Los-Angeles-MIDI-Dataset / los_angeles_midi_dataset_search_and_explore.py
projectlosangeles's picture
Upload 5 files
3bd77c9
raw
history blame
44.5 kB
# -*- coding: utf-8 -*-
"""Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb
# Los Angeles MIDI Dataset: Search and Explore (ver. 2.2)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
#### Project Los Angeles
#### Tegridy Code 2023
***
# (SETUP ENVIRONMENT)
"""
#@title Install all dependencies (run only once per session)
!git clone --depth 1 https://github.com/asigalov61/Los-Angeles-MIDI-Dataset
!pip install huggingface_hub
!pip install matplotlib
!pip install sklearn
!pip install tqdm
!apt install fluidsynth #Pip does not work for some reason. Only apt works
!pip install midi2audio
#@title Import all needed modules
print('Loading core modules...')
import os
import copy
from collections import Counter
import random
import pickle
from tqdm import tqdm
import pprint
import statistics
from joblib import Parallel, delayed
import multiprocessing
if not os.path.exists('/content/LAMD'):
os.makedirs('/content/LAMD')
print('Loading MIDI.py module...')
os.chdir('/content/Los-Angeles-MIDI-Dataset')
import MIDI
print('Loading aux modules...')
from sklearn.metrics import pairwise_distances, pairwise
import matplotlib.pyplot as plt
from midi2audio import FluidSynth
from IPython.display import Audio, display
from huggingface_hub import hf_hub_download
from google.colab import files
os.chdir('/content/')
print('Done!')
"""# (PREP DATA)"""
# Commented out IPython magic to ensure Python compatibility.
#@title Unzip LAMDa data
# %cd /content/Los-Angeles-MIDI-Dataset/META-DATA
print('=' * 70)
print('Unzipping META-DATA...Please wait...')
!cat LAMDa_META_DATA.zip* > LAMDa_META_DATA.zip
print('=' * 70)
!unzip -j LAMDa_META_DATA.zip
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/
#================================================
# %cd /content/Los-Angeles-MIDI-Dataset/MIDI-MATRIXES
print('=' * 70)
print('Unzipping MIDI-MATRIXES...Please wait...')
!cat LAMDa_MIDI_MATRIXES.zip* > LAMDa_MIDI_MATRIXES.zip
print('=' * 70)
!unzip -j LAMDa_MIDI_MATRIXES.zip
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/
#==================================================
# %cd /content/Los-Angeles-MIDI-Dataset/TOTALS
print('=' * 70)
print('Unzipping TOTALS...Please wait...')
!unzip -j LAMDa_TOTALS.zip
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/
#@title Load LAMDa data
print('=' * 70)
print('Loading LAMDa data...Please wait...')
print('=' * 70)
print('Loading LAMDa META-DATA...')
meta_data = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/META-DATA/LAMDa_META_DATA.pickle', 'rb'))
print('Done!')
print('=' * 70)
print('Loading LAMDa MIDI-MATRIXES...')
midi_matrixes = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/MIDI-MATRIXES/LAMDa_MIDI_MATRIXES.pickle', 'rb'))
print('Done!')
print('=' * 70)
print('Loading LAMDa TOTALS...')
totals = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/TOTALS/LAMDa_TOTALS.pickle', 'rb'))
print('Done!')
print('=' * 70)
print('Enjoy!')
print('=' * 70)
"""# (PREP MIDI DATASET)"""
#@title Download the dataset
print('=' * 70)
print('Downloading Los Angeles MIDI Dataset...Please wait...')
print('=' * 70)
hf_hub_download(repo_id='projectlosangeles/Los-Angeles-MIDI-Dataset',
filename='Los-Angeles-MIDI-Dataset-Ver-2-0-CC-BY-NC-SA.zip',
repo_type="dataset",
local_dir='/content/LAMD',
local_dir_use_symlinks=False)
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# Commented out IPython magic to ensure Python compatibility.
#@title Unzip the dataset
# %cd /content/LAMD
print('=' * 70)
print('Unzipping Los Angeles MIDI Dataset...Please wait...')
!unzip 'Los-Angeles-MIDI-Dataset-Ver-2-0-CC-BY-NC-SA.zip'
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/
#@title Create dataset files list
print('=' * 70)
print('Creating dataset files list...')
dataset_addr = "/content/LAMD/MIDIs"
# os.chdir(dataset_addr)
filez = list()
for (dirpath, dirnames, filenames) in os.walk(dataset_addr):
filez += [os.path.join(dirpath, file) for file in filenames]
if filez == []:
print('Could not find any MIDI files. Please check Dataset dir...')
print('=' * 70)
print('=' * 70)
print('Randomizing file list...')
random.shuffle(filez)
print('=' * 70)
LAMD_files_list = []
for f in tqdm(filez):
LAMD_files_list.append([f.split('/')[-1].split('.mid')[0], f])
print('Done!')
