|
|
|
"""Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb |
|
|
|
# Los Angeles MIDI Dataset: Search and Explore (ver. 2.2) |
|
|
|
*** |
|
|
|
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools |
|
|
|
*** |
|
|
|
#### Project Los Angeles |
|
|
|
#### Tegridy Code 2023 |
|
|
|
*** |
|
|
|
# (SETUP ENVIRONMENT) |
|
""" |
|
|
|
|
|
!git clone --depth 1 https://github.com/asigalov61/Los-Angeles-MIDI-Dataset |
|
!pip install huggingface_hub |
|
!pip install matplotlib |
|
!pip install sklearn |
|
!pip install tqdm |
|
!apt install fluidsynth |
|
!pip install midi2audio |
|
|
|
|
|
|
|
print('Loading core modules...') |
|
import os |
|
import copy |
|
from collections import Counter |
|
import random |
|
import pickle |
|
from tqdm import tqdm |
|
import pprint |
|
import statistics |
|
|
|
from joblib import Parallel, delayed |
|
import multiprocessing |
|
|
|
if not os.path.exists('/content/LAMD'): |
|
os.makedirs('/content/LAMD') |
|
|
|
print('Loading MIDI.py module...') |
|
os.chdir('/content/Los-Angeles-MIDI-Dataset') |
|
import MIDI |
|
|
|
print('Loading aux modules...') |
|
from sklearn.metrics import pairwise_distances, pairwise |
|
import matplotlib.pyplot as plt |
|
|
|
from midi2audio import FluidSynth |
|
from IPython.display import Audio, display |
|
|
|
from huggingface_hub import hf_hub_download |
|
|
|
from google.colab import files |
|
|
|
os.chdir('/content/') |
|
print('Done!') |
|
|
|
"""# (PREP DATA)""" |
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Unzipping META-DATA...Please wait...') |
|
|
|
!cat LAMDa_META_DATA.zip* > LAMDa_META_DATA.zip |
|
print('=' * 70) |
|
|
|
!unzip -j LAMDa_META_DATA.zip |
|
print('=' * 70) |
|
|
|
print('Done! Enjoy! :)') |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Unzipping MIDI-MATRIXES...Please wait...') |
|
|
|
!cat LAMDa_MIDI_MATRIXES.zip* > LAMDa_MIDI_MATRIXES.zip |
|
print('=' * 70) |
|
|
|
!unzip -j LAMDa_MIDI_MATRIXES.zip |
|
print('=' * 70) |
|
|
|
print('Done! Enjoy! :)') |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Unzipping TOTALS...Please wait...') |
|
|
|
!unzip -j LAMDa_TOTALS.zip |
|
print('=' * 70) |
|
|
|
print('Done! Enjoy! :)') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Loading LAMDa data...Please wait...') |
|
print('=' * 70) |
|
print('Loading LAMDa META-DATA...') |
|
meta_data = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/META-DATA/LAMDa_META_DATA.pickle', 'rb')) |
|
print('Done!') |
|
print('=' * 70) |
|
print('Loading LAMDa MIDI-MATRIXES...') |
|
midi_matrixes = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/MIDI-MATRIXES/LAMDa_MIDI_MATRIXES.pickle', 'rb')) |
|
print('Done!') |
|
print('=' * 70) |
|
print('Loading LAMDa TOTALS...') |
|
totals = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/TOTALS/LAMDa_TOTALS.pickle', 'rb')) |
|
print('Done!') |
|
print('=' * 70) |
|
print('Enjoy!') |
|
print('=' * 70) |
|
|
|
"""# (PREP MIDI DATASET)""" |
|
|
|
|
|
print('=' * 70) |
|
print('Downloading Los Angeles MIDI Dataset...Please wait...') |
|
print('=' * 70) |
|
|
|
hf_hub_download(repo_id='projectlosangeles/Los-Angeles-MIDI-Dataset', |
|
filename='Los-Angeles-MIDI-Dataset-Ver-2-0-CC-BY-NC-SA.zip', |
|
repo_type="dataset", |
|
local_dir='/content/LAMD', |
|
local_dir_use_symlinks=False) |
|
print('=' * 70) |
|
print('Done! Enjoy! :)') |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Unzipping Los Angeles MIDI Dataset...Please wait...') |
|
!unzip 'Los-Angeles-MIDI-Dataset-Ver-2-0-CC-BY-NC-SA.zip' |
|
print('=' * 70) |
|
|
|
print('Done! Enjoy! :)') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Creating dataset files list...') |
|
dataset_addr = "/content/LAMD/MIDIs" |
|
|
|
|
|
filez = list() |
|
for (dirpath, dirnames, filenames) in os.walk(dataset_addr): |
|
filez += [os.path.join(dirpath, file) for file in filenames] |
|
|
|
if filez == []: |
|
print('Could not find any MIDI files. Please check Dataset dir...') |
|
print('=' * 70) |
|
|
|
print('=' * 70) |
|
print('Randomizing file list...') |
|
random.shuffle(filez) |
|
print('=' * 70) |
|
|
|
LAMD_files_list = [] |
|
|
|
for f in tqdm(filez): |
|
LAMD_files_list.append([f.split('/')[-1].split('.mid')[0], f]) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
"""# (PLOT TOTALS)""" |
|
|
|
|
|
|
|
cos_sim = pairwise.cosine_similarity( |
|
totals[0][0][4] |
|
) |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(cos_sim, cmap="inferno", interpolation="none") |
|
im_ratio = 1 |
|
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) |
|
plt.title('Times') |
|
plt.xlabel("Position") |
|
plt.ylabel("Position") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
cos_sim = pairwise.cosine_similarity( |
|
totals[0][0][5] |
|
) |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(cos_sim, cmap="inferno", interpolation="none") |
|
im_ratio = 1 |
|
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) |
|
plt.title('Durations') |
|
plt.xlabel("Position") |
|
plt.ylabel("Position") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
