('Done!') \n",
349
  "print('=' * 70)\n",
@@ -352,7 +351,13 @@
352
  "print('=' * 70)\n",
353
  "print('Total good processed MIDI files:', files_count)\n",
354
  "print('=' * 70)"
355
- ]
 
 
 
 
 
 
356
  },
357
  {
358
  "cell_type": "markdown",
 
11
  "id": "SiTIpPjArIyr"
12
  },
13
  "source": [
14
+ "# Los Angeles MIDI Dataset Maker (ver. 3.0)\n",
15
  "\n",
16
  "***\n",
17
  "\n",
 
76
  "source": [
77
  "#@title Import all needed modules\n",
78
  "\n",
79
+ "print('Loading core modules... Please wait...')\n",
80
  "import os\n",
81
  "\n",
82
  "import math\n",
 
84
  "import random\n",
85
  "from collections import Counter\n",
86
  "import shutil\n",
87
+ "import hashlib\n",
88
  "from tqdm import tqdm\n",
89
  "\n",
90
+ "print('Creating IO dirs...')\n",
91
+ "\n",
92
  "if not os.path.exists('/content/Dataset'):\n",
93
  " os.makedirs('/content/Dataset')\n",
94
  "\n",
95
  "if not os.path.exists('/content/Output'):\n",
96
  " os.makedirs('/content/Output')\n",
97
  "\n",
98
+ "output_dirs_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f']\n",
99
+ "\n",
100
+ "for o in output_dirs_list:\n",
101
+ " if not os.path.exists('/content/Output/'+str(o)+'/'):\n",
102
+ " os.makedirs('/content/Output/'+str(o)+'/')\n",
103
+ "\n",
104
  "print('Loading TMIDIX module...')\n",
105
  "os.chdir('/content/tegridy-tools/tegridy-tools')\n",
106
  "\n",
 
212
  },
213
  {
214
  "cell_type": "code",
 
 
 
 
 
 
215
  "source": [
216
  "#@title Process MIDIs with TMIDIX MIDI processor\n",
217
  "\n",
 
231
  "\n",
232
  "melody_chords_f = []\n",
233
  "\n",
234
+ "all_md5_names = []\n",
235
+ "all_pitches_sums = []\n",
236
+ "all_pitches_counts = []\n",
237
+ "all_pitches_and_counts = []\n",
 
 
238
  "\n",
239
  "print('Processing MIDI files. Please wait...')\n",
240
  "print('=' * 70)\n",
 
244
  " input_files_count += 1\n",
245
  "\n",
246
  " fn = os.path.basename(f)\n",
247
+ " \n",
248
+ " # Filtering out giant MIDIs\n",
249
+ " file_size = os.path.getsize(f)\n",
250
  "\n",
251
+ " if file_size <= 1000000:\n",
252
+ " \n",
253
+ " fdata = open(f, 'rb').read()\n",
254
  "\n",
255
+ " md5sum = hashlib.md5(fdata).hexdigest()\n",
 
256
  "\n",
257
+ " md5name = str(md5sum) + '.mid'\n",
258
+ "\n",
259
+ " #=======================================================\n",
260
+ " # START PROCESSING\n",
261
+ "\n",
262
+ " # Convering MIDI to ms score with MIDI.py module\n",
263
+ " score = TMIDIX.midi2score(fdata)\n",
264
+ "\n",
265
+ " events_matrix = []\n",
266
+ " itrack = 1\n",
267
+ "\n",
268
+ " while itrack < len(score):\n",
269
+ " for event in score[itrack]: \n",
270
+ " events_matrix.append(event)\n",
271
+ " itrack += 1\n",
272
  "\n",
273
  " events_matrix.sort(key=lambda x: x[1])\n",
274
  "\n",
275
+ " notes = [y for y in events_matrix if y[0] == 'note']\n",
276
+ "\n",
277
+ " if len(notes) >= 256:\n",
278
+ "\n",
279
+ " times = [n[1] for n in notes]\n",
280
+ " durs = [n[2] for n in notes]\n",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
281
  "\n",
282
+ " if min(times) >= 0 and min(durs) >= 0:\n",
283
+ " if len(times) > len(set(times)):\n",
284
  "\n",
285
+ " if str(md5sum) not in all_md5_names:\n",
286
+ "\n",
287
+ " pitches = [n[4] for n in notes]\n",
288
+ " pitches_sum = sum(pitches)\n",
289
+ "\n",
290
+ " if pitches_sum not in all_pitches_sums:\n",
291
+ " pitches_and_counts = sorted([[key, val] for key,val in Counter(pitches).most_common()], reverse=True, key = lambda x: x[1])\n",
292
+ " pitches_counts = [p[1] for p in pitches_and_counts]\n",
293
+ " \n",
294
+ " #=======================================================\n",
295
+ "\n",
296
+ " if pitches_counts not in all_pitches_counts:\n",
297
+ "\n",
298
+ " # Saving data every 50000 processed files\n",
299
+ " if files_count % 50000 == 0:\n",
300
+ " print('SAVING !!!')\n",
301
+ " print('=' * 70)\n",
302
+ " print('Saving processed data...')\n",
303
+ " print('=' * 70)\n",
304
+ " TMIDIX.Tegridy_Any_Pickle_File_Writer([all_md5_names, all_pitches_sums, all_pitches_and_counts], '/content/Output/all_files_data')\n",
305
+ " print('=' * 70)\n",
306
+ " print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
307
+ " print('=' * 70)\n",
308
+ " \n",
309
+ "\n",
310
+ " shutil.copy2(f, '/content/Output/'+str(md5name[0])+'/'+md5name)\n",
311
+ "\n",
312
+ " all_md5_names.append(str(md5sum))\n",
313
+ " all_pitches_sums.append(pitches_sum)\n",
314
+ " all_pitches_counts.append(pitches_counts)\n",
315
+ " all_pitches_and_counts.append(pitches_and_counts)\n",
316
+ " \n",
317
+ " if files_count % 1000 == 0:\n",
318
+ " print('=' * 70)\n",
319
+ " print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
320
+ " print('=' * 70)\n",
321
+ "\n",
322
+ " # Processed files counter\n",
323
+ " files_count += 1\n",
324
+ "\n",
325
+ " #=======================================================\n",
326
+ " \n",
327
  " except KeyboardInterrupt:\n",
328
  " print('Saving current progress and quitting...')\n",
329
  " break \n",
 