print('=' * 70)
"""# (PLOT TOTALS)"""
#@title Plot totals from MIDI matrixes (legacy)
cos_sim = pairwise.cosine_similarity(
totals[0][0][4]
)
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Times')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
cos_sim = pairwise.cosine_similarity(
totals[0][0][5]
)
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Durations')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
cos_sim = pairwise.cosine_similarity(
totals[0][0][6]
)
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Channels')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
cos_sim = pairwise.cosine_similarity(
totals[0][0][7]
)
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Instruments')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
cos_sim = pairwise.cosine_similarity(
totals[0][0][8]
)
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Pitches')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
cos_sim = pairwise.cosine_similarity(
totals[0][0][9]
)
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Velocities')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
#@title Plot totals from MIDI metadata
#===============================================================================
pitches_counts_totals = [0] * 128
for m in tqdm(meta_data):
for mm in m[1][10][1]:
if mm[0] < 128:
pitches_counts_totals[mm[0]] += mm[1]
y = range(128)
plt.figure(figsize=(8, 8))
plt.plot(y, pitches_counts_totals)
plt.title('MIDI Instruments Pitches')
plt.xlabel("Ratio")
plt.ylabel("Pitch")
plt.tight_layout()
plt.plot()
sim_mat = [ [0]*128 for i in range(128)]
x = 0
for p in pitches_counts_totals:
y = 0
for pp in pitches_counts_totals:
sim_mat[x][y] = min(10, (p / pp))
y += 1
x += 1
cos_sim = pairwise.cosine_similarity(
sim_mat
)
plt.figure(figsize=(8, 8))
plt.imshow(sim_mat, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('MIDI Instruments Pitches')
plt.xlabel("Ratio")
plt.ylabel("Pitch")
plt.tight_layout()
plt.plot()
#===============================================================================
pitches_counts_totals = [1] * 128
for m in tqdm(meta_data):
for mm in m[1][10][1]:
if mm[0] > 128:
pitches_counts_totals[mm[0] % 128] += mm[1]
y = range(128)
plt.figure(figsize=(8, 8))
plt.plot(y, pitches_counts_totals)
plt.title('MIDI Drums Pitches')
plt.xlabel("Ratio")
plt.ylabel("Pitch")
plt.tight_layout()
plt.plot()
sim_mat = [ [0]*128 for i in range(128)]
x = 0
for p in pitches_counts_totals:
y = 0
for pp in pitches_counts_totals:
sim_mat[x][y] = min(10, (p / pp))
y += 1
x += 1
cos_sim = pairwise.cosine_similarity(
sim_mat
)
plt.figure(figsize=(8, 8))
plt.imshow(sim_mat, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('MIDI Drums Pitches')
plt.xlabel("Ratio")
plt.ylabel("Pitch")
plt.tight_layout()
plt.plot()
#===============================================================================
patches_counts_totals = [0] * 256
for m in tqdm(meta_data):
for mm in m[1][11][1]:
patches_counts_totals[mm[0]] += mm[1]
y = range(128)
plt.figure(figsize=(8, 8))
plt.plot(y, patches_counts_totals[:128])
plt.title('MIDI Patches')
plt.xlabel("Ratio")
plt.ylabel('Patch')
plt.tight_layout()
plt.plot()
"""# (LOAD SOURCE MIDI)"""
#@title Load source MIDI
full_path_to_source_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" #@param {type:"string"}
render_MIDI_to_audio = False #@param {type:"boolean"}
#=================================================================================
f = full_path_to_source_MIDI
print('=' * 70)
print('Loading MIDI file...')
score = MIDI.midi2ms_score(open(f, 'rb').read())
events_matrix = []
itrack = 1
while itrack < len(score):
for event in score[itrack]:
events_matrix.append(event)
itrack += 1
# Sorting...
events_matrix.sort(key=lambda x: x[1])
# recalculating timings
for e in events_matrix:
e[1] = int(e[1] / 10)
if e[0] == 'note':
e[2] = int(e[2] / 20)
