pluseen's picture
Upload 263 files
371c363 verified
raw
history blame
37.3 kB
from collections import namedtuple
from copy import copy
from itertools import permutations, chain
import random
import csv
import os.path
from io import StringIO
from PIL import Image
import numpy as np
import modules.scripts as scripts
import gradio as gr
from modules import images, sd_samplers, processing, sd_models, sd_vae, sd_samplers_kdiffusion, errors
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
from modules.shared import opts, state
import modules.shared as shared
import modules.sd_samplers
import modules.sd_models
import modules.sd_vae
import re
from modules.ui_components import ToolButton
fill_values_symbol = "\U0001f4d2" # 📒
AxisInfo = namedtuple('AxisInfo', ['axis', 'values'])
def apply_field(field):
def fun(p, x, xs):
setattr(p, field, x)
return fun
def apply_prompt(p, x, xs):
if xs[0] not in p.prompt and xs[0] not in p.negative_prompt:
raise RuntimeError(f"Prompt S/R did not find {xs[0]} in prompt or negative prompt.")
p.prompt = p.prompt.replace(xs[0], x)
p.negative_prompt = p.negative_prompt.replace(xs[0], x)
def apply_order(p, x, xs):
token_order = []
# Initally grab the tokens from the prompt, so they can be replaced in order of earliest seen
for token in x:
token_order.append((p.prompt.find(token), token))
token_order.sort(key=lambda t: t[0])
prompt_parts = []
# Split the prompt up, taking out the tokens
for _, token in token_order:
n = p.prompt.find(token)
prompt_parts.append(p.prompt[0:n])
p.prompt = p.prompt[n + len(token):]
# Rebuild the prompt with the tokens in the order we want
prompt_tmp = ""
for idx, part in enumerate(prompt_parts):
prompt_tmp += part
prompt_tmp += x[idx]
p.prompt = prompt_tmp + p.prompt
def confirm_samplers(p, xs):
for x in xs:
if x.lower() not in sd_samplers.samplers_map:
raise RuntimeError(f"Unknown sampler: {x}")
def apply_checkpoint(p, x, xs):
info = modules.sd_models.get_closet_checkpoint_match(x)
if info is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
p.override_settings['sd_model_checkpoint'] = info.name
def confirm_checkpoints(p, xs):
for x in xs:
if modules.sd_models.get_closet_checkpoint_match(x) is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
def confirm_checkpoints_or_none(p, xs):
for x in xs:
if x in (None, "", "None", "none"):
continue
if modules.sd_models.get_closet_checkpoint_match(x) is None:
raise RuntimeError(f"Unknown checkpoint: {x}")
def apply_clip_skip(p, x, xs):
opts.data["CLIP_stop_at_last_layers"] = x
def apply_upscale_latent_space(p, x, xs):
if x.lower().strip() != '0':
opts.data["use_scale_latent_for_hires_fix"] = True
else:
opts.data["use_scale_latent_for_hires_fix"] = False
def find_vae(name: str):
if name.lower() in ['auto', 'automatic']:
return modules.sd_vae.unspecified
if name.lower() == 'none':
return None
else:
choices = [x for x in sorted(modules.sd_vae.vae_dict, key=lambda x: len(x)) if name.lower().strip() in x.lower()]
if len(choices) == 0:
print(f"No VAE found for {name}; using automatic")
return modules.sd_vae.unspecified
else:
return modules.sd_vae.vae_dict[choices[0]]
def apply_vae(p, x, xs):
modules.sd_vae.reload_vae_weights(shared.sd_model, vae_file=find_vae(x))
def apply_styles(p: StableDiffusionProcessingTxt2Img, x: str, _):
p.styles.extend(x.split(','))
def apply_uni_pc_order(p, x, xs):
opts.data["uni_pc_order"] = min(x, p.steps - 1)
def apply_face_restore(p, opt, x):
opt = opt.lower()
if opt == 'codeformer':
is_active = True
p.face_restoration_model = 'CodeFormer'
elif opt == 'gfpgan':
is_active = True
p.face_restoration_model = 'GFPGAN'
else:
is_active = opt in ('true', 'yes', 'y', '1')
p.restore_faces = is_active