336
  " print('=' * 70)\n",
337
  " continue\n",
338
  "\n",
339
+ "# Saving last processed data...\n",
340
  "print('=' * 70)\n",
341
+ "print('Saving processed data...')\n",
342
  "print('=' * 70)\n",
343
+ "TMIDIX.Tegridy_Any_Pickle_File_Writer([all_md5_names, all_pitches_sums, all_pitches_and_counts], '/content/Output/all_files_data')\n",
344
  "print('=' * 70)\n",
345
+ "print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
 
 
346
  "print('=' * 70)\n",
347
  "print('Done!') \n",
348
  "print('=' * 70)\n",
 
351
  "print('=' * 70)\n",
352
  "print('Total good processed MIDI files:', files_count)\n",
353
  "print('=' * 70)"
354
+ ],
355
+ "metadata": {
356
+ "cellView": "form",
357
+ "id": "OtmMHNozWPSV"
358
+ },
359
+ "execution_count": null,
360
+ "outputs": []
361
  },
362
  {
363
  "cell_type": "markdown",
Los_Angeles_MIDI_Dataset_Metadata_Maker.ipynb CHANGED
@@ -11,7 +11,7 @@
11
  "id": "SiTIpPjArIyr"
12
  },
13
  "source": [
14
- "# Los Angeles MIDI Dataset Metadata Maker (ver. 1.0)\n",
15
  "\n",
16
  "***\n",
17
  "\n",
@@ -286,6 +286,8 @@
286
  " # Convering MIDI to score with MIDI.py module\n",
287
  " score = TMIDIX.opus2score(opus)\n",
288
  "\n",
 
 
289
  " events_matrix = []\n",
290
  " full_events_matrix = []\n",
291
  " \n",
@@ -312,7 +314,7 @@
312
  " event.extend([patches[event[3]]])\n",
313
  " events_matrix1.append(event)\n",
314
  "\n",
315
- " if len(events_matrix1) > 0: \n",
316
  " \n",
317
  " events_matrix1.sort(key=lambda x: x[1])\n",
318
  "\n",
@@ -325,16 +327,14 @@
325
  "\n",
326
  " pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix1]).most_common()]\n",
327
  " pitches_counts.sort(key=lambda x: x[0], reverse=True)\n",
328
- "\n",
329
- " patches_counts = [[y[0],y[1]] for y in Counter([y[6] for y in events_matrix1]).most_common()]\n",
330
- " patches_counts.sort(key=lambda x: x[1], reverse=True)\n",
331
  " \n",
332
- " pitches_patches = sorted([[y[4], y[6]] for y in events_matrix1], reverse=True)\n",
333
- " pitches_patches_counts = [[[y[0][0], y[0][1]], y[1]] for y in Counter([tuple(x) for x in pitches_patches]).most_common()]\n",
 