cos_sim = pairwise.cosine_similarity( |
|
totals[0][0][6] |
|
) |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(cos_sim, cmap="inferno", interpolation="none") |
|
im_ratio = 1 |
|
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) |
|
plt.title('Channels') |
|
plt.xlabel("Position") |
|
plt.ylabel("Position") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
cos_sim = pairwise.cosine_similarity( |
|
totals[0][0][7] |
|
) |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(cos_sim, cmap="inferno", interpolation="none") |
|
im_ratio = 1 |
|
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) |
|
plt.title('Instruments') |
|
plt.xlabel("Position") |
|
plt.ylabel("Position") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
cos_sim = pairwise.cosine_similarity( |
|
totals[0][0][8] |
|
) |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(cos_sim, cmap="inferno", interpolation="none") |
|
im_ratio = 1 |
|
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) |
|
plt.title('Pitches') |
|
plt.xlabel("Position") |
|
plt.ylabel("Position") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
cos_sim = pairwise.cosine_similarity( |
|
totals[0][0][9] |
|
) |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(cos_sim, cmap="inferno", interpolation="none") |
|
im_ratio = 1 |
|
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) |
|
plt.title('Velocities') |
|
plt.xlabel("Position") |
|
plt.ylabel("Position") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
|
|
|
|
|
|
|
|
pitches_counts_totals = [0] * 128 |
|
|
|
for m in tqdm(meta_data): |
|
for mm in m[1][10][1]: |
|
if mm[0] < 128: |
|
pitches_counts_totals[mm[0]] += mm[1] |
|
|
|
y = range(128) |
|
plt.figure(figsize=(8, 8)) |
|
plt.plot(y, pitches_counts_totals) |
|
|
|
plt.title('MIDI Instruments Pitches') |
|
plt.xlabel("Ratio") |
|
plt.ylabel("Pitch") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
sim_mat = [ [0]*128 for i in range(128)] |
|
x = 0 |
|
|
|
for p in pitches_counts_totals: |
|
y = 0 |
|
for pp in pitches_counts_totals: |
|
|
|
sim_mat[x][y] = min(10, (p / pp)) |
|
y += 1 |
|
|
|
x += 1 |
|
|
|
cos_sim = pairwise.cosine_similarity( |
|
sim_mat |
|
) |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(sim_mat, cmap="inferno", interpolation="none") |
|
im_ratio = 1 |
|
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) |
|
plt.title('MIDI Instruments Pitches') |
|
plt.xlabel("Ratio") |
|
plt.ylabel("Pitch") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
|
|
|
|
pitches_counts_totals = [1] * 128 |
|
|
|
|
|
for m in tqdm(meta_data): |
|
for mm in m[1][10][1]: |
|
if mm[0] > 128: |
|
pitches_counts_totals[mm[0] % 128] += mm[1] |
|
|
|
y = range(128) |
|
plt.figure(figsize=(8, 8)) |
|
plt.plot(y, pitches_counts_totals) |
|
|
|
plt.title('MIDI Drums Pitches') |
|
plt.xlabel("Ratio") |
|
plt.ylabel("Pitch") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
sim_mat = [ [0]*128 for i in range(128)] |
|
x = 0 |
|
|
|
for p in pitches_counts_totals: |
|
y = 0 |
|
for pp in pitches_counts_totals: |
|
|
|
sim_mat[x][y] = min(10, (p / pp)) |
|
y += 1 |
|
|
|
x += 1 |
|
|
|
cos_sim = pairwise.cosine_similarity( |
|
sim_mat |
|
) |
|
plt.figure(figsize=(8, 8)) |
|
plt.imshow(sim_mat, cmap="inferno", interpolation="none") |
|
im_ratio = 1 |
|
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) |
|
plt.title('MIDI Drums Pitches') |
|
plt.xlabel("Ratio") |
|
plt.ylabel("Pitch") |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
|
|
|
|
patches_counts_totals = [0] * 256 |
|
|
|
|
|
for m in tqdm(meta_data): |
|
for mm in m[1][11][1]: |
|
patches_counts_totals[mm[0]] += mm[1] |
|
|
|
|
|
y = range(128) |
|
plt.figure(figsize=(8, 8)) |
|
plt.plot(y, patches_counts_totals[:128]) |
|
|
|
plt.title('MIDI Patches') |
|
plt.xlabel("Ratio") |
|
plt.ylabel('Patch') |
|
plt.tight_layout() |
|
plt.plot() |
|
|
|
"""# (LOAD SOURCE MIDI)""" |
|
|
|
|
|
|
|
full_path_to_source_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" |
|
render_MIDI_to_audio = False |
|
|
|
|
|
|
|
f = full_path_to_source_MIDI |
|
|
|
print('=' * 70) |
|
print('Loading MIDI file...') |
|
|
|
score = MIDI.midi2ms_score(open(f, 'rb').read()) |
|
|
|
events_matrix = [] |
|
|
|
itrack = 1 |
|
|
|
while itrack < len(score): |
|
for event in score[itrack]: |
|
events_matrix.append(event) |
|
itrack += 1 |
|
|
|
|
|
events_matrix.sort(key=lambda x: x[1]) |
|
|
|
|
|
for e in events_matrix: |
|
e[1] = int(e[1] / 10) |
|
if e[0] == 'note': |
|
e[2] = int(e[2] / 20) |
|
|
|
|
|
|
|
melody_chords = [] |
|
|
|
patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
|
|
pe = events_matrix[0] |
|
for e in events_matrix: |
|
|
|
if e[0] == 'note': |
|
|
|
time = max(0, min(255, e[1]-pe[1])) |
|
duration = max(1, min(255, e[2])) |
|
channel = max(0, min(15, e[3])) |
|
|
|
if e[3] != 9: |
|
instrument = max(0, min(127, patches[e[3]])) |
|
else: |
|
instrument = max(128, min(255, patches[e[3]]+128)) |
|
|
|
if e[3] != 9: |
|
|
|
pitch = max(1, min(127, e[4])) |