# final processing...
melody_chords = []
patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
pe = events_matrix[0]
for e in events_matrix:
if e[0] == 'note':
# ['note', start_time, duration, channel, note, velocity]
time = max(0, min(255, e[1]-pe[1]))
duration = max(1, min(255, e[2]))
channel = max(0, min(15, e[3]))
if e[3] != 9:
instrument = max(0, min(127, patches[e[3]]))
else:
instrument = max(128, min(255, patches[e[3]]+128))
if e[3] != 9:
pitch = max(1, min(127, e[4]))
else:
pitch = max(129, min(255, e[4]+128))
if e[3] != 9:
velocity = max(1, min(127, e[5]))
else:
velocity = max(129, min(255, e[5]+128))
melody_chords.append([time, duration, channel, instrument, pitch, velocity])
if e[0] == 'patch_change':
# ['patch_change', dtime, channel, patch]
time = max(0, min(127, e[1]-pe[1]))
channel = max(0, min(15, e[2]))
patch = max(0, min(127, e[3]))
patches[channel] = patch
pe = e # Previous event
MATRIX = [[0]*256 for i in range(38)]
for m in melody_chords:
MATRIX[0][m[0]] += 1
MATRIX[1][m[1]] += 1
MATRIX[2][m[2]] += 1
MATRIX[3][m[3]] += 1
MATRIX[4][m[4]] += 1
MATRIX[5][m[5]] += 1
MATRIX[m[2]+6][m[3]] += 1
MATRIX[m[2]+22][m[4]] += 1
#==================================================
score = MIDI.midi2score(open(f, 'rb').read())
events_matrix = []
track_count = 0
for s in score:
if track_count > 0:
track = s
track.sort(key=lambda x: x[1])
events_matrix.extend(track)
else:
midi_ticks = s
track_count += 1
events_matrix.sort(key=lambda x: x[1])
mult_pitches_counts = []
for i in range(-6, 6):
events_matrix1 = []
for e in events_matrix:
ev = copy.deepcopy(e)
if e[0] == 'note':
if e[3] == 9:
ev[4] = ((e[4] % 128) + 128)
else:
ev[4] = ((e[4] % 128) + i)
events_matrix1.append(ev)
pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix1 if y[0] == 'note']).most_common()]
pitches_counts.sort(key=lambda x: x[0], reverse=True)
mult_pitches_counts.append(pitches_counts)
patches_list = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change'])))
#==================================================
ms_score = MIDI.midi2ms_score(open(f, 'rb').read())
ms_events_matrix = []
itrack1 = 1
while itrack1 < len(ms_score):
for event in ms_score[itrack1]:
if event[0] == 'note':
ms_events_matrix.append(event)
itrack1 += 1
ms_events_matrix.sort(key=lambda x: x[1])
chords = []
pe = ms_events_matrix[0]
cho = []
for e in ms_events_matrix:
if (e[1] - pe[1]) == 0:
if e[3] != 9:
if (e[4] % 12) not in cho:
cho.append(e[4] % 12)
else:
if len(cho) > 0:
chords.append(sorted(cho))
cho = []
if e[3] != 9:
if (e[4] % 12) not in cho:
cho.append(e[4] % 12)
pe = e
if len(cho) > 0:
chords.append(sorted(cho))
ms_chords_counts = sorted([[list(key), val] for key,val in Counter([tuple(c) for c in chords if len(c) > 1]).most_common()], reverse=True, key = lambda x: x[1])
times = []
pt = ms_events_matrix[0][1]
start = True
for e in ms_events_matrix:
if (e[1]-pt) != 0 or start == True:
times.append((e[1]-pt))
start = False
pt = e[1]
durs = [e[2] for e in ms_events_matrix]
vels = [e[5] for e in ms_events_matrix]
avg_time = int(sum(times) / len(times))
avg_dur = int(sum(durs) / len(durs))
mode_time = statistics.mode(times)
mode_dur = statistics.mode(durs)
median_time = int(statistics.median(times))
median_dur = int(statistics.median(durs))
#==================================================
print('=' * 70)
print('Done!')
print('=' * 70)
#============================================
# MIDI rendering code
#============================================
print('Rendering source MIDI...')
print('=' * 70)
ms_score = MIDI.midi2ms_score(open(f, 'rb').read())
itrack = 1
song_f = []
while itrack < len(ms_score):
for event in ms_score[itrack]:
if event[0] == 'note':
song_f.append(event)
itrack += 1
song_f.sort(key=lambda x: x[1])
fname = f.split('.mid')[0]
x = []
y =[]
c = []
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']
for s in song_f:
x.append(s[1] / 1000)
y.append(s[4])
c.append(colors[s[3]])
if render_MIDI_to_audio:
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
display(Audio(str(fname + '.wav'), rate=16000))
plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')
plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()
"""# (SEARCH AND EXPLORE)"""
#@title Legacy MIDI Matrixes Search (Slow)
#@markdown NOTE: You can stop the search at any time to render partial results
minimum_match_ratio_to_search_for = 0 #@param {type:"slider", min:0, max:500, step:1}
stop_search_on_exact_match = True #@param {type:"boolean"}
skip_exact_matches = False #@param {type:"boolean"}
render_MIDI_to_audio = False #@param {type:"boolean"}
download_MIDI = False #@param {type:"boolean"}
#=================================================================================
matching_type = "minkowski"
def compress_matrix(midi_matrix):
MX = 38
MY = 256
if len(midi_matrix) == MX:
compressed_matrix = []
zeros = 0
zeros_shift = 0
zeros_count = 0
for m in midi_matrix:
for mm in m:
zeros_shift = max(zeros_shift, mm) + 1
compressed_matrix.append(zeros_shift)
for m in midi_matrix:
if len(m) == MY:
for mm in m:
if mm != 0:
if zeros > 0:
compressed_matrix.append(zeros+zeros_shift)
zeros = 0
compressed_matrix.append(mm)
else:
zeros += 1
zeros_count += 1
else:
print('Wrong matrix format!')
return [1]
if zeros > 0:
compressed_matrix.append(zeros+zeros_shift)
compressed_matrix.append(zeros_count+zeros_shift)
compressed_matrix.append(zeros_shift)
return compressed_matrix
else:
print('Wrong matrix format!')