334
  " \n",
335
  " midi_patches = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change'])))\n",
336
  " if len(midi_patches) == 0:\n",
337
- " midi_patches = [None]\n",
338
  " \n",
339
  " times = []\n",
340
  " pt = ms_events_matrix[0][1]\n",
@@ -345,7 +345,7 @@
345
  " start = False\n",
346
  " pt = e[1]\n",
347
  " \n",
348
- " times_sum = sum(times)\n",
349
  " \n",
350
  " durs = [e[2] for e in ms_events_matrix]\n",
351
  " vels = [e[5] for e in ms_events_matrix]\n",
@@ -363,14 +363,14 @@
363
  " median_vel = int(statistics.median(vels))\n",
364
  " \n",
365
  " text_events_list = ['text_event', \n",
366
- " 'text_event_08', \n",
367
- " 'text_event_09', \n",
368
- " 'text_event_0a', \n",
369
- " 'text_event_0b', \n",
370
- " 'text_event_0c',\n",
371
- " 'text_event_0d',\n",
372
- " 'text_event_0e',\n",
373
- " 'text_event_0f']\n",
374
  " \n",
375
  " text_events_count = len([e for e in full_events_matrix if e[0] in text_events_list])\n",
376
  " lyric_events_count = len([e for e in full_events_matrix if e[0] == 'lyric'])\n",
@@ -397,11 +397,15 @@
397
  " chords.append(sorted(cho))\n",
398
  "\n",
399
  " ms_chords_counts = sorted([[list(key), val] for key,val in Counter([tuple(c) for c in chords if len(c) > 1]).most_common()], reverse=True, key = lambda x: x[1])\n",
400
- " \n",
 
 
 
 
401
  " tempo_change_count = len([f for f in full_events_matrix if f[0] == 'set_tempo'])\n",
402
  " \n",
403
- " sixty_forth_note = [e for e in events_matrix1][64]\n",
404
- " sixty_forth_note_idx = full_events_matrix.index(sixty_forth_note)\n",
405
  "\n",
406
  " data = []\n",
407
  " data.append(['total_number_of_tracks', itrack])\n",
@@ -410,19 +414,18 @@
410
  " data.append(['average_median_mode_time_ms', [avg_time, median_time, mode_time]])\n",
411
  " data.append(['average_median_mode_dur_ms', [avg_dur, median_dur, mode_dur]])\n",
412
  " data.append(['average_median_mode_vel', [avg_vel, median_vel, mode_vel]])\n",
413
- " data.append(['total_number_of_chords', len(set([y[1] for y in events_matrix1]))])\n",
414
  " data.append(['total_number_of_chords_ms', len(times)])\n",
415
  " data.append(['ms_chords_counts', ms_chords_counts])\n",
416
  " data.append(['pitches_times_sum_ms', times_sum])\n",
417
  " data.append(['total_pitches_counts', pitches_counts])\n",
418
- " data.append(['total_patches_counts', patches_counts])\n",
419
  " data.append(['midi_patches', midi_patches])\n",
420
- " data.append(['total_pitches_patches_counts', pitches_patches_counts])\n",
421
  " data.append(['tempo_change_count', tempo_change_count])\n",
422
  " data.append(['text_events_count', text_events_count])\n",
423
  " data.append(['lyric_events_count', lyric_events_count])\n",
424
  " data.append(['midi_ticks', score[0]])\n",
425
- " data.extend(full_events_matrix[:sixty_forth_note_idx])\n",
426
  " data.append(full_events_matrix[-1])\n",
427
  " \n",
428
  " melody_chords_f.append([fn1, data])\n",
@@ -441,7 +444,7 @@
441
  " print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
442
  " print('=' * 70)\n",
443
  " count = str(files_count)\n",
444
- " TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_'+count)\n",
445
  " melody_chords_f = []\n",
446
  " print('=' * 70)\n",
447
  "\n",
@@ -464,7 +467,7 @@
464
  "print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
465
  "print('=' * 70)\n",
466
  "count = str(files_count)\n",
467
- "TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_'+count)\n",
468
  "\n",
469
  "# Displaying resulting processing stats...\n",
470
  "print('=' * 70)\n",
 
11
  "id": "SiTIpPjArIyr"
12
  },
13
  "source": [
14
+ "# Los Angeles MIDI Dataset Metadata Maker (ver. 3.0)\n",
15
  "\n",
16
  "***\n",
17
  "\n",
 
286
  " # Convering MIDI to score with MIDI.py module\n",
287
  " score = TMIDIX.opus2score(opus)\n",
288
  "\n",
289
+ " # INSTRUMENTS CONVERSION CYCLE\n",
290
+ "\n",
291
  " events_matrix = []\n",
292
  " full_events_matrix = []\n",
293
  " \n",
 
314
  " event.extend([patches[event[3]]])\n",
315
  " events_matrix1.append(event)\n",
316
  "\n",
317
+ " if len(events_matrix1) > 32: \n",
318
  " \n",
319
  " events_matrix1.sort(key=lambda x: x[1])\n",
320
  "\n",
 
327
  "\n",
328
  " pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix1]).most_common()]\n",
329
  " pitches_counts.sort(key=lambda x: x[0], reverse=True)\n",
 
 
 