def apply_override(field, boolean: bool = False):
def fun(p, x, xs):
if boolean:
x = True if x.lower() == "true" else False
p.override_settings[field] = x
return fun
def boolean_choice(reverse: bool = False):
def choice():
return ["False", "True"] if reverse else ["True", "False"]
return choice
def format_value_add_label(p, opt, x):
if type(x) == float:
x = round(x, 8)
return f"{opt.label}: {x}"
def format_value(p, opt, x):
if type(x) == float:
x = round(x, 8)
return x
def format_value_join_list(p, opt, x):
return ", ".join(x)
def do_nothing(p, x, xs):
pass
def format_nothing(p, opt, x):
return ""
def format_remove_path(p, opt, x):
return os.path.basename(x)
def str_permutations(x):
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
return x
def list_to_csv_string(data_list):
with StringIO() as o:
csv.writer(o).writerow(data_list)
return o.getvalue().strip()
def csv_string_to_list_strip(data_str):
return list(map(str.strip, chain.from_iterable(csv.reader(StringIO(data_str)))))
class AxisOption:
def __init__(self, label, type, apply, format_value=format_value_add_label, confirm=None, cost=0.0, choices=None, prepare=None):
self.label = label
self.type = type
self.apply = apply
self.format_value = format_value
self.confirm = confirm
self.cost = cost
self.prepare = prepare
self.choices = choices
class AxisOptionImg2Img(AxisOption):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_img2img = True
class AxisOptionTxt2Img(AxisOption):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.is_img2img = False
axis_options = [
AxisOption("Nothing", str, do_nothing, format_value=format_nothing),
AxisOption("Seed", int, apply_field("seed")),
AxisOption("Var. seed", int, apply_field("subseed")),
AxisOption("Var. strength", float, apply_field("subseed_strength")),
AxisOption("Steps", int, apply_field("steps")),
AxisOptionTxt2Img("Hires steps", int, apply_field("hr_second_pass_steps")),
AxisOption("CFG Scale", float, apply_field("cfg_scale")),
AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
AxisOptionTxt2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers if x.name not in opts.hide_samplers]),
AxisOptionTxt2Img("Hires sampler", str, apply_field("hr_sampler_name"), confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img if x.name not in opts.hide_samplers]),
AxisOptionImg2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img if x.name not in opts.hide_samplers]),
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_remove_path, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
AxisOption("Sigma Churn", float, apply_field("s_churn")),
AxisOption("Sigma min", float, apply_field("s_tmin")),
AxisOption("Sigma max", float, apply_field("s_tmax")),
AxisOption("Sigma noise", float, apply_field("s_noise")),
AxisOption("Schedule type", str, apply_override("k_sched_type"), choices=lambda: list(sd_samplers_kdiffusion.k_diffusion_scheduler)),
AxisOption("Schedule min sigma", float, apply_override("sigma_min")),
AxisOption("Schedule max sigma", float, apply_override("sigma_max")),
AxisOption("Schedule rho", float, apply_override("rho")),
AxisOption("Eta", float, apply_field("eta")),
AxisOption("Clip skip", int, apply_clip_skip),
AxisOption("Denoising", float, apply_field("denoising_strength")),
AxisOption("Initial noise multiplier", float, apply_field("initial_noise_multiplier")),
AxisOption("Extra noise", float, apply_override("img2img_extra_noise")),
AxisOptionTxt2Img("Hires upscaler", str, apply_field("hr_upscaler"), choices=lambda: [*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]]),
AxisOptionImg2Img("Cond. Image Mask Weight", float, apply_field("inpainting_mask_weight")),
AxisOption("VAE", str, apply_vae, cost=0.7, choices=lambda: ['None'] + list(sd_vae.vae_dict)),