|
else: |
|
pitch = max(129, min(255, e[4]+128)) |
|
|
|
if e[3] != 9: |
|
velocity = max(1, min(127, e[5])) |
|
else: |
|
velocity = max(129, min(255, e[5]+128)) |
|
|
|
melody_chords.append([time, duration, channel, instrument, pitch, velocity]) |
|
|
|
if e[0] == 'patch_change': |
|
|
|
time = max(0, min(127, e[1]-pe[1])) |
|
channel = max(0, min(15, e[2])) |
|
patch = max(0, min(127, e[3])) |
|
|
|
patches[channel] = patch |
|
|
|
pe = e |
|
|
|
MATRIX = [[0]*256 for i in range(38)] |
|
|
|
for m in melody_chords: |
|
|
|
MATRIX[0][m[0]] += 1 |
|
MATRIX[1][m[1]] += 1 |
|
MATRIX[2][m[2]] += 1 |
|
MATRIX[3][m[3]] += 1 |
|
MATRIX[4][m[4]] += 1 |
|
MATRIX[5][m[5]] += 1 |
|
MATRIX[m[2]+6][m[3]] += 1 |
|
MATRIX[m[2]+22][m[4]] += 1 |
|
|
|
|
|
|
|
score = MIDI.midi2score(open(f, 'rb').read()) |
|
|
|
events_matrix = [] |
|
|
|
track_count = 0 |
|
|
|
for s in score: |
|
|
|
if track_count > 0: |
|
track = s |
|
track.sort(key=lambda x: x[1]) |
|
events_matrix.extend(track) |
|
else: |
|
midi_ticks = s |
|
|
|
track_count += 1 |
|
|
|
events_matrix.sort(key=lambda x: x[1]) |
|
|
|
mult_pitches_counts = [] |
|
|
|
for i in range(-6, 6): |
|
|
|
events_matrix1 = [] |
|
|
|
for e in events_matrix: |
|
|
|
ev = copy.deepcopy(e) |
|
|
|
if e[0] == 'note': |
|
if e[3] == 9: |
|
ev[4] = ((e[4] % 128) + 128) |
|
else: |
|
ev[4] = ((e[4] % 128) + i) |
|
|
|
events_matrix1.append(ev) |
|
|
|
pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix1 if y[0] == 'note']).most_common()] |
|
pitches_counts.sort(key=lambda x: x[0], reverse=True) |
|
|
|
mult_pitches_counts.append(pitches_counts) |
|
|
|
patches_list = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change']))) |
|
|
|
|
|
|
|
|
|
ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) |
|
|
|
ms_events_matrix = [] |
|
|
|
itrack1 = 1 |
|
|
|
while itrack1 < len(ms_score): |
|
for event in ms_score[itrack1]: |
|
if event[0] == 'note': |
|
ms_events_matrix.append(event) |
|
itrack1 += 1 |
|
|
|
ms_events_matrix.sort(key=lambda x: x[1]) |
|
|
|
|
|
chords = [] |
|
pe = ms_events_matrix[0] |
|
cho = [] |
|
for e in ms_events_matrix: |
|
if (e[1] - pe[1]) == 0: |
|
if e[3] != 9: |
|
if (e[4] % 12) not in cho: |
|
cho.append(e[4] % 12) |
|
else: |
|
if len(cho) > 0: |
|
chords.append(sorted(cho)) |
|
cho = [] |
|
if e[3] != 9: |
|
if (e[4] % 12) not in cho: |
|
cho.append(e[4] % 12) |
|
|
|
pe = e |
|
|
|
if len(cho) > 0: |
|
chords.append(sorted(cho)) |
|
|
|
ms_chords_counts = sorted([[list(key), val] for key,val in Counter([tuple(c) for c in chords if len(c) > 1]).most_common()], reverse=True, key = lambda x: x[1]) |
|
|
|
times = [] |
|
pt = ms_events_matrix[0][1] |
|
start = True |
|
for e in ms_events_matrix: |
|
if (e[1]-pt) != 0 or start == True: |
|
times.append((e[1]-pt)) |
|
start = False |
|
pt = e[1] |
|
|
|
durs = [e[2] for e in ms_events_matrix] |
|
vels = [e[5] for e in ms_events_matrix] |
|
|
|
avg_time = int(sum(times) / len(times)) |
|
avg_dur = int(sum(durs) / len(durs)) |
|
|
|
mode_time = statistics.mode(times) |
|
mode_dur = statistics.mode(durs) |
|
|
|
median_time = int(statistics.median(times)) |
|
median_dur = int(statistics.median(durs)) |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
print('Rendering source MIDI...') |
|
print('=' * 70) |
|
|
|
ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) |
|
|
|
itrack = 1 |
|
song_f = [] |
|
|
|
while itrack < len(ms_score): |
|
for event in ms_score[itrack]: |
|
if event[0] == 'note': |
|
song_f.append(event) |
|
itrack += 1 |
|
|
|
song_f.sort(key=lambda x: x[1]) |
|
|
|
fname = f.split('.mid')[0] |
|
|
|
x = [] |
|
y =[] |
|
c = [] |
|
|
|
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] |
|
|
|
for s in song_f: |
|
x.append(s[1] / 1000) |
|
y.append(s[4]) |
|
c.append(colors[s[3]]) |
|
|
|
if render_MIDI_to_audio: |
|
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) |
|
display(Audio(str(fname + '.wav'), rate=16000)) |
|
|
|
plt.figure(figsize=(14,5)) |
|
ax=plt.axes(title=fname) |
|
ax.set_facecolor('black') |
|
|
|
plt.scatter(x,y, c=c) |
|
plt.xlabel("Time") |
|
plt.ylabel("Pitch") |
|
plt.show() |
|
|
|
"""# (SEARCH AND EXPLORE)""" |
|
|
|
|
|
|
|
|
|
|
|
minimum_match_ratio_to_search_for = 0 |
|
stop_search_on_exact_match = True |
|
skip_exact_matches = False |
|
render_MIDI_to_audio = False |
|
download_MIDI = False |
|
|
|
|
|
|
|
matching_type = "minkowski" |
|
|
|
def compress_matrix(midi_matrix): |
|
|
|
MX = 38 |
|
MY = 256 |
|
|
|
if len(midi_matrix) == MX: |
|
|
|
compressed_matrix = [] |
|
zeros = 0 |
|
zeros_shift = 0 |
|
zeros_count = 0 |
|
|
|
for m in midi_matrix: |
|
for mm in m: |
|
zeros_shift = max(zeros_shift, mm) + 1 |
|
|
|
compressed_matrix.append(zeros_shift) |
|
|
|
for m in midi_matrix: |
|
if len(m) == MY: |
|
for mm in m: |
|
if mm != 0: |
|
if zeros > 0: |
|
compressed_matrix.append(zeros+zeros_shift) |
|
zeros = 0 |
|
compressed_matrix.append(mm) |
|
|
|
else: |
|
zeros += 1 |
|
zeros_count += 1 |
|
|
|
else: |
|
print('Wrong matrix format!') |