330
  " \n",
331
+ " patches = sorted([y[6] for y in events_matrix1])\n",
332
+ " patches_counts = [[y[0], y[1]] for y in Counter(patches).most_common()]\n",
333
+ " patches_counts.sort(key = lambda x: x[0])\n",
334
  " \n",
335
  " midi_patches = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change'])))\n",
336
  " if len(midi_patches) == 0:\n",
337
+ " midi_patches = [0]\n",
338
  " \n",
339
  " times = []\n",
340
  " pt = ms_events_matrix[0][1]\n",
 
345
  " start = False\n",
346
  " pt = e[1]\n",
347
  " \n",
348
+ " times_sum = min(10000000, sum(times))\n",
349
  " \n",
350
  " durs = [e[2] for e in ms_events_matrix]\n",
351
  " vels = [e[5] for e in ms_events_matrix]\n",
 
363
  " median_vel = int(statistics.median(vels))\n",
364
  " \n",
365
  " text_events_list = ['text_event', \n",
366
+ " 'text_event_08', \n",
367
+ " 'text_event_09', \n",
368
+ " 'text_event_0a', \n",
369
+ " 'text_event_0b', \n",
370
+ " 'text_event_0c',\n",
371
+ " 'text_event_0d',\n",
372
+ " 'text_event_0e',\n",
373
+ " 'text_event_0f']\n",
374
  " \n",
375
  " text_events_count = len([e for e in full_events_matrix if e[0] in text_events_list])\n",
376
  " lyric_events_count = len([e for e in full_events_matrix if e[0] == 'lyric'])\n",
 
397
  " chords.append(sorted(cho))\n",
398
  "\n",
399
  " ms_chords_counts = sorted([[list(key), val] for key,val in Counter([tuple(c) for c in chords if len(c) > 1]).most_common()], reverse=True, key = lambda x: x[1])\n",
400
+ " if len(ms_chords_counts) == 0:\n",
401
+ " ms_chords_counts = [[[0, 0], 0]]\n",
402
+ " \n",
403
+ " total_number_of_chords = len(set([y[1] for y in events_matrix1]))\n",
404
+ " \n",
405
  " tempo_change_count = len([f for f in full_events_matrix if f[0] == 'set_tempo'])\n",
406
  " \n",
407
+ " thirty_second_note = [e for e in events_matrix1][32]\n",
408
+ " thirty_second_note_idx = full_events_matrix.index(thirty_second_note)\n",
409
  "\n",
410
  " data = []\n",
411
  " data.append(['total_number_of_tracks', itrack])\n",
 
414
  " data.append(['average_median_mode_time_ms', [avg_time, median_time, mode_time]])\n",
415
  " data.append(['average_median_mode_dur_ms', [avg_dur, median_dur, mode_dur]])\n",
416
  " data.append(['average_median_mode_vel', [avg_vel, median_vel, mode_vel]])\n",
417
+ " data.append(['total_number_of_chords', total_number_of_chords])\n",
418
  " data.append(['total_number_of_chords_ms', len(times)])\n",
419
  " data.append(['ms_chords_counts', ms_chords_counts])\n",
420
  " data.append(['pitches_times_sum_ms', times_sum])\n",
421
  " data.append(['total_pitches_counts', pitches_counts])\n",
 
422
  " data.append(['midi_patches', midi_patches])\n",
423
+ " data.append(['total_patches_counts', patches_counts])\n",
424
  " data.append(['tempo_change_count', tempo_change_count])\n",
425
  " data.append(['text_events_count', text_events_count])\n",
426
  " data.append(['lyric_events_count', lyric_events_count])\n",
427
  " data.append(['midi_ticks', score[0]])\n",
428
+ " data.extend(full_events_matrix[:thirty_second_note_idx])\n",
429
  " data.append(full_events_matrix[-1])\n",
430
  " \n",
431
  " melody_chords_f.append([fn1, data])\n",
 
444
  " print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
445
  " print('=' * 70)\n",
446
  " count = str(files_count)\n",
447
+ " TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_DATA_'+count)\n",
448
  " melody_chords_f = []\n",
449
  " print('=' * 70)\n",
450
  "\n",
 
467
  "print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')\n",
468
  "print('=' * 70)\n",
469
  "count = str(files_count)\n",
470
+ "TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_DATA_'+count)\n",
471
  "\n",
472
  "# Displaying resulting processing stats...\n",
473
  "print('=' * 70)\n",
los_angeles_midi_dataset_maker.py CHANGED
@@ -4,9 +4,9 @@
4
  Automatically generated by Colaboratory.
5
 
6
  Original file is located at
7
- https://colab.research.google.com/drive/1OF5Ag1GHu-KNPzeI_2V-A5P2AF7F8Kue
8
 
9
- # Los Angeles MIDI Dataset Maker (ver. 1.0)
10
 
11
  ***
12
 
@@ -30,7 +30,7 @@ Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
30
 
31
  #@title Import all needed modules
32
 
33
- print('Loading needed modules. Please wait...')
34
  import os
35
 
36
  import math
@@ -38,15 +38,23 @@ import statistics
38
  import random
39
  from collections import Counter
40
  import shutil
41
- import difflib
42
  from tqdm import tqdm
43
 