return [0]
#=================================================================================
def decompress_matrix(compressed_midi_matrix):
MX = 38
MY = 256
zeros_count = 0
temp_matrix = []
decompressed_matrix = [[0]*MY for i in range(MX)]
if compressed_midi_matrix[0] == compressed_midi_matrix[-1]:
zeros_shift = compressed_midi_matrix[0]
mcount = 0
for c in compressed_midi_matrix[1:-2]:
if c > zeros_shift:
temp_matrix.extend([0] * (c-zeros_shift))
zeros_count += (c-zeros_shift)
else:
temp_matrix.extend([c])
if len(temp_matrix) == (MX * MY):
for i in range(MX):
for j in range(MY):
decompressed_matrix[i][j] = copy.deepcopy(temp_matrix[(i*MY) + j])
if len(decompressed_matrix) == MX and zeros_count == (compressed_midi_matrix[-2]-zeros_shift):
return decompressed_matrix
else:
print('Matrix is corrupted!')
return [len(decompressed_matrix), (MX * MY), zeros_count, (compressed_midi_matrix[-2]-zeros_shift)]
else:
print('Matrix is corrupted!')
return [len(temp_matrix), zeros_count]
else:
print('Matrix is corrupted!')
return [0]
#=================================================================================
def batched_scores(matbatch, matrix):
sco= []
for D in matbatch:
dist = pairwise_distances(matrix, decompress_matrix(D[1]), metric=matching_type)[0][0]
if skip_exact_matches:
if dist == 0:
dist = 999999
if dist <= minimum_match_ratio_to_search_for:
dist = 999999
sco.append(dist)
return sco
#=================================================================================
print('=' * 70)
print('Searching...Please wait...')
print('=' * 70)
scores = []
c_count = multiprocessing.cpu_count()
par = Parallel(n_jobs=c_count)
num_jobs = c_count
scores_per_job = 100
MATRIX_X = [MATRIX] * num_jobs
for i in tqdm(range(0, len(midi_matrixes), (num_jobs*scores_per_job))):
try:
MAT_BATCHES = []
for j in range(num_jobs):
MAT_BATCHES.append(midi_matrixes[i+(j*scores_per_job):i+((j+1)*scores_per_job)])
output = par(delayed(batched_scores) (MB, MAT) for MB, MAT in zip(MAT_BATCHES, MATRIX_X))
output1 = []
for o in output:
output1.extend(o)
scores.extend(output1)
if stop_search_on_exact_match:
if 0 in output1:
print('=' * 70)
print('Found exact match!')
print('Stoping further search...')
print('=' * 70)
break
else:
if 0 in output1:
print('=' * 70)
print('Found exact match!')
print('=' * 70)
print('LAMDa Index:', scores.index(min(scores)))
print('LAMDa File Name:', midi_matrixes[scores.index(min(scores))][0])
print('=' * 70)
print('Continuing search...')
print('=' * 70)
except KeyboardInterrupt:
break
except Exception as e:
print('WARNING !!!')
print('=' * 70)
print('Error detected:', e)
print('=' * 70)
continue
print('Done!')
print('=' * 70)
print('Best match:')
print('=' * 70)
print(matching_type.title(), 'distance ==', min(scores))
print('LAMDa Index:', scores.index(min(scores)))
print('LAMDa File Name:', midi_matrixes[scores.index(min(scores))][0])
print('=' * 70)
#============================================
# MIDI rendering code
#============================================
print('Rendering source MIDI...')
print('=' * 70)
fn = midi_matrixes[scores.index(min(scores))][0]
try:
fn_idx = [y[0] for y in LAMD_files_list].index(fn)
f = LAMD_files_list[fn_idx][1]
ms_score = MIDI.midi2ms_score(open(f, 'rb').read())
itrack = 1
song_f = []
while itrack < len(ms_score):
for event in ms_score[itrack]:
if event[0] == 'note':
song_f.append(event)
itrack += 1
song_f.sort(key=lambda x: x[1])
fname = f.split('.mid')[0]
x = []
y =[]
c = []
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']
for s in song_f:
x.append(s[1] / 1000)
y.append(s[4])
c.append(colors[s[3]])
if render_MIDI_to_audio:
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
display(Audio(str(fname + '.wav'), rate=16000))
plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')
plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()
except:
pass
#==============================================
if download_MIDI:
print('=' * 70)
print('Downloading MIDI file', str(fn) + '.mid')
files.download(f)
print('=' * 70)
#============================================
print('Top 100 matches')
print('=' * 70)
top_matches = []
for i in range(len(scores)):
top_matches.append([midi_matrixes[i][0], scores[i]])
top_matches.sort(key=lambda x: x[1])
for t in top_matches[:100]:
print(t)
print('=' * 70)
#@title MIDI Pitches Search (Fast)
#@markdown NOTE: You can stop the search at any time to render partial results
#@markdown Match ratio control option
maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01}
#@markdown MIDI pitches search options
pitches_counts_cutoff_threshold_ratio = 0 #@param {type:"slider", min:0, max:1, step:0.05}
search_transposed_pitches = False #@param {type:"boolean"}
skip_exact_matches = False #@param {type:"boolean"}
#@markdown Additional search options
add_pitches_counts_ratios = False #@param {type:"boolean"}