|
return [1] |
|
|
|
if zeros > 0: |
|
compressed_matrix.append(zeros+zeros_shift) |
|
|
|
compressed_matrix.append(zeros_count+zeros_shift) |
|
compressed_matrix.append(zeros_shift) |
|
|
|
return compressed_matrix |
|
|
|
else: |
|
print('Wrong matrix format!') |
|
return [0] |
|
|
|
|
|
|
|
def decompress_matrix(compressed_midi_matrix): |
|
|
|
MX = 38 |
|
MY = 256 |
|
|
|
zeros_count = 0 |
|
|
|
temp_matrix = [] |
|
decompressed_matrix = [[0]*MY for i in range(MX)] |
|
|
|
if compressed_midi_matrix[0] == compressed_midi_matrix[-1]: |
|
zeros_shift = compressed_midi_matrix[0] |
|
mcount = 0 |
|
|
|
for c in compressed_midi_matrix[1:-2]: |
|
if c > zeros_shift: |
|
temp_matrix.extend([0] * (c-zeros_shift)) |
|
zeros_count += (c-zeros_shift) |
|
|
|
else: |
|
temp_matrix.extend([c]) |
|
|
|
if len(temp_matrix) == (MX * MY): |
|
|
|
for i in range(MX): |
|
for j in range(MY): |
|
decompressed_matrix[i][j] = copy.deepcopy(temp_matrix[(i*MY) + j]) |
|
|
|
if len(decompressed_matrix) == MX and zeros_count == (compressed_midi_matrix[-2]-zeros_shift): |
|
return decompressed_matrix |
|
|
|
else: |
|
print('Matrix is corrupted!') |
|
return [len(decompressed_matrix), (MX * MY), zeros_count, (compressed_midi_matrix[-2]-zeros_shift)] |
|
|
|
else: |
|
print('Matrix is corrupted!') |
|
return [len(temp_matrix), zeros_count] |
|
|
|
else: |
|
print('Matrix is corrupted!') |
|
return [0] |
|
|
|
|
|
|
|
def batched_scores(matbatch, matrix): |
|
|
|
sco= [] |
|
for D in matbatch: |
|
|
|
dist = pairwise_distances(matrix, decompress_matrix(D[1]), metric=matching_type)[0][0] |
|
|
|
if skip_exact_matches: |
|
if dist == 0: |
|
dist = 999999 |
|
|
|
if dist <= minimum_match_ratio_to_search_for: |
|
dist = 999999 |
|
|
|
sco.append(dist) |
|
|
|
return sco |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Searching...Please wait...') |
|
print('=' * 70) |
|
|
|
scores = [] |
|
|
|
c_count = multiprocessing.cpu_count() |
|
|
|
par = Parallel(n_jobs=c_count) |
|
|
|
num_jobs = c_count |
|
scores_per_job = 100 |
|
|
|
MATRIX_X = [MATRIX] * num_jobs |
|
|
|
for i in tqdm(range(0, len(midi_matrixes), (num_jobs*scores_per_job))): |
|
|
|
try: |
|
|
|
MAT_BATCHES = [] |
|
|
|
for j in range(num_jobs): |
|
MAT_BATCHES.append(midi_matrixes[i+(j*scores_per_job):i+((j+1)*scores_per_job)]) |
|
|
|
output = par(delayed(batched_scores) (MB, MAT) for MB, MAT in zip(MAT_BATCHES, MATRIX_X)) |
|
|
|
output1 = [] |
|
|
|
for o in output: |
|
output1.extend(o) |
|
|
|
scores.extend(output1) |
|
|
|
if stop_search_on_exact_match: |
|
if 0 in output1: |
|
print('=' * 70) |
|
print('Found exact match!') |
|
print('Stoping further search...') |
|
print('=' * 70) |
|
break |
|
|
|
else: |
|
if 0 in output1: |
|
print('=' * 70) |
|
print('Found exact match!') |
|
print('=' * 70) |
|
print('LAMDa Index:', scores.index(min(scores))) |
|
print('LAMDa File Name:', midi_matrixes[scores.index(min(scores))][0]) |
|
print('=' * 70) |
|
print('Continuing search...') |
|
print('=' * 70) |
|
|
|
except KeyboardInterrupt: |
|
break |
|
|
|
except Exception as e: |
|
print('WARNING !!!') |
|
print('=' * 70) |
|
print('Error detected:', e) |
|
print('=' * 70) |
|
continue |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
print('Best match:') |
|
print('=' * 70) |
|
print(matching_type.title(), 'distance ==', min(scores)) |
|
print('LAMDa Index:', scores.index(min(scores))) |
|
print('LAMDa File Name:', midi_matrixes[scores.index(min(scores))][0]) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
print('Rendering source MIDI...') |
|
print('=' * 70) |
|
|
|
fn = midi_matrixes[scores.index(min(scores))][0] |
|
|
|
try: |
|
fn_idx = [y[0] for y in LAMD_files_list].index(fn) |
|
|
|
f = LAMD_files_list[fn_idx][1] |
|
|
|
ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) |
|
|
|
itrack = 1 |
|
song_f = [] |
|
|
|
while itrack < len(ms_score): |
|
for event in ms_score[itrack]: |
|
if event[0] == 'note': |
|
song_f.append(event) |
|
itrack += 1 |
|
|
|
song_f.sort(key=lambda x: x[1]) |
|
|
|
fname = f.split('.mid')[0] |
|
|
|
x = [] |
|
y =[] |
|
c = [] |
|
|
|
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] |
|
|
|
for s in song_f: |
|
x.append(s[1] / 1000) |
|
y.append(s[4]) |
|
c.append(colors[s[3]]) |
|
|
|
if render_MIDI_to_audio: |
|
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) |
|
display(Audio(str(fname + '.wav'), rate=16000)) |
|
|
|
plt.figure(figsize=(14,5)) |
|
ax=plt.axes(title=fname) |
|
ax.set_facecolor('black') |
|
|
|
plt.scatter(x,y, c=c) |
|
plt.xlabel("Time") |
|
plt.ylabel("Pitch") |
|
plt.show() |
|
|
|
except: |
|
pass |
|
|
|
|
|
if download_MIDI: |
|
print('=' * 70) |
|
print('Downloading MIDI file', str(fn) + '.mid') |
|
files.download(f) |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Top 100 matches') |
|
print('=' * 70) |
|
|
|
top_matches = [] |
|
|
|
for i in range(len(scores)): |
|
top_matches.append([midi_matrixes[i][0], scores[i]]) |
|
|
|
top_matches.sort(key=lambda x: x[1]) |
|
|
|
for t in top_matches[:100]: |