 
 
44
  if not os.path.exists('/content/Dataset'):
45
  os.makedirs('/content/Dataset')
46
 
47
  if not os.path.exists('/content/Output'):
48
  os.makedirs('/content/Output')
49
 
 
 
 
 
 
 
50
  print('Loading TMIDIX module...')
51
  os.chdir('/content/tegridy-tools/tegridy-tools')
52
 
@@ -118,12 +126,10 @@ files_count = LAST_SAVED_BATCH_COUNT
118
 
119
  melody_chords_f = []
120
 
121
- pitches_sums = []
122
- pitches_counts = []
123
-
124
- pitches_data = []
125
-
126
- stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
127
 
128
  print('Processing MIDI files. Please wait...')
129
  print('=' * 70)
@@ -133,85 +139,86 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
133
  input_files_count += 1
134
 
135
  fn = os.path.basename(f)
136
- fn1 = fn.split('.mid')[0]
 
 
137
 
138
- #=======================================================
139
- # START PROCESSING
 
140
 
141
- # Convering MIDI to ms score with MIDI.py module
142
- score = TMIDIX.midi2ms_score(open(f, 'rb').read())
143
 
144
- events_matrix = []
145
- itrack = 1
146
-
147
- while itrack < len(score):
148
- for event in score[itrack]:
149
- if event[0] == 'note':
150
- if event[3] == 9:
151
- event[4] = (event[4] % 128)+128
152
- else:
153
- event[4] = (event[4] % 128)
154
-
155
- events_matrix.append(event)
156
- itrack += 1
157
-
158
- if len(events_matrix) >= 256:
159
 
160
  events_matrix.sort(key=lambda x: x[1])
161
 
162
- times = [e[1] for e in events_matrix]
163
- durs = [e[2] for e in events_matrix]
164
-
165
- if min(times) >= 0 and min(durs) >= 0:
166
- if len([k for k,v in Counter(times).items() if v>1]) != 0:
167
-
168
- pitches = [e[4] for e in events_matrix]
169
- pitches_sum = sum(pitches)
170
- pitches_number = len(pitches)
171
-
172
- if pitches_sum not in pitches_sums:
173
- pitches_count = sorted([[key, val] for key,val in Counter(pitches).most_common()], reverse=True)
174
- #=======================================================
175
-
176
- if [y[1] for y in pitches_count] not in pitches_counts:
177
-
178
- # Saving every 5000 processed files
179
- if files_count % 50000 == 0:
180
- dir_count = ((files_count // 50000)+1) * 50000
181
- dir_count_str = str(dir_count).zfill(7)
182
- copy_path = '/content/Output/'+dir_count_str
183
- if not os.path.exists(copy_path):
184
- os.mkdir(copy_path)
185
- print('SAVING !!!')
186
- print('=' * 70)
187
- print('Saving processed files...')
188
- print('=' * 70)
189
- print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
190
- print('=' * 70)
191
-
192
- if files_count % 5000 == 0:
193
- print('=' * 70)
194
- print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
195
- print('=' * 70)
196
- TMIDIX.Tegridy_Any_Pickle_File_Writer(pitches_data, '/content/Output/pitches_data')
197
-
198
- shutil.copy2(f, copy_path+'/'+fn)
199
-
200
- # Processed files counter
201
- files_count += 1
202
-
203
- data = []
204
-
205
- data = [fn.split('.mid')[0], times[-1], len(set(times))]
206
- for p in pitches_count:
207
- data.extend(p)
208
-
209
- pitches_data.append(data)
210
-
211
- pitches_sums.append(pitches_sum)
212
- pitches_counts.append([y[1] for y in pitches_count])
213
 
 
214
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
215
  except KeyboardInterrupt:
216
  print('Saving current progress and quitting...')
217
  break
@@ -224,15 +231,13 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
224
  print('=' * 70)
225
  continue
226
 
227
- # Saving last processed files...
228
  print('=' * 70)
229
- print('Saving processed files...')
230
  print('=' * 70)
231
- print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
232
  print('=' * 70)
233
- TMIDIX.Tegridy_Any_Pickle_File_Writer(pitches_data, '/content/Output/pitches_data')
234
-
235
- # Displaying resulting processing stats...
236
  print('=' * 70)
237
  print('Done!')
238
  print('=' * 70)
 
4
  Automatically generated by Colaboratory.
5
 
6
  Original file is located at
7
+ https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Maker.ipynb
8
 
9
+ # Los Angeles MIDI Dataset Maker (ver. 3.0)
10
 
11
  ***
12
 
 
30
 
31
  #@title Import all needed modules
32
 
33
+ print('Loading core modules... Please wait...')
34
  import os
35
 
36
  import math
 
38
  import random
39
  from collections import Counter
40
  import shutil
41
+ import hashlib
42
  from tqdm import tqdm
43
 