add_timings_ratios = False #@param {type:"boolean"}
add_durations_ratios = False #@param {type:"boolean"}
#@markdown Other options
render_MIDI_to_audio = False #@param {type:"boolean"}
download_MIDI = False #@param {type:"boolean"}
print('=' * 70)
print('MIDI Pitches Search')
print('=' * 70)
final_ratios = []
for d in tqdm(meta_data):
try:
p_counts = d[1][10][1]
p_counts.sort(reverse = True, key = lambda x: x[1])
max_p_count = p_counts[0][1]
trimmed_p_counts = [y for y in p_counts if y[1] >= (max_p_count * pitches_counts_cutoff_threshold_ratio)]
total_p_counts = sum([y[1] for y in trimmed_p_counts])
if search_transposed_pitches:
search_pitches = mult_pitches_counts
else:
search_pitches = [mult_pitches_counts[6]]
#===================================================
ratios_list = []
#===================================================
atrat = [0]
if add_timings_ratios:
source_times = [avg_time,
median_time,
mode_time]
match_times = meta_data[0][1][3][1]
times_ratios = []
for i in range(len(source_times)):
maxtratio = max(source_times[i], match_times[i])
mintratio = min(source_times[i], match_times[i])
times_ratios.append(mintratio / maxtratio)
avg_times_ratio = sum(times_ratios) / len(times_ratios)
atrat[0] = avg_times_ratio
#===================================================
adrat = [0]
if add_durations_ratios:
source_durs = [avg_dur,
median_dur,
mode_dur]
match_durs = meta_data[0][1][4][1]
durs_ratios = []
for i in range(len(source_durs)):
maxtratio = max(source_durs[i], match_durs[i])
mintratio = min(source_durs[i], match_durs[i])
durs_ratios.append(mintratio / maxtratio)
avg_durs_ratio = sum(durs_ratios) / len(durs_ratios)
adrat[0] = avg_durs_ratio
#===================================================
for m in search_pitches:
sprat = []
m.sort(reverse = True, key = lambda x: x[1])
max_pitches_count = m[0][1]
trimmed_pitches_counts = [y for y in m if y[1] >= (max_pitches_count * pitches_counts_cutoff_threshold_ratio)]
total_pitches_counts = sum([y[1] for y in trimmed_pitches_counts])
same_pitches = set([T[0] for T in trimmed_p_counts]) & set([m[0] for m in trimmed_pitches_counts])
num_same_pitches = len(same_pitches)
same_pitches_ratio = (num_same_pitches / len(set([m[0] for m in trimmed_p_counts]+[T[0] for T in trimmed_pitches_counts])))
if skip_exact_matches:
if same_pitches_ratio == 1:
same_pitches_ratio = 0
sprat.append(same_pitches_ratio)
#===================================================
spcrat = [0]
if add_pitches_counts_ratios:
same_trimmed_p_counts = sorted([T for T in trimmed_p_counts if T[0] in same_pitches], reverse = True)
same_trimmed_pitches_counts = sorted([T for T in trimmed_pitches_counts if T[0] in same_pitches], reverse = True)
same_trimmed_p_counts_ratios = [[s[0], s[1] / total_p_counts] for s in same_trimmed_p_counts]
same_trimmed_pitches_counts_ratios = [[s[0], s[1] / total_pitches_counts] for s in same_trimmed_pitches_counts]
same_pitches_counts_ratios = []
for i in range(len(same_trimmed_p_counts_ratios)):
mincratio = min(same_trimmed_p_counts_ratios[i][1], same_trimmed_pitches_counts_ratios[i][1])
maxcratio = max(same_trimmed_p_counts_ratios[i][1], same_trimmed_pitches_counts_ratios[i][1])
same_pitches_counts_ratios.append([same_trimmed_p_counts_ratios[i][0], mincratio / maxcratio])
same_counts_ratios = [s[1] for s in same_pitches_counts_ratios]
if len(same_counts_ratios) > 0:
avg_same_pitches_counts_ratio = sum(same_counts_ratios) / len(same_counts_ratios)
else:
avg_same_pitches_counts_ratio = 0
spcrat[0] = avg_same_pitches_counts_ratio
#===================================================
r_list = [sprat[0]]
if add_pitches_counts_ratios:
r_list.append(spcrat[0])
if add_timings_ratios:
r_list.append(atrat[0])
if add_durations_ratios:
r_list.append(adrat[0])
ratios_list.append(r_list)
#===================================================
avg_ratios_list = []
for r in ratios_list:
avg_ratios_list.append(sum(r) / len(r))
#===================================================
final_ratio = max(avg_ratios_list)
if final_ratio > maximum_match_ratio_to_search_for:
final_ratio = 0
final_ratios.append(final_ratio)
#===================================================
except KeyboardInterrupt:
break
except Exception as e:
print('WARNING !!!')
print('=' * 70)
print('Error detected:', e)
ratios.append(0)
print('=' * 70)
break
max_ratio = max(final_ratios)
max_ratio_index = final_ratios.index(max_ratio)
print('FOUND')
print('=' * 70)
print('Match ratio', max_ratio)
print('MIDI file name', meta_data[max_ratio_index][0])
print('=' * 70)
pprint.pprint(['Sample metadata entries', meta_data[max_ratio_index][1][:8]], compact = True)
print('=' * 70)
#============================================
# MIDI rendering code
#============================================
print('Rendering source MIDI...')
