|
import torch |
|
import network |
|
from lyco_helpers import factorization |
|
from einops import rearrange |
|
|
|
|
|
class ModuleTypeOFT(network.ModuleType): |
|
def create_module(self, net: network.Network, weights: network.NetworkWeights): |
|
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]): |
|
return NetworkModuleOFT(net, weights) |
|
|
|
return None |
|
|
|
|
|
|
|
class NetworkModuleOFT(network.NetworkModule): |
|
def __init__(self, net: network.Network, weights: network.NetworkWeights): |
|
|
|
super().__init__(net, weights) |
|
|
|
self.lin_module = None |
|
self.org_module: list[torch.Module] = [self.sd_module] |
|
|
|
self.scale = 1.0 |
|
|
|
|
|
if "oft_blocks" in weights.w.keys(): |
|
self.is_kohya = True |
|
self.oft_blocks = weights.w["oft_blocks"] |
|
self.alpha = weights.w["alpha"] |
|
self.dim = self.oft_blocks.shape[0] |
|
|
|
elif "oft_diag" in weights.w.keys(): |
|
self.is_kohya = False |
|
self.oft_blocks = weights.w["oft_diag"] |
|
|
|
self.dim = self.oft_blocks.shape[1] |
|
|
|
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] |
|
is_conv = type(self.sd_module) in [torch.nn.Conv2d] |
|
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] |
|
|
|
if is_linear: |
|
self.out_dim = self.sd_module.out_features |
|
elif is_conv: |
|
self.out_dim = self.sd_module.out_channels |
|
elif is_other_linear: |
|
self.out_dim = self.sd_module.embed_dim |
|
|
|
if self.is_kohya: |
|
self.constraint = self.alpha * self.out_dim |
|
self.num_blocks = self.dim |
|
self.block_size = self.out_dim // self.dim |
|
else: |
|
self.constraint = None |
|
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) |
|
|
|
def calc_updown(self, orig_weight): |
|
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) |
|
eye = torch.eye(self.block_size, device=self.oft_blocks.device) |
|
|
|
if self.is_kohya: |
|
block_Q = oft_blocks - oft_blocks.transpose(1, 2) |
|
norm_Q = torch.norm(block_Q.flatten()) |
|
new_norm_Q = torch.clamp(norm_Q, max=self.constraint) |
|
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) |
|
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse()) |
|
|
|
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) |
|
|
|
|
|
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) |
|
merged_weight = torch.einsum( |
|
'k n m, k n ... -> k m ...', |
|
R, |
|
merged_weight |
|
) |
|
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') |
|
|
|
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight |
|
output_shape = orig_weight.shape |
|
return self.finalize_updown(updown, orig_weight, output_shape) |
|
|