44
+ print('Creating IO dirs...')
45
+
46
  if not os.path.exists('/content/Dataset'):
47
  os.makedirs('/content/Dataset')
48
 
49
  if not os.path.exists('/content/Output'):
50
  os.makedirs('/content/Output')
51
 
52
+ output_dirs_list = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'a', 'b', 'c', 'd', 'e', 'f']
53
+
54
+ for o in output_dirs_list:
55
+ if not os.path.exists('/content/Output/'+str(o)+'/'):
56
+ os.makedirs('/content/Output/'+str(o)+'/')
57
+
58
  print('Loading TMIDIX module...')
59
  os.chdir('/content/tegridy-tools/tegridy-tools')
60
 
 
126
 
127
  melody_chords_f = []
128
 
129
+ all_md5_names = []
130
+ all_pitches_sums = []
131
+ all_pitches_counts = []
132
+ all_pitches_and_counts = []
 
 
133
 
134
  print('Processing MIDI files. Please wait...')
135
  print('=' * 70)
 
139
  input_files_count += 1
140
 
141
  fn = os.path.basename(f)
142
+
143
+ # Filtering out giant MIDIs
144
+ file_size = os.path.getsize(f)
145
 
146
+ if file_size <= 1000000:
147
+
148
+ fdata = open(f, 'rb').read()
149
 
150
+ md5sum = hashlib.md5(fdata).hexdigest()
 
151
 
152
+ md5name = str(md5sum) + '.mid'
153
+
154
+ #=======================================================
155
+ # START PROCESSING
156
+
157
+ # Convering MIDI to ms score with MIDI.py module
158
+ score = TMIDIX.midi2score(fdata)
159
+
160
+ events_matrix = []
161
+ itrack = 1
162
+
163
+ while itrack < len(score):
164
+ for event in score[itrack]:
165
+ events_matrix.append(event)
166
+ itrack += 1
167
 
168
  events_matrix.sort(key=lambda x: x[1])
169
 
170
+ notes = [y for y in events_matrix if y[0] == 'note']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
171
 
172
+ if len(notes) >= 256:
173
 
174
+ times = [n[1] for n in notes]
175
+ durs = [n[2] for n in notes]
176
+
177
+ if min(times) >= 0 and min(durs) >= 0:
178
+ if len(times) > len(set(times)):
179
+
180
+ if str(md5sum) not in all_md5_names:
181
+
182
+ pitches = [n[4] for n in notes]
183
+ pitches_sum = sum(pitches)
184
+
185
+ if pitches_sum not in all_pitches_sums:
186
+ pitches_and_counts = sorted([[key, val] for key,val in Counter(pitches).most_common()], reverse=True, key = lambda x: x[1])
187
+ pitches_counts = [p[1] for p in pitches_and_counts]
188
+
189
+ #=======================================================
190
+
191
+ if pitches_counts not in all_pitches_counts:
192
+
193
+ # Saving data every 50000 processed files
194
+ if files_count % 50000 == 0:
195
+ print('SAVING !!!')
196
+ print('=' * 70)
197
+ print('Saving processed data...')
198
+ print('=' * 70)
199
+ TMIDIX.Tegridy_Any_Pickle_File_Writer([all_md5_names, all_pitches_sums, all_pitches_and_counts], '/content/Output/all_files_data')
200
+ print('=' * 70)
201
+ print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
202
+ print('=' * 70)
203
+
204
+
205
+ shutil.copy2(f, '/content/Output/'+str(md5name[0])+'/'+md5name)
206
+
207
+ all_md5_names.append(str(md5sum))
208
+ all_pitches_sums.append(pitches_sum)
209
+ all_pitches_counts.append(pitches_counts)
210
+ all_pitches_and_counts.append(pitches_and_counts)
211
+
212
+ if files_count % 1000 == 0:
213
+ print('=' * 70)
214
+ print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
215
+ print('=' * 70)
216
+
217
+ # Processed files counter
218
+ files_count += 1
219
+
220
+ #=======================================================
221
+
222
  except KeyboardInterrupt:
223
  print('Saving current progress and quitting...')
224
  break
 
231
  print('=' * 70)
232
  continue
233
 
234
+ # Saving last processed data...
235
  print('=' * 70)
236
+ print('Saving processed data...')
237
  print('=' * 70)
238
+ TMIDIX.Tegridy_Any_Pickle_File_Writer([all_md5_names, all_pitches_sums, all_pitches_and_counts], '/content/Output/all_files_data')
239
  print('=' * 70)
240
+ print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
 
 
241
  print('=' * 70)
242
  print('Done!')
243
  print('=' * 70)
los_angeles_midi_dataset_metadata_maker.py CHANGED
@@ -4,9 +4,9 @@
4
  Automatically generated by Colaboratory.
5
 