print('=' * 70)
fn = meta_data[max_ratio_index][0]
fn_idx = [y[0] for y in LAMD_files_list].index(fn)
f = LAMD_files_list[fn_idx][1]
ms_score = MIDI.midi2ms_score(open(f, 'rb').read())
itrack = 1
song_f = []
while itrack < len(ms_score):
for event in ms_score[itrack]:
if event[0] == 'note':
song_f.append(event)
itrack += 1
song_f.sort(key=lambda x: x[1])
fname = f.split('.mid')[0]
x = []
y =[]
c = []
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']
for s in song_f:
x.append(s[1] / 1000)
y.append(s[4])
c.append(colors[s[3]])
if render_MIDI_to_audio:
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
display(Audio(str(fname + '.wav'), rate=16000))
plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')
plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()
#==============================================
if download_MIDI:
print('=' * 70)
print('Downloading MIDI file', str(fn) + '.mid')
files.download(f)
print('=' * 70)
#@title MIDI Chords Search (Fast)
#@markdown NOTE: You can stop the search at any time to render partial results
maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01}
chords_counts_cutoff_threshold_ratio = 0 #@param {type:"slider", min:0, max:1, step:0.05}
skip_exact_matches = False #@param {type:"boolean"}
render_MIDI_to_audio = False #@param {type:"boolean"}
download_MIDI = False #@param {type:"boolean"}
print('=' * 70)
print('MIDI Chords Search')
print('=' * 70)
ratios = []
for d in tqdm(meta_data):
try:
c_counts = d[1][8][1]
if len(c_counts) == 0:
c_counts = copy.deepcopy([[[0, 0], 0]])
c_counts.sort(reverse = True, key = lambda x: x[0][1])
max_c_count = c_counts[0][1]
trimmed_c_counts = [y for y in c_counts if y[1] >= (max_c_count * chords_counts_cutoff_threshold_ratio)]
trimmed_c_counts.sort(reverse = True, key = lambda x: x[1])
max_chords_count = ms_chords_counts[0][1]
trimmed_chords_counts = [y for y in ms_chords_counts if y[1] >= (max_chords_count * chords_counts_cutoff_threshold_ratio)]
num_same_chords = len(set([tuple(T[0]) for T in trimmed_c_counts]) & set([tuple(t[0]) for t in trimmed_chords_counts]))
same_chords_ratio = (num_same_chords / len(set(tuple(x[0]) for x in [trimmed_c_counts+trimmed_chords_counts][0])))
if skip_exact_matches:
if same_chords_ratio == 1:
same_chords_ratio = 0
if same_chords_ratio > maximum_match_ratio_to_search_for:
same_chords_ratio = 0
ratios.append(same_chords_ratio)
except KeyboardInterrupt:
break
except Exception as e:
print('WARNING !!!')
print('=' * 70)
print('Error detected:', e)
ratios.append(0)
print('=' * 70)
continue
max_ratio = max(ratios)
max_ratio_index = ratios.index(max(ratios))
print('FOUND')
print('=' * 70)
print('Match ratio', max_ratio)
print('MIDI file name', meta_data[max_ratio_index][0])
print('=' * 70)
pprint.pprint(['Sample metadata entries', meta_data[max_ratio_index][1][:8]], compact = True)
print('=' * 70)
#============================================
# MIDI rendering code
#============================================
print('Rendering source MIDI...')
print('=' * 70)
fn = meta_data[max_ratio_index][0]
fn_idx = [y[0] for y in LAMD_files_list].index(fn)
f = LAMD_files_list[fn_idx][1]
ms_score = MIDI.midi2ms_score(open(f, 'rb').read())
itrack = 1
song_f = []
while itrack < len(ms_score):
for event in ms_score[itrack]:
if event[0] == 'note':
song_f.append(event)
itrack += 1
song_f.sort(key=lambda x: x[1])
fname = f.split('.mid')[0]
x = []
y =[]
c = []
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']
for s in song_f:
x.append(s[1] / 1000)
y.append(s[4])
c.append(colors[s[3]])
if render_MIDI_to_audio:
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
display(Audio(str(fname + '.wav'), rate=16000))
plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')
plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()
#==============================================
if download_MIDI:
print('=' * 70)
print('Downloading MIDI file', str(fn) + '.mid')
files.download(f)
print('=' * 70)
#@title MIDI Patches Search (Fast)
#@markdown NOTE: You can stop the search at any time to render partial results
maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01}
skip_exact_matches = False #@param {type:"boolean"}
render_MIDI_to_audio = False #@param {type:"boolean"}
download_MIDI = False #@param {type:"boolean"}
print('=' * 70)
print('MIDI Patches Search')
print('=' * 70)
ratios = []
for d in tqdm(meta_data):
try:
p_list= d[1][12][1]
num_same_patches = len(set(p_list) & set(patches_list))
if len(set(p_list + patches_list)) > 0:
same_patches_ratio = num_same_patches / len(set(p_list + patches_list))
else:
same_patches_ratio = 0
if skip_exact_matches:
if same_patches_ratio == 1:
same_patches_ratio = 0
if same_patches_ratio > maximum_match_ratio_to_search_for:
same_patches_ratio = 0
ratios.append(same_patches_ratio)
except KeyboardInterrupt:
break
except Exception as e:
print('WARNING !!!')