|
print(t) |
|
|
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
maximum_match_ratio_to_search_for = 1 |
|
|
|
|
|
|
|
pitches_counts_cutoff_threshold_ratio = 0 |
|
search_transposed_pitches = False |
|
skip_exact_matches = False |
|
|
|
|
|
|
|
add_pitches_counts_ratios = False |
|
add_timings_ratios = False |
|
add_durations_ratios = False |
|
|
|
|
|
|
|
render_MIDI_to_audio = False |
|
download_MIDI = False |
|
|
|
print('=' * 70) |
|
print('MIDI Pitches Search') |
|
print('=' * 70) |
|
|
|
final_ratios = [] |
|
|
|
for d in tqdm(meta_data): |
|
|
|
try: |
|
p_counts = d[1][10][1] |
|
p_counts.sort(reverse = True, key = lambda x: x[1]) |
|
max_p_count = p_counts[0][1] |
|
trimmed_p_counts = [y for y in p_counts if y[1] >= (max_p_count * pitches_counts_cutoff_threshold_ratio)] |
|
total_p_counts = sum([y[1] for y in trimmed_p_counts]) |
|
|
|
if search_transposed_pitches: |
|
search_pitches = mult_pitches_counts |
|
else: |
|
search_pitches = [mult_pitches_counts[6]] |
|
|
|
|
|
|
|
ratios_list = [] |
|
|
|
|
|
|
|
atrat = [0] |
|
|
|
if add_timings_ratios: |
|
|
|
source_times = [avg_time, |
|
median_time, |
|
mode_time] |
|
|
|
match_times = meta_data[0][1][3][1] |
|
|
|
times_ratios = [] |
|
|
|
for i in range(len(source_times)): |
|
maxtratio = max(source_times[i], match_times[i]) |
|
mintratio = min(source_times[i], match_times[i]) |
|
times_ratios.append(mintratio / maxtratio) |
|
|
|
avg_times_ratio = sum(times_ratios) / len(times_ratios) |
|
|
|
atrat[0] = avg_times_ratio |
|
|
|
|
|
|
|
adrat = [0] |
|
|
|
if add_durations_ratios: |
|
|
|
source_durs = [avg_dur, |
|
median_dur, |
|
mode_dur] |
|
|
|
match_durs = meta_data[0][1][4][1] |
|
|
|
durs_ratios = [] |
|
|
|
for i in range(len(source_durs)): |
|
maxtratio = max(source_durs[i], match_durs[i]) |
|
mintratio = min(source_durs[i], match_durs[i]) |
|
durs_ratios.append(mintratio / maxtratio) |
|
|
|
avg_durs_ratio = sum(durs_ratios) / len(durs_ratios) |
|
|
|
adrat[0] = avg_durs_ratio |
|
|
|
|
|
|
|
for m in search_pitches: |
|
|
|
sprat = [] |
|
|
|
m.sort(reverse = True, key = lambda x: x[1]) |
|
max_pitches_count = m[0][1] |
|
trimmed_pitches_counts = [y for y in m if y[1] >= (max_pitches_count * pitches_counts_cutoff_threshold_ratio)] |
|
total_pitches_counts = sum([y[1] for y in trimmed_pitches_counts]) |
|
|
|
same_pitches = set([T[0] for T in trimmed_p_counts]) & set([m[0] for m in trimmed_pitches_counts]) |
|
num_same_pitches = len(same_pitches) |
|
same_pitches_ratio = (num_same_pitches / len(set([m[0] for m in trimmed_p_counts]+[T[0] for T in trimmed_pitches_counts]))) |
|
|
|
if skip_exact_matches: |
|
if same_pitches_ratio == 1: |
|
same_pitches_ratio = 0 |
|
|
|
sprat.append(same_pitches_ratio) |
|
|
|
|
|
|
|
spcrat = [0] |
|
|
|
if add_pitches_counts_ratios: |
|
|
|
same_trimmed_p_counts = sorted([T for T in trimmed_p_counts if T[0] in same_pitches], reverse = True) |
|
same_trimmed_pitches_counts = sorted([T for T in trimmed_pitches_counts if T[0] in same_pitches], reverse = True) |
|
|
|
same_trimmed_p_counts_ratios = [[s[0], s[1] / total_p_counts] for s in same_trimmed_p_counts] |
|
same_trimmed_pitches_counts_ratios = [[s[0], s[1] / total_pitches_counts] for s in same_trimmed_pitches_counts] |
|
|
|
same_pitches_counts_ratios = [] |
|
|
|
for i in range(len(same_trimmed_p_counts_ratios)): |
|
mincratio = min(same_trimmed_p_counts_ratios[i][1], same_trimmed_pitches_counts_ratios[i][1]) |
|
maxcratio = max(same_trimmed_p_counts_ratios[i][1], same_trimmed_pitches_counts_ratios[i][1]) |
|
same_pitches_counts_ratios.append([same_trimmed_p_counts_ratios[i][0], mincratio / maxcratio]) |
|
|
|
same_counts_ratios = [s[1] for s in same_pitches_counts_ratios] |
|
|
|
if len(same_counts_ratios) > 0: |
|
avg_same_pitches_counts_ratio = sum(same_counts_ratios) / len(same_counts_ratios) |
|
else: |
|
avg_same_pitches_counts_ratio = 0 |
|
|
|
spcrat[0] = avg_same_pitches_counts_ratio |
|
|
|
|
|
|
|
r_list = [sprat[0]] |
|
|
|
if add_pitches_counts_ratios: |
|
r_list.append(spcrat[0]) |
|
|
|
if add_timings_ratios: |
|
r_list.append(atrat[0]) |
|
|
|
if add_durations_ratios: |
|
r_list.append(adrat[0]) |
|
|
|
ratios_list.append(r_list) |
|
|
|
|
|
|
|
avg_ratios_list = [] |
|
|
|
for r in ratios_list: |
|
avg_ratios_list.append(sum(r) / len(r)) |
|
|
|
|
|
|
|
final_ratio = max(avg_ratios_list) |
|
|
|
if final_ratio > maximum_match_ratio_to_search_for: |
|
final_ratio = 0 |
|
|
|
final_ratios.append(final_ratio) |
|
|
|
|
|
|
|
except KeyboardInterrupt: |
|
break |
|
|
|
except Exception as e: |
|
print('WARNING !!!') |
|
print('=' * 70) |
|
print('Error detected:', e) |
|
ratios.append(0) |
|
print('=' * 70) |
|
break |
|
|
|
max_ratio = max(final_ratios) |
|
max_ratio_index = final_ratios.index(max_ratio) |
|
|
|
print('FOUND') |
|
print('=' * 70) |
|
print('Match ratio', max_ratio) |
|
print('MIDI file name', meta_data[max_ratio_index][0]) |
|
print('=' * 70) |
|