6
  Original file is located at
7
- https://colab.research.google.com/drive/1YgHU5oqIdvDcx6QnZzZKkolhia27zGo8
8
 
9
- # Los Angeles MIDI Dataset Metadata Maker (ver. 1.0)
10
 
11
  ***
12
 
@@ -165,6 +165,8 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
165
  # Convering MIDI to score with MIDI.py module
166
  score = TMIDIX.opus2score(opus)
167
 
 
 
168
  events_matrix = []
169
  full_events_matrix = []
170
 
@@ -191,7 +193,7 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
191
  event.extend([patches[event[3]]])
192
  events_matrix1.append(event)
193
 
194
- if len(events_matrix1) > 0:
195
 
196
  events_matrix1.sort(key=lambda x: x[1])
197
 
@@ -204,16 +206,14 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
204
 
205
  pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix1]).most_common()]
206
  pitches_counts.sort(key=lambda x: x[0], reverse=True)
207
-
208
- patches_counts = [[y[0],y[1]] for y in Counter([y[6] for y in events_matrix1]).most_common()]
209
- patches_counts.sort(key=lambda x: x[1], reverse=True)
210
 
211
- pitches_patches = sorted([[y[4], y[6]] for y in events_matrix1], reverse=True)
212
- pitches_patches_counts = [[[y[0][0], y[0][1]], y[1]] for y in Counter([tuple(x) for x in pitches_patches]).most_common()]
 
213
 
214
  midi_patches = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change'])))
215
  if len(midi_patches) == 0:
216
- midi_patches = [None]
217
 
218
  times = []
219
  pt = ms_events_matrix[0][1]
@@ -224,7 +224,7 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
224
  start = False
225
  pt = e[1]
226
 
227
- times_sum = sum(times)
228
 
229
  durs = [e[2] for e in ms_events_matrix]
230
  vels = [e[5] for e in ms_events_matrix]
@@ -242,14 +242,14 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
242
  median_vel = int(statistics.median(vels))
243
 
244
  text_events_list = ['text_event',
245
- 'text_event_08',
246
- 'text_event_09',
247
- 'text_event_0a',
248
- 'text_event_0b',
249
- 'text_event_0c',
250
- 'text_event_0d',
251
- 'text_event_0e',
252
- 'text_event_0f']
253
 
254
  text_events_count = len([e for e in full_events_matrix if e[0] in text_events_list])
255
  lyric_events_count = len([e for e in full_events_matrix if e[0] == 'lyric'])
@@ -276,11 +276,15 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
276
  chords.append(sorted(cho))
277
 
278
  ms_chords_counts = sorted([[list(key), val] for key,val in Counter([tuple(c) for c in chords if len(c) > 1]).most_common()], reverse=True, key = lambda x: x[1])
279
-
 
 
 
 
280
  tempo_change_count = len([f for f in full_events_matrix if f[0] == 'set_tempo'])
281
 
282
- sixty_forth_note = [e for e in events_matrix1][64]
283
- sixty_forth_note_idx = full_events_matrix.index(sixty_forth_note)
284
 
285
  data = []
286
  data.append(['total_number_of_tracks', itrack])
@@ -289,19 +293,18 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
289
  data.append(['average_median_mode_time_ms', [avg_time, median_time, mode_time]])
290
  data.append(['average_median_mode_dur_ms', [avg_dur, median_dur, mode_dur]])
291
  data.append(['average_median_mode_vel', [avg_vel, median_vel, mode_vel]])
292
- data.append(['total_number_of_chords', len(set([y[1] for y in events_matrix1]))])
293
  data.append(['total_number_of_chords_ms', len(times)])
294
  data.append(['ms_chords_counts', ms_chords_counts])
295
  data.append(['pitches_times_sum_ms', times_sum])
296
  data.append(['total_pitches_counts', pitches_counts])
297
- data.append(['total_patches_counts', patches_counts])
298
  data.append(['midi_patches', midi_patches])
299
- data.append(['total_pitches_patches_counts', pitches_patches_counts])
300
  data.append(['tempo_change_count', tempo_change_count])
301
  data.append(['text_events_count', text_events_count])
302
  data.append(['lyric_events_count', lyric_events_count])
303
  data.append(['midi_ticks', score[0]])
304
- data.extend(full_events_matrix[:sixty_forth_note_idx])
305
  data.append(full_events_matrix[-1])
306
 
307
  melody_chords_f.append([fn1, data])
@@ -320,7 +323,7 @@ for f in tqdm(filez[START_FILE_NUMBER:]):
320
  print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
321
  print('=' * 70)
322
  count = str(files_count)
323
- TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_'+count)
324
  melody_chords_f = []
325
  print('=' * 70)
326
 
@@ -343,7 +346,7 @@ print('=' * 70)
343
  print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
344
  print('=' * 70)
345
  count = str(files_count)
346
- TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_'+count)
347
 