AxisOption("Styles", str, apply_styles, choices=lambda: list(shared.prompt_styles.styles)),
AxisOption("UniPC Order", int, apply_uni_pc_order, cost=0.5),
AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
AxisOption("Token merging ratio", float, apply_override('token_merging_ratio')),
AxisOption("Token merging ratio high-res", float, apply_override('token_merging_ratio_hr')),
AxisOption("Always discard next-to-last sigma", str, apply_override('always_discard_next_to_last_sigma', boolean=True), choices=boolean_choice(reverse=True)),
AxisOption("SGM noise multiplier", str, apply_override('sgm_noise_multiplier', boolean=True), choices=boolean_choice(reverse=True)),
AxisOption("Refiner checkpoint", str, apply_field('refiner_checkpoint'), format_value=format_remove_path, confirm=confirm_checkpoints_or_none, cost=1.0, choices=lambda: ['None'] + sorted(sd_models.checkpoints_list, key=str.casefold)),
AxisOption("Refiner switch at", float, apply_field('refiner_switch_at')),
AxisOption("RNG source", str, apply_override("randn_source"), choices=lambda: ["GPU", "CPU", "NV"]),
]
def draw_xyz_grid(p, xs, ys, zs, x_labels, y_labels, z_labels, cell, draw_legend, include_lone_images, include_sub_grids, first_axes_processed, second_axes_processed, margin_size):
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
title_texts = [[images.GridAnnotation(z)] for z in z_labels]
list_size = (len(xs) * len(ys) * len(zs))
processed_result = None
state.job_count = list_size * p.n_iter
def process_cell(x, y, z, ix, iy, iz):
nonlocal processed_result
def index(ix, iy, iz):
return ix + iy * len(xs) + iz * len(xs) * len(ys)
state.job = f"{index(ix, iy, iz) + 1} out of {list_size}"
processed: Processed = cell(x, y, z, ix, iy, iz)
if processed_result is None:
# Use our first processed result object as a template container to hold our full results
processed_result = copy(processed)
processed_result.images = [None] * list_size
processed_result.all_prompts = [None] * list_size
processed_result.all_seeds = [None] * list_size
processed_result.infotexts = [None] * list_size
processed_result.index_of_first_image = 1
idx = index(ix, iy, iz)
if processed.images:
# Non-empty list indicates some degree of success.
processed_result.images[idx] = processed.images[0]
processed_result.all_prompts[idx] = processed.prompt
processed_result.all_seeds[idx] = processed.seed
processed_result.infotexts[idx] = processed.infotexts[0]
else:
cell_mode = "P"
cell_size = (processed_result.width, processed_result.height)
if processed_result.images[0] is not None:
cell_mode = processed_result.images[0].mode
# This corrects size in case of batches:
cell_size = processed_result.images[0].size
processed_result.images[idx] = Image.new(cell_mode, cell_size)
if first_axes_processed == 'x':
for ix, x in enumerate(xs):
if second_axes_processed == 'y':
for iy, y in enumerate(ys):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'y':
for iy, y in enumerate(ys):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iz, z in enumerate(zs):
process_cell(x, y, z, ix, iy, iz)
else:
for iz, z in enumerate(zs):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
elif first_axes_processed == 'z':
for iz, z in enumerate(zs):
if second_axes_processed == 'x':
for ix, x in enumerate(xs):
for iy, y in enumerate(ys):
process_cell(x, y, z, ix, iy, iz)
else:
for iy, y in enumerate(ys):
for ix, x in enumerate(xs):
process_cell(x, y, z, ix, iy, iz)
if not processed_result:
# Should never happen, I've only seen it on one of four open tabs and it needed to refresh.
print("Unexpected error: Processing could not begin, you may need to refresh the tab or restart the service.")