pprint.pprint(['Sample metadata entries', meta_data[max_ratio_index][1][:8]], compact = True) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
print('Rendering source MIDI...') |
|
print('=' * 70) |
|
|
|
fn = meta_data[max_ratio_index][0] |
|
fn_idx = [y[0] for y in LAMD_files_list].index(fn) |
|
|
|
f = LAMD_files_list[fn_idx][1] |
|
|
|
ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) |
|
|
|
itrack = 1 |
|
song_f = [] |
|
|
|
while itrack < len(ms_score): |
|
for event in ms_score[itrack]: |
|
if event[0] == 'note': |
|
song_f.append(event) |
|
itrack += 1 |
|
|
|
song_f.sort(key=lambda x: x[1]) |
|
|
|
fname = f.split('.mid')[0] |
|
|
|
x = [] |
|
y =[] |
|
c = [] |
|
|
|
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] |
|
|
|
for s in song_f: |
|
x.append(s[1] / 1000) |
|
y.append(s[4]) |
|
c.append(colors[s[3]]) |
|
|
|
if render_MIDI_to_audio: |
|
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) |
|
display(Audio(str(fname + '.wav'), rate=16000)) |
|
|
|
plt.figure(figsize=(14,5)) |
|
ax=plt.axes(title=fname) |
|
ax.set_facecolor('black') |
|
|
|
plt.scatter(x,y, c=c) |
|
plt.xlabel("Time") |
|
plt.ylabel("Pitch") |
|
plt.show() |
|
|
|
|
|
|
|
if download_MIDI: |
|
print('=' * 70) |
|
print('Downloading MIDI file', str(fn) + '.mid') |
|
files.download(f) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
maximum_match_ratio_to_search_for = 1 |
|
chords_counts_cutoff_threshold_ratio = 0 |
|
skip_exact_matches = False |
|
render_MIDI_to_audio = False |
|
download_MIDI = False |
|
|
|
print('=' * 70) |
|
print('MIDI Chords Search') |
|
print('=' * 70) |
|
|
|
ratios = [] |
|
|
|
for d in tqdm(meta_data): |
|
|
|
try: |
|
|
|
c_counts = d[1][8][1] |
|
if len(c_counts) == 0: |
|
c_counts = copy.deepcopy([[[0, 0], 0]]) |
|
|
|
c_counts.sort(reverse = True, key = lambda x: x[0][1]) |
|
max_c_count = c_counts[0][1] |
|
trimmed_c_counts = [y for y in c_counts if y[1] >= (max_c_count * chords_counts_cutoff_threshold_ratio)] |
|
trimmed_c_counts.sort(reverse = True, key = lambda x: x[1]) |
|
|
|
max_chords_count = ms_chords_counts[0][1] |
|
trimmed_chords_counts = [y for y in ms_chords_counts if y[1] >= (max_chords_count * chords_counts_cutoff_threshold_ratio)] |
|
|
|
num_same_chords = len(set([tuple(T[0]) for T in trimmed_c_counts]) & set([tuple(t[0]) for t in trimmed_chords_counts])) |
|
same_chords_ratio = (num_same_chords / len(set(tuple(x[0]) for x in [trimmed_c_counts+trimmed_chords_counts][0]))) |
|
|
|
if skip_exact_matches: |
|
if same_chords_ratio == 1: |
|
same_chords_ratio = 0 |
|
|
|
if same_chords_ratio > maximum_match_ratio_to_search_for: |
|
same_chords_ratio = 0 |
|
|
|
ratios.append(same_chords_ratio) |
|
|
|
except KeyboardInterrupt: |
|
break |
|
|
|
except Exception as e: |
|
print('WARNING !!!') |
|
print('=' * 70) |
|
print('Error detected:', e) |
|
ratios.append(0) |
|
print('=' * 70) |
|
continue |
|
|
|
max_ratio = max(ratios) |
|
max_ratio_index = ratios.index(max(ratios)) |
|
|
|
print('FOUND') |
|
print('=' * 70) |
|
print('Match ratio', max_ratio) |
|
print('MIDI file name', meta_data[max_ratio_index][0]) |
|
print('=' * 70) |
|
pprint.pprint(['Sample metadata entries', meta_data[max_ratio_index][1][:8]], compact = True) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
print('Rendering source MIDI...') |
|
print('=' * 70) |
|
|
|
fn = meta_data[max_ratio_index][0] |
|
fn_idx = [y[0] for y in LAMD_files_list].index(fn) |
|
|
|
f = LAMD_files_list[fn_idx][1] |
|
|
|
ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) |
|
|
|
itrack = 1 |
|
song_f = [] |
|
|
|
while itrack < len(ms_score): |
|
for event in ms_score[itrack]: |
|
if event[0] == 'note': |
|
song_f.append(event) |
|
itrack += 1 |
|
|
|
song_f.sort(key=lambda x: x[1]) |
|
|
|
fname = f.split('.mid')[0] |
|
|
|
x = [] |
|
y =[] |
|
c = [] |
|
|
|
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] |
|
|
|
for s in song_f: |
|
x.append(s[1] / 1000) |
|
y.append(s[4]) |
|
c.append(colors[s[3]]) |
|
|
|
if render_MIDI_to_audio: |
|
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) |
|
display(Audio(str(fname + '.wav'), rate=16000)) |
|
|
|
plt.figure(figsize=(14,5)) |
|
ax=plt.axes(title=fname) |
|
ax.set_facecolor('black') |
|
|
|
plt.scatter(x,y, c=c) |
|
plt.xlabel("Time") |
|
plt.ylabel("Pitch") |
|
plt.show() |
|
|
|
|
|
|
|
if download_MIDI: |
|
print('=' * 70) |
|
print('Downloading MIDI file', str(fn) + '.mid') |
|
files.download(f) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
maximum_match_ratio_to_search_for = 1 |
|
skip_exact_matches = False |
|
render_MIDI_to_audio = False |
|
download_MIDI = False |
|
|
|
print('=' * 70) |
|
print('MIDI Patches Search') |
|
print('=' * 70) |
|
|
|
ratios = [] |
|
|
|
for d in tqdm(meta_data): |
|
|
|
try: |
|
|
|
p_list= d[1][12][1] |
|
|
|
num_same_patches = len(set(p_list) & set(patches_list)) |
|
|
|
if len(set(p_list + patches_list)) > 0: |
|
same_patches_ratio = num_same_patches / len(set(p_list + patches_list)) |
|
else: |
|
same_patches_ratio = 0 |
|
|
|
if skip_exact_matches: |
|
if same_patches_ratio == 1: |