print('=' * 70)
print('Error detected:', e)
ratios.append(0)
print('=' * 70)
continue
max_ratio = max(ratios)
max_ratio_index = ratios.index(max(ratios))
print('FOUND')
print('=' * 70)
print('Match ratio', max_ratio)
print('MIDI file name', meta_data[max_ratio_index][0])
print('=' * 70)
print('Found MIDI patches list', meta_data[max_ratio_index][1][12][1])
print('=' * 70)
#============================================
# MIDI rendering code
#============================================
print('Rendering source MIDI...')
print('=' * 70)
fn = meta_data[max_ratio_index][0]
fn_idx = [y[0] for y in LAMD_files_list].index(fn)
f = LAMD_files_list[fn_idx][1]
ms_score = MIDI.midi2ms_score(open(f, 'rb').read())
itrack = 1
song_f = []
while itrack < len(ms_score):
for event in ms_score[itrack]:
if event[0] == 'note':
song_f.append(event)
itrack += 1
song_f.sort(key=lambda x: x[1])
fname = f.split('.mid')[0]
x = []
y =[]
c = []
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']
for s in song_f:
x.append(s[1] / 1000)
y.append(s[4])
c.append(colors[s[3]])
if render_MIDI_to_audio:
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
display(Audio(str(fname + '.wav'), rate=16000))
plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')
plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()
#==============================================
if download_MIDI:
print('=' * 70)
print('Downloading MIDI file', str(fn) + '.mid')
files.download(f)
print('=' * 70)
#@title Metadata Search
#@markdown You can search the metadata by search query or by MIDI md5 hash file name
search_query = "Come To My Window" #@param {type:"string"}
md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"}
case_sensitive_search = False #@param {type:"boolean"}
fields_to_search = ['track_name',
'text_event',
'lyric',
'copyright_text_event',
'marker',
'text_event_08',
'text_event_09',
'text_event_0a',
'text_event_0b',
'text_event_0c',
'text_event_0d',
'text_event_0e',
'text_event_0f',
]
print('=' * 70)
print('Los Angeles MIDI Dataset Metadata Search')
print('=' * 70)
print('Searching...')
print('=' * 70)
if md5_hash_MIDI_file_name != '':
for d in tqdm(meta_data):
try:
if d[0] == md5_hash_MIDI_file_name:
print('Found!')
print('=' * 70)
print('Metadata index:', meta_data.index(d))
print('MIDI file name:', meta_data[meta_data.index(d)][0])
print('-' * 70)
pprint.pprint(['Result:', d[1][:16]], compact = True)
print('=' * 70)
break
except KeyboardInterrupt:
print('Ending search...')
print('=' * 70)
break
except Exception as e:
print('WARNING !!!')
print('=' * 70)
print('Error detected:', e)
print('=' * 70)
continue
if d[0] != md5_hash_MIDI_file_name:
print('Not found!')
print('=' * 70)
print('md5 hash was not found!')
print('Ending search...')
print('=' * 70)
else:
for d in tqdm(meta_data):
try:
for dd in d[1]:
if dd[0] in fields_to_search:
if case_sensitive_search:
if str(search_query) in str(dd[2]):
print('Found!')
print('=' * 70)
print('Metadata index:', meta_data.index(d))
print('MIDI file name:', meta_data[meta_data.index(d)][0])
print('-' * 70)
pprint.pprint(['Result:', dd[2][:16]], compact = True)
print('=' * 70)
else:
if str(search_query).lower() in str(dd[2]).lower():
print('Found!')
print('=' * 70)
print('Metadata index:', meta_data.index(d))
print('MIDI file name:', meta_data[meta_data.index(d)][0])
print('-' * 70)
pprint.pprint(['Result:', dd[2][:16]], compact = True)
print('=' * 70)
except KeyboardInterrupt:
print('Ending search...')
print('=' * 70)
break
except:
print('Ending search...')
print('=' * 70)
break
"""# (MIDI FILE PLAYER)"""
#@title MIDI file player
#@markdown NOTE: You can use md5 hash file name or full MIDI file path to play it
md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"}
full_path_to_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" #@param {type:"string"}
render_MIDI_to_audio = False #@param {type:"boolean"}
download_MIDI = False #@param {type:"boolean"}
#============================================
# MIDI rendering code
#============================================
print('=' * 70)
print('MIDI file player')
print('=' * 70)
try:
if os.path.exists(full_path_to_MIDI):
f = full_path_to_MIDI
print('Using full path to MIDI')
else:
fn = md5_hash_MIDI_file_name
fn_idx = [y[0] for y in LAMD_files_list].index(fn)
f = LAMD_files_list[fn_idx][1]
print('Using md5 hash filename')
print('=' * 70)
print('Rendering MIDI...')