return Processed(p, [])
elif not any(processed_result.images):
print("Unexpected error: draw_xyz_grid failed to return even a single processed image")
return Processed(p, [])
z_count = len(zs)
for i in range(z_count):
start_index = (i * len(xs) * len(ys)) + i
end_index = start_index + len(xs) * len(ys)
grid = images.image_grid(processed_result.images[start_index:end_index], rows=len(ys))
if draw_legend:
grid = images.draw_grid_annotations(grid, processed_result.images[start_index].size[0], processed_result.images[start_index].size[1], hor_texts, ver_texts, margin_size)
processed_result.images.insert(i, grid)
processed_result.all_prompts.insert(i, processed_result.all_prompts[start_index])
processed_result.all_seeds.insert(i, processed_result.all_seeds[start_index])
processed_result.infotexts.insert(i, processed_result.infotexts[start_index])
sub_grid_size = processed_result.images[0].size
z_grid = images.image_grid(processed_result.images[:z_count], rows=1)
if draw_legend:
z_grid = images.draw_grid_annotations(z_grid, sub_grid_size[0], sub_grid_size[1], title_texts, [[images.GridAnnotation()]])
processed_result.images.insert(0, z_grid)
# TODO: Deeper aspects of the program rely on grid info being misaligned between metadata arrays, which is not ideal.
# processed_result.all_prompts.insert(0, processed_result.all_prompts[0])
# processed_result.all_seeds.insert(0, processed_result.all_seeds[0])
processed_result.infotexts.insert(0, processed_result.infotexts[0])
return processed_result
class SharedSettingsStackHelper(object):
def __enter__(self):
self.CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
self.vae = opts.sd_vae
self.uni_pc_order = opts.uni_pc_order
def __exit__(self, exc_type, exc_value, tb):
opts.data["sd_vae"] = self.vae
opts.data["uni_pc_order"] = self.uni_pc_order
modules.sd_models.reload_model_weights()
modules.sd_vae.reload_vae_weights()
opts.data["CLIP_stop_at_last_layers"] = self.CLIP_stop_at_last_layers
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
re_range_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\(([+-]\d+(?:.\d*)?)\s*\))?\s*")
re_range_count = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\[(\d+)\s*])?\s*")
re_range_count_float = re.compile(r"\s*([+-]?\s*\d+(?:.\d*)?)\s*-\s*([+-]?\s*\d+(?:.\d*)?)(?:\s*\[(\d+(?:.\d*)?)\s*])?\s*")
class Script(scripts.Script):
def title(self):
return "X/Y/Z plot"
def ui(self, is_img2img):
self.current_axis_options = [x for x in axis_options if type(x) == AxisOption or x.is_img2img == is_img2img]
with gr.Row():
with gr.Column(scale=19):
with gr.Row():
x_type = gr.Dropdown(label="X type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[1].label, type="index", elem_id=self.elem_id("x_type"))
x_values = gr.Textbox(label="X values", lines=1, elem_id=self.elem_id("x_values"))
x_values_dropdown = gr.Dropdown(label="X values", visible=False, multiselect=True, interactive=True)
fill_x_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_x_tool_button", visible=False)
with gr.Row():
y_type = gr.Dropdown(label="Y type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("y_type"))
y_values = gr.Textbox(label="Y values", lines=1, elem_id=self.elem_id("y_values"))
y_values_dropdown = gr.Dropdown(label="Y values", visible=False, multiselect=True, interactive=True)
fill_y_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_y_tool_button", visible=False)
with gr.Row():
z_type = gr.Dropdown(label="Z type", choices=[x.label for x in self.current_axis_options], value=self.current_axis_options[0].label, type="index", elem_id=self.elem_id("z_type"))
z_values = gr.Textbox(label="Z values", lines=1, elem_id=self.elem_id("z_values"))
z_values_dropdown = gr.Dropdown(label="Z values", visible=False, multiselect=True, interactive=True)