|
same_patches_ratio = 0 |
|
|
|
if same_patches_ratio > maximum_match_ratio_to_search_for: |
|
same_patches_ratio = 0 |
|
|
|
ratios.append(same_patches_ratio) |
|
|
|
except KeyboardInterrupt: |
|
break |
|
|
|
except Exception as e: |
|
print('WARNING !!!') |
|
print('=' * 70) |
|
print('Error detected:', e) |
|
ratios.append(0) |
|
print('=' * 70) |
|
continue |
|
|
|
max_ratio = max(ratios) |
|
max_ratio_index = ratios.index(max(ratios)) |
|
|
|
print('FOUND') |
|
print('=' * 70) |
|
print('Match ratio', max_ratio) |
|
print('MIDI file name', meta_data[max_ratio_index][0]) |
|
print('=' * 70) |
|
print('Found MIDI patches list', meta_data[max_ratio_index][1][12][1]) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
print('Rendering source MIDI...') |
|
print('=' * 70) |
|
|
|
fn = meta_data[max_ratio_index][0] |
|
fn_idx = [y[0] for y in LAMD_files_list].index(fn) |
|
|
|
f = LAMD_files_list[fn_idx][1] |
|
|
|
ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) |
|
|
|
itrack = 1 |
|
song_f = [] |
|
|
|
while itrack < len(ms_score): |
|
for event in ms_score[itrack]: |
|
if event[0] == 'note': |
|
song_f.append(event) |
|
itrack += 1 |
|
|
|
song_f.sort(key=lambda x: x[1]) |
|
|
|
fname = f.split('.mid')[0] |
|
|
|
x = [] |
|
y =[] |
|
c = [] |
|
|
|
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] |
|
|
|
for s in song_f: |
|
x.append(s[1] / 1000) |
|
y.append(s[4]) |
|
c.append(colors[s[3]]) |
|
|
|
if render_MIDI_to_audio: |
|
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) |
|
display(Audio(str(fname + '.wav'), rate=16000)) |
|
|
|
plt.figure(figsize=(14,5)) |
|
ax=plt.axes(title=fname) |
|
ax.set_facecolor('black') |
|
|
|
plt.scatter(x,y, c=c) |
|
plt.xlabel("Time") |
|
plt.ylabel("Pitch") |
|
plt.show() |
|
|
|
|
|
|
|
if download_MIDI: |
|
print('=' * 70) |
|
print('Downloading MIDI file', str(fn) + '.mid') |
|
files.download(f) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
|
|
search_query = "Come To My Window" |
|
md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" |
|
case_sensitive_search = False |
|
|
|
fields_to_search = ['track_name', |
|
'text_event', |
|
'lyric', |
|
'copyright_text_event', |
|
'marker', |
|
'text_event_08', |
|
'text_event_09', |
|
'text_event_0a', |
|
'text_event_0b', |
|
'text_event_0c', |
|
'text_event_0d', |
|
'text_event_0e', |
|
'text_event_0f', |
|
] |
|
|
|
print('=' * 70) |
|
print('Los Angeles MIDI Dataset Metadata Search') |
|
print('=' * 70) |
|
print('Searching...') |
|
print('=' * 70) |
|
|
|
if md5_hash_MIDI_file_name != '': |
|
for d in tqdm(meta_data): |
|
try: |
|
if d[0] == md5_hash_MIDI_file_name: |
|
print('Found!') |
|
print('=' * 70) |
|
print('Metadata index:', meta_data.index(d)) |
|
print('MIDI file name:', meta_data[meta_data.index(d)][0]) |
|
print('-' * 70) |
|
pprint.pprint(['Result:', d[1][:16]], compact = True) |
|
print('=' * 70) |
|
break |
|
|
|
except KeyboardInterrupt: |
|
print('Ending search...') |
|
print('=' * 70) |
|
break |
|
|
|
except Exception as e: |
|
print('WARNING !!!') |
|
print('=' * 70) |
|
print('Error detected:', e) |
|
print('=' * 70) |
|
continue |
|
|
|
if d[0] != md5_hash_MIDI_file_name: |
|
print('Not found!') |
|
print('=' * 70) |
|
print('md5 hash was not found!') |
|
print('Ending search...') |
|
print('=' * 70) |
|
|
|
else: |
|
for d in tqdm(meta_data): |
|
try: |
|
for dd in d[1]: |
|
if dd[0] in fields_to_search: |
|
if case_sensitive_search: |
|
if str(search_query) in str(dd[2]): |
|
print('Found!') |
|
print('=' * 70) |
|
print('Metadata index:', meta_data.index(d)) |
|
print('MIDI file name:', meta_data[meta_data.index(d)][0]) |
|
print('-' * 70) |
|
pprint.pprint(['Result:', dd[2][:16]], compact = True) |
|
print('=' * 70) |
|
|
|
else: |
|
if str(search_query).lower() in str(dd[2]).lower(): |
|
print('Found!') |
|
print('=' * 70) |
|
print('Metadata index:', meta_data.index(d)) |
|
print('MIDI file name:', meta_data[meta_data.index(d)][0]) |
|
print('-' * 70) |
|
pprint.pprint(['Result:', dd[2][:16]], compact = True) |
|
print('=' * 70) |
|
|
|
except KeyboardInterrupt: |
|
print('Ending search...') |
|
print('=' * 70) |
|
break |
|
|
|
except: |
|
print('Ending search...') |
|
print('=' * 70) |
|
break |
|
|
|
"""# (MIDI FILE PLAYER)""" |
|
|
|
|
|
|
|
|
|
|
|
md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" |
|
full_path_to_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" |
|
render_MIDI_to_audio = False |
|
download_MIDI = False |
|
|
|
|
|
|
|
|
|
|
|
print('=' * 70) |
|
print('MIDI file player') |
|
print('=' * 70) |
|
|
|
try: |
|
|
|
if os.path.exists(full_path_to_MIDI): |
|
f = full_path_to_MIDI |
|
print('Using full path to MIDI') |
|
|
|
else: |
|
fn = md5_hash_MIDI_file_name |
|
fn_idx = [y[0] for y in LAMD_files_list].index(fn) |
|
f = LAMD_files_list[fn_idx][1] |
|
|
|
print('Using md5 hash filename') |
|
|
|
print('=' * 70) |
|
print('Rendering MIDI...') |
|
print('=' * 70) |
|
|
|
ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) |
|
|
|