print('=' * 70)
ms_score = MIDI.midi2ms_score(open(f, 'rb').read())
itrack = 1
song_f = []
while itrack < len(ms_score):
for event in ms_score[itrack]:
if event[0] == 'note':
song_f.append(event)
itrack += 1
song_f.sort(key=lambda x: x[1])
fname = f.split('.mid')[0]
x = []
y =[]
c = []
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']
for s in song_f:
x.append(s[1] / 1000)
y.append(s[4])
c.append(colors[s[3]])
if render_MIDI_to_audio:
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
display(Audio(str(fname + '.wav'), rate=16000))
plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')
plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()
#==============================================
if download_MIDI:
print('=' * 70)
print('Downloading MIDI file', str(fn) + '.mid')
files.download(f)
print('=' * 70)
except:
print('File not found!!!')
print('Check the filename!')
print('=' * 70)
"""# (COLAB MIDI FILES LOCATOR/DOWNLOADER)"""
#@title Loacate and/or download desired MIDI files by MIDI md5 hash file names
MIDI_md5_hash_file_name_1 = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"}
MIDI_md5_hash_file_name_2 = "" #@param {type:"string"}
MIDI_md5_hash_file_name_3 = "" #@param {type:"string"}
MIDI_md5_hash_file_name_4 = "" #@param {type:"string"}
MIDI_md5_hash_file_name_5 = "" #@param {type:"string"}
download_located_files = False #@param {type:"boolean"}
print('=' * 70)
print('MIDI files locator and downloader')
print('=' * 70)
md5_list = []
if MIDI_md5_hash_file_name_1 != '':
md5_list.append(MIDI_md5_hash_file_name_1)
if MIDI_md5_hash_file_name_2 != '':
md5_list.append(MIDI_md5_hash_file_name_2)
if MIDI_md5_hash_file_name_3 != '':
md5_list.append(MIDI_md5_hash_file_name_3)
if MIDI_md5_hash_file_name_4 != '':
md5_list.append(MIDI_md5_hash_file_name_4)
if MIDI_md5_hash_file_name_5 != '':
md5_list.append(MIDI_md5_hash_file_name_5)
if len(md5_list) > 0:
for m in md5_list:
try:
fn = m
fn_idx = [y[0] for y in LAMD_files_list].index(fn)
f = LAMD_files_list[fn_idx][1]
print('Found md5 hash file name', m)
location_str = ''
fl = f.split('/')
for fa in fl[:-1]:
if fa != '' and fa != 'content':
location_str += '/'
location_str += str(fa)
print('Colab location/folder', location_str)
if download_located_files:
print('Downloading MIDI file', str(m) + '.mid')
files.download(f)
print('=' * 70)
except:
print('md5 hash file name', m, 'not found!!!')
print('Check the file name!')
print('=' * 70)
continue
else:
print('No md5 hash file names were specified!')
print('Check input!')
print('=' * 70)
"""# (CUSTOM ANALYSIS TEMPLATE)"""
#@title Los Angeles MIDI Dataset Reader
print('=' * 70)
print('Los Angeles MIDI Dataset Reader')
print('=' * 70)
print('Starting up...')
print('=' * 70)
###########
print('Loading MIDI files...')
print('This may take a while on a large dataset in particular.')
dataset_addr = "/content/LAMD/MIDIs"
# os.chdir(dataset_addr)
filez = list()
for (dirpath, dirnames, filenames) in os.walk(dataset_addr):
filez += [os.path.join(dirpath, file) for file in filenames]
if filez == []:
print('Could not find any MIDI files. Please check Dataset dir...')
print('=' * 70)
print('=' * 70)
print('Randomizing file list...')
random.shuffle(filez)
print('=' * 70)
###########
START_FILE_NUMBER = 0
LAST_SAVED_BATCH_COUNT = 0
input_files_count = START_FILE_NUMBER
files_count = LAST_SAVED_BATCH_COUNT
stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
print('Reading MIDI files. Please wait...')
print('=' * 70)
for f in tqdm(filez[START_FILE_NUMBER:]):
try:
input_files_count += 1
fn = os.path.basename(f)
fn1 = fn.split('.mid')[0]
#=======================================================
# START PROCESSING
#=======================================================
# Convering MIDI to score with MIDI.py module
score = MIDI.midi2score(open(f, 'rb').read())
events_matrix = []
itrack = 1
while itrack < len(score):
for event in score[itrack]:
events_matrix.append(event)
itrack += 1
# Sorting...
events_matrix.sort(key=lambda x: x[1])
if len(events_matrix) > 0:
#=======================================================
# INSERT YOUR CUSTOM ANAYLSIS CODE RIGHT HERE
#=======================================================
# Processed files counter
files_count += 1
# Saving every 5000 processed files
if files_count % 10000 == 0:
print('=' * 70)
print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
print('=' * 70)
except KeyboardInterrupt:
print('Saving current progress and quitting...')
break
except Exception as ex:
print('WARNING !!!')
print('=' * 70)
print('Bad MIDI:', f)
print('Error detected:', ex)
print('=' * 70)
continue
print('=' * 70)
print('Final files counts:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
print('=' * 70)
print('Resulting Stats:')
print('=' * 70)
print('Total good processed MIDI files:', files_count)
print('=' * 70)
print('Done!')
print('=' * 70)
"""# Congrats! You did it! :)"""