fill_z_button = ToolButton(value=fill_values_symbol, elem_id="xyz_grid_fill_z_tool_button", visible=False)
with gr.Row(variant="compact", elem_id="axis_options"):
with gr.Column():
draw_legend = gr.Checkbox(label='Draw legend', value=True, elem_id=self.elem_id("draw_legend"))
no_fixed_seeds = gr.Checkbox(label='Keep -1 for seeds', value=False, elem_id=self.elem_id("no_fixed_seeds"))
with gr.Column():
include_lone_images = gr.Checkbox(label='Include Sub Images', value=False, elem_id=self.elem_id("include_lone_images"))
include_sub_grids = gr.Checkbox(label='Include Sub Grids', value=False, elem_id=self.elem_id("include_sub_grids"))
with gr.Column():
margin_size = gr.Slider(label="Grid margins (px)", minimum=0, maximum=500, value=0, step=2, elem_id=self.elem_id("margin_size"))
with gr.Column():
csv_mode = gr.Checkbox(label='Use text inputs instead of dropdowns', value=False, elem_id=self.elem_id("csv_mode"))
with gr.Row(variant="compact", elem_id="swap_axes"):
swap_xy_axes_button = gr.Button(value="Swap X/Y axes", elem_id="xy_grid_swap_axes_button")
swap_yz_axes_button = gr.Button(value="Swap Y/Z axes", elem_id="yz_grid_swap_axes_button")
swap_xz_axes_button = gr.Button(value="Swap X/Z axes", elem_id="xz_grid_swap_axes_button")
def swap_axes(axis1_type, axis1_values, axis1_values_dropdown, axis2_type, axis2_values, axis2_values_dropdown):
return self.current_axis_options[axis2_type].label, axis2_values, axis2_values_dropdown, self.current_axis_options[axis1_type].label, axis1_values, axis1_values_dropdown
xy_swap_args = [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown]
swap_xy_axes_button.click(swap_axes, inputs=xy_swap_args, outputs=xy_swap_args)
yz_swap_args = [y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown]
swap_yz_axes_button.click(swap_axes, inputs=yz_swap_args, outputs=yz_swap_args)
xz_swap_args = [x_type, x_values, x_values_dropdown, z_type, z_values, z_values_dropdown]
swap_xz_axes_button.click(swap_axes, inputs=xz_swap_args, outputs=xz_swap_args)
def fill(axis_type, csv_mode):
axis = self.current_axis_options[axis_type]
if axis.choices:
if csv_mode:
return list_to_csv_string(axis.choices()), gr.update()
else:
return gr.update(), axis.choices()
else:
return gr.update(), gr.update()
fill_x_button.click(fn=fill, inputs=[x_type, csv_mode], outputs=[x_values, x_values_dropdown])
fill_y_button.click(fn=fill, inputs=[y_type, csv_mode], outputs=[y_values, y_values_dropdown])
fill_z_button.click(fn=fill, inputs=[z_type, csv_mode], outputs=[z_values, z_values_dropdown])
def select_axis(axis_type, axis_values, axis_values_dropdown, csv_mode):
choices = self.current_axis_options[axis_type].choices
has_choices = choices is not None
if has_choices:
choices = choices()
if csv_mode:
if axis_values_dropdown:
axis_values = list_to_csv_string(list(filter(lambda x: x in choices, axis_values_dropdown)))
axis_values_dropdown = []
else:
if axis_values:
axis_values_dropdown = list(filter(lambda x: x in choices, csv_string_to_list_strip(axis_values)))
axis_values = ""
return (gr.Button.update(visible=has_choices), gr.Textbox.update(visible=not has_choices or csv_mode, value=axis_values),
gr.update(choices=choices if has_choices else None, visible=has_choices and not csv_mode, value=axis_values_dropdown))
x_type.change(fn=select_axis, inputs=[x_type, x_values, x_values_dropdown, csv_mode], outputs=[fill_x_button, x_values, x_values_dropdown])
y_type.change(fn=select_axis, inputs=[y_type, y_values, y_values_dropdown, csv_mode], outputs=[fill_y_button, y_values, y_values_dropdown])
z_type.change(fn=select_axis, inputs=[z_type, z_values, z_values_dropdown, csv_mode], outputs=[fill_z_button, z_values, z_values_dropdown])
def change_choice_mode(csv_mode, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown):
_fill_x_button, _x_values, _x_values_dropdown = select_axis(x_type, x_values, x_values_dropdown, csv_mode)
