NIST-LPBF-Scan-Tracks / nist_lpbf_scan_tracks.py
ppak10's picture
tests features.
2edddf2
raw
history blame
9.98 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""NIST LPBF Scan Tracks"""
import os
import datasets
import pickle
# # TODO: Add BibTeX citation
# # Find for instance the citation on arxiv or on the dataset repo/website
# _CITATION = """\
# @InProceedings{huggingface:dataset,
# title = {A great new dataset},
# author={huggingface, Inc.
# },
# year={2020}
# }
# """
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
Dataset from https://doi.org/10.18434/M3C37Q
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = "MIT"
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"powder_single_track_radiant_temperature": "https://huggingface.co/datasets/ppak10/NIST-LPBF-Scan-Tracks/resolve/main/data/powder_plate_1_single_line/radiant_temperature.pkl",
"powder_single_track_camera_signal": "https://huggingface.co/datasets/ppak10/NIST-LPBF-Scan-Tracks/resolve/main/data/powder_plate_1_single_line/camera_signal.pkl",
"powder_multiple_track_radiant_temperature": "https://huggingface.co/datasets/ppak10/NIST-LPBF-Scan-Tracks/resolve/main/data/powder_plate_2_pad/radiant_temperature.pkl",
"powder_multiple_track_camera_signal": "https://huggingface.co/datasets/ppak10/NIST-LPBF-Scan-Tracks/resolve/main/data/powder_plate_2_pad/camera_signal.pkl",
"bare_single_track_radiant_temperature": "https://huggingface.co/datasets/ppak10/NIST-LPBF-Scan-Tracks/resolve/main/data/powder_plate_6_bare_single_line_195_w_800_mm_s/radiant_temperature.pkl",
"bare_single_track_camera_signal": "https://huggingface.co/datasets/ppak10/NIST-LPBF-Scan-Tracks/resolve/main/data/powder_plate_6_bare_single_line_195_w_800_mm_s/camera_signal.pkl",
"bare_multiple_track_radiant_temperature": "https://huggingface.co/datasets/ppak10/NIST-LPBF-Scan-Tracks/resolve/main/data/powder_plate_7_bare_pad_195_w_800_mm_s/radiant_temperature.pkl",
"bare_multiple_track_camera_signal": "https://huggingface.co/datasets/ppak10/NIST-LPBF-Scan-Tracks/resolve/main/data/powder_plate_7_bare_pad_195_w_800_mm_s/camera_signal.pkl",
}
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
class Dataset(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("0.0.1")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="powder_single_track_radiant_temperature",
version=VERSION,
description="Radiant temperature from single track raster with powder"
),
datasets.BuilderConfig(
name="powder_single_track_camera_signal",
version=VERSION,
description="Camera signal from single track raster with powder"
),
datasets.BuilderConfig(
name="powder_multiple_track_radiant_temperature",
version=VERSION,
description="Radiant temperature from multiple track raster with powder"
),
datasets.BuilderConfig(
name="powder_multiple_track_camera_signal",
version=VERSION,
description="Camera signal from multiple track raster with powder"
),
datasets.BuilderConfig(
name="bare_single_track_radiant_temperature",
version=VERSION,
description="Radiant temperature from single track raster without powder"
),
datasets.BuilderConfig(
name="bare_single_track_camera_signal",
version=VERSION,
description="Camera signal from single track raster without powder"
),
datasets.BuilderConfig(
name="bare_multiple_track_radiant_temperature",
version=VERSION,
description="Radiant temperature from multiple track raster without powder"
),
datasets.BuilderConfig(
name="bare_multiple_track_camera_signal",
version=VERSION,
description="Camera signal from multiple track raster without powder"
),
]
DEFAULT_CONFIG_NAME = "powder_single_track_radiant_temperature" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features = datasets.Features({
"sentence": datasets.Value("string"),
}),
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
# citation=_CITATION,
)
def _split_generators(self, dl_manager):
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
# urls = _URLS[self.config.name]
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
# "filepath": os.path.join(data_dir, "train.jsonl"),
# "split": "train",
"files": downloaded_files
},
),
# datasets.SplitGenerator(
# name=datasets.Split.VALIDATION,
# # These kwargs will be passed to _generate_examples
# # gen_kwargs={
# # "filepath": os.path.join(data_dir, "dev.jsonl"),
# # "split": "dev",
# # },
# ),
# datasets.SplitGenerator(
# name=datasets.Split.TEST,
# # These kwargs will be passed to _generate_examples
# # gen_kwargs={
# # "filepath": os.path.join(data_dir, "test.jsonl"),
# # "split": "test"
# # },
# ),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, files):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
for index, file in enumerate(files):
with open(file, "rb") as f:
track = pickle.load(f)
yield index, {
"track": track
}
# with open(filepath, encoding="utf-8") as f:
# for key, row in enumerate(f):
# data = json.loads(row)
# if self.config.name == "raw":
# # Yields examples as (key, example) tuples
# yield key, {
# "sentence": data["sentence"],
# "option1": data["option1"],
# "answer": "" if split == "test" else data["answer"],
# }
# else:
# yield key, {
# "sentence": data["sentence"],
# "option2": data["option2"],
# "second_domain_answer": "" if split == "test" else data["second_domain_answer"],
# }