348
  # Displaying resulting processing stats...
349
  print('=' * 70)
 
4
  Automatically generated by Colaboratory.
5
 
6
  Original file is located at
7
+ https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/META-DATA/Los_Angeles_MIDI_Dataset_Metadata_Maker.ipynb
8
 
9
+ # Los Angeles MIDI Dataset Metadata Maker (ver. 3.0)
10
 
11
  ***
12
 
 
165
  # Convering MIDI to score with MIDI.py module
166
  score = TMIDIX.opus2score(opus)
167
 
168
+ # INSTRUMENTS CONVERSION CYCLE
169
+
170
  events_matrix = []
171
  full_events_matrix = []
172
 
 
193
  event.extend([patches[event[3]]])
194
  events_matrix1.append(event)
195
 
196
+ if len(events_matrix1) > 32:
197
 
198
  events_matrix1.sort(key=lambda x: x[1])
199
 
 
206
 
207
  pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix1]).most_common()]
208
  pitches_counts.sort(key=lambda x: x[0], reverse=True)
 
 
 
209
 
210
+ patches = sorted([y[6] for y in events_matrix1])
211
+ patches_counts = [[y[0], y[1]] for y in Counter(patches).most_common()]
212
+ patches_counts.sort(key = lambda x: x[0])
213
 
214
  midi_patches = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change'])))
215
  if len(midi_patches) == 0:
216
+ midi_patches = [0]
217
 
218
  times = []
219
  pt = ms_events_matrix[0][1]
 
224
  start = False
225
  pt = e[1]
226
 
227
+ times_sum = min(10000000, sum(times))
228
 
229
  durs = [e[2] for e in ms_events_matrix]
230
  vels = [e[5] for e in ms_events_matrix]
 
242
  median_vel = int(statistics.median(vels))
243
 
244
  text_events_list = ['text_event',
245
+ 'text_event_08',
246
+ 'text_event_09',
247
+ 'text_event_0a',
248
+ 'text_event_0b',
249
+ 'text_event_0c',
250
+ 'text_event_0d',
251
+ 'text_event_0e',
252
+ 'text_event_0f']
253
 
254
  text_events_count = len([e for e in full_events_matrix if e[0] in text_events_list])
255
  lyric_events_count = len([e for e in full_events_matrix if e[0] == 'lyric'])
 
276
  chords.append(sorted(cho))
277
 
278
  ms_chords_counts = sorted([[list(key), val] for key,val in Counter([tuple(c) for c in chords if len(c) > 1]).most_common()], reverse=True, key = lambda x: x[1])
279
+ if len(ms_chords_counts) == 0:
280
+ ms_chords_counts = [[[0, 0], 0]]
281
+
282
+ total_number_of_chords = len(set([y[1] for y in events_matrix1]))
283
+
284
  tempo_change_count = len([f for f in full_events_matrix if f[0] == 'set_tempo'])
285
 
286
+ thirty_second_note = [e for e in events_matrix1][32]
287
+ thirty_second_note_idx = full_events_matrix.index(thirty_second_note)
288
 
289
  data = []
290
  data.append(['total_number_of_tracks', itrack])
 
293
  data.append(['average_median_mode_time_ms', [avg_time, median_time, mode_time]])
294
  data.append(['average_median_mode_dur_ms', [avg_dur, median_dur, mode_dur]])
295
  data.append(['average_median_mode_vel', [avg_vel, median_vel, mode_vel]])
296
+ data.append(['total_number_of_chords', total_number_of_chords])
297
  data.append(['total_number_of_chords_ms', len(times)])
298
  data.append(['ms_chords_counts', ms_chords_counts])
299
  data.append(['pitches_times_sum_ms', times_sum])
300
  data.append(['total_pitches_counts', pitches_counts])
 
301
  data.append(['midi_patches', midi_patches])
302
+ data.append(['total_patches_counts', patches_counts])
303
  data.append(['tempo_change_count', tempo_change_count])
304
  data.append(['text_events_count', text_events_count])
305
  data.append(['lyric_events_count', lyric_events_count])
306
  data.append(['midi_ticks', score[0]])
307
+ data.extend(full_events_matrix[:thirty_second_note_idx])
308
  data.append(full_events_matrix[-1])
309
 
310
  melody_chords_f.append([fn1, data])
 
323
  print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
324
  print('=' * 70)
325
  count = str(files_count)
326
+ TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_DATA_'+count)
327
  melody_chords_f = []
328
  print('=' * 70)
329
 
 
346
  print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
347
  print('=' * 70)
348
  count = str(files_count)
349
+ TMIDIX.Tegridy_Any_Pickle_File_Writer(melody_chords_f, '/content/drive/MyDrive/LAMD_META_DATA_'+count)
350
 
351
  # Displaying resulting processing stats...
352
  print('=' * 70)