itrack = 1 |
|
song_f = [] |
|
|
|
while itrack < len(ms_score): |
|
for event in ms_score[itrack]: |
|
if event[0] == 'note': |
|
song_f.append(event) |
|
itrack += 1 |
|
|
|
song_f.sort(key=lambda x: x[1]) |
|
|
|
fname = f.split('.mid')[0] |
|
|
|
x = [] |
|
y =[] |
|
c = [] |
|
|
|
colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] |
|
|
|
for s in song_f: |
|
x.append(s[1] / 1000) |
|
y.append(s[4]) |
|
c.append(colors[s[3]]) |
|
|
|
if render_MIDI_to_audio: |
|
FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) |
|
display(Audio(str(fname + '.wav'), rate=16000)) |
|
|
|
plt.figure(figsize=(14,5)) |
|
ax=plt.axes(title=fname) |
|
ax.set_facecolor('black') |
|
|
|
plt.scatter(x,y, c=c) |
|
plt.xlabel("Time") |
|
plt.ylabel("Pitch") |
|
plt.show() |
|
|
|
|
|
|
|
if download_MIDI: |
|
print('=' * 70) |
|
print('Downloading MIDI file', str(fn) + '.mid') |
|
files.download(f) |
|
print('=' * 70) |
|
|
|
except: |
|
print('File not found!!!') |
|
print('Check the filename!') |
|
print('=' * 70) |
|
|
|
"""# (COLAB MIDI FILES LOCATOR/DOWNLOADER)""" |
|
|
|
|
|
|
|
MIDI_md5_hash_file_name_1 = "d9a7e1c6a375b8e560155a5977fc10f8" |
|
MIDI_md5_hash_file_name_2 = "" |
|
MIDI_md5_hash_file_name_3 = "" |
|
MIDI_md5_hash_file_name_4 = "" |
|
MIDI_md5_hash_file_name_5 = "" |
|
download_located_files = False |
|
|
|
print('=' * 70) |
|
print('MIDI files locator and downloader') |
|
print('=' * 70) |
|
|
|
md5_list = [] |
|
|
|
if MIDI_md5_hash_file_name_1 != '': |
|
md5_list.append(MIDI_md5_hash_file_name_1) |
|
|
|
if MIDI_md5_hash_file_name_2 != '': |
|
md5_list.append(MIDI_md5_hash_file_name_2) |
|
|
|
if MIDI_md5_hash_file_name_3 != '': |
|
md5_list.append(MIDI_md5_hash_file_name_3) |
|
|
|
if MIDI_md5_hash_file_name_4 != '': |
|
md5_list.append(MIDI_md5_hash_file_name_4) |
|
|
|
if MIDI_md5_hash_file_name_5 != '': |
|
md5_list.append(MIDI_md5_hash_file_name_5) |
|
|
|
if len(md5_list) > 0: |
|
for m in md5_list: |
|
try: |
|
|
|
fn = m |
|
fn_idx = [y[0] for y in LAMD_files_list].index(fn) |
|
f = LAMD_files_list[fn_idx][1] |
|
|
|
print('Found md5 hash file name', m) |
|
|
|
location_str = '' |
|
|
|
fl = f.split('/') |
|
for fa in fl[:-1]: |
|
if fa != '' and fa != 'content': |
|
location_str += '/' |
|
location_str += str(fa) |
|
|
|
print('Colab location/folder', location_str) |
|
|
|
if download_located_files: |
|
print('Downloading MIDI file', str(m) + '.mid') |
|
files.download(f) |
|
|
|
print('=' * 70) |
|
|
|
except: |
|
print('md5 hash file name', m, 'not found!!!') |
|
print('Check the file name!') |
|
print('=' * 70) |
|
continue |
|
|
|
else: |
|
print('No md5 hash file names were specified!') |
|
print('Check input!') |
|
print('=' * 70) |
|
|
|
"""# (CUSTOM ANALYSIS TEMPLATE)""" |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Los Angeles MIDI Dataset Reader') |
|
print('=' * 70) |
|
print('Starting up...') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Loading MIDI files...') |
|
print('This may take a while on a large dataset in particular.') |
|
|
|
dataset_addr = "/content/LAMD/MIDIs" |
|
|
|
|
|
filez = list() |
|
for (dirpath, dirnames, filenames) in os.walk(dataset_addr): |
|
filez += [os.path.join(dirpath, file) for file in filenames] |
|
|
|
if filez == []: |
|
print('Could not find any MIDI files. Please check Dataset dir...') |
|
print('=' * 70) |
|
|
|
print('=' * 70) |
|
print('Randomizing file list...') |
|
random.shuffle(filez) |
|
print('=' * 70) |
|
|
|
|
|
|
|
START_FILE_NUMBER = 0 |
|
LAST_SAVED_BATCH_COUNT = 0 |
|
|
|
input_files_count = START_FILE_NUMBER |
|
files_count = LAST_SAVED_BATCH_COUNT |
|
|
|
stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] |
|
|
|
print('Reading MIDI files. Please wait...') |
|
print('=' * 70) |
|
|
|
for f in tqdm(filez[START_FILE_NUMBER:]): |
|
try: |
|
input_files_count += 1 |
|
|
|
fn = os.path.basename(f) |
|
fn1 = fn.split('.mid')[0] |
|
|
|
|
|
|
|
|
|
|
|
|
|
score = MIDI.midi2score(open(f, 'rb').read()) |
|
|
|
events_matrix = [] |
|
|
|
itrack = 1 |
|
|
|
while itrack < len(score): |
|
for event in score[itrack]: |
|
events_matrix.append(event) |
|
itrack += 1 |
|
|
|
|
|
events_matrix.sort(key=lambda x: x[1]) |
|
|
|
if len(events_matrix) > 0: |
|
|
|
|
|
|
|
|
|
|
|
|
|
files_count += 1 |
|
|
|
|
|
if files_count % 10000 == 0: |
|
print('=' * 70) |
|
print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio') |
|
print('=' * 70) |
|
|
|
except KeyboardInterrupt: |
|
print('Saving current progress and quitting...') |
|
break |
|
|
|
except Exception as ex: |
|
print('WARNING !!!') |
|
print('=' * 70) |
|
print('Bad MIDI:', f) |
|
print('Error detected:', ex) |
|
print('=' * 70) |
|
continue |
|
|
|
print('=' * 70) |
|
print('Final files counts:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio') |
|
print('=' * 70) |
|
|
|
print('Resulting Stats:') |
|
print('=' * 70) |
|
print('Total good processed MIDI files:', files_count) |
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
"""# Congrats! You did it! :)""" |