_fill_y_button, _y_values, _y_values_dropdown = select_axis(y_type, y_values, y_values_dropdown, csv_mode)
_fill_z_button, _z_values, _z_values_dropdown = select_axis(z_type, z_values, z_values_dropdown, csv_mode)
return _fill_x_button, _x_values, _x_values_dropdown, _fill_y_button, _y_values, _y_values_dropdown, _fill_z_button, _z_values, _z_values_dropdown
csv_mode.change(fn=change_choice_mode, inputs=[csv_mode, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown], outputs=[fill_x_button, x_values, x_values_dropdown, fill_y_button, y_values, y_values_dropdown, fill_z_button, z_values, z_values_dropdown])
def get_dropdown_update_from_params(axis, params):
val_key = f"{axis} Values"
vals = params.get(val_key, "")
valslist = csv_string_to_list_strip(vals)
return gr.update(value=valslist)
self.infotext_fields = (
(x_type, "X Type"),
(x_values, "X Values"),
(x_values_dropdown, lambda params: get_dropdown_update_from_params("X", params)),
(y_type, "Y Type"),
(y_values, "Y Values"),
(y_values_dropdown, lambda params: get_dropdown_update_from_params("Y", params)),
(z_type, "Z Type"),
(z_values, "Z Values"),
(z_values_dropdown, lambda params: get_dropdown_update_from_params("Z", params)),
)
return [x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size, csv_mode]
def run(self, p, x_type, x_values, x_values_dropdown, y_type, y_values, y_values_dropdown, z_type, z_values, z_values_dropdown, draw_legend, include_lone_images, include_sub_grids, no_fixed_seeds, margin_size, csv_mode):
if not no_fixed_seeds:
modules.processing.fix_seed(p)
if not opts.return_grid:
p.batch_size = 1
def process_axis(opt, vals, vals_dropdown):
if opt.label == 'Nothing':
return [0]
if opt.choices is not None and not csv_mode:
valslist = vals_dropdown
elif opt.prepare is not None:
valslist = opt.prepare(vals)
else:
valslist = csv_string_to_list_strip(vals)
if opt.type == int:
valslist_ext = []
for val in valslist:
m = re_range.fullmatch(val)
mc = re_range_count.fullmatch(val)
if m is not None:
start = int(m.group(1))
end = int(m.group(2))+1
step = int(m.group(3)) if m.group(3) is not None else 1
valslist_ext += list(range(start, end, step))
elif mc is not None:
start = int(mc.group(1))
end = int(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += [int(x) for x in np.linspace(start=start, stop=end, num=num).tolist()]
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == float:
valslist_ext = []
for val in valslist:
m = re_range_float.fullmatch(val)
mc = re_range_count_float.fullmatch(val)
if m is not None:
start = float(m.group(1))
end = float(m.group(2))
step = float(m.group(3)) if m.group(3) is not None else 1
valslist_ext += np.arange(start, end + step, step).tolist()
elif mc is not None:
start = float(mc.group(1))
end = float(mc.group(2))
num = int(mc.group(3)) if mc.group(3) is not None else 1
valslist_ext += np.linspace(start=start, stop=end, num=num).tolist()
else:
valslist_ext.append(val)
valslist = valslist_ext
elif opt.type == str_permutations:
valslist = list(permutations(valslist))
valslist = [opt.type(x) for x in valslist]
# Confirm options are valid before starting
if opt.confirm:
opt.confirm(p, valslist)
return valslist
x_opt = self.current_axis_options[x_type]
if x_opt.choices is not None and not csv_mode:
x_values = list_to_csv_string(x_values_dropdown)
xs = process_axis(x_opt, x_values, x_values_dropdown)
y_opt = self.current_axis_options[y_type]
if y_opt.choices is not None and not csv_mode:
y_values = list_to_csv_string(y_values_dropdown)
ys = process_axis(y_opt, y_values, y_values_dropdown)
z_opt = self.current_axis_options[z_type]
if z_opt.choices is not None and not csv_mode:
z_values = list_to_csv_string(z_values_dropdown)
zs = process_axis(z_opt, z_values, z_values_dropdown)
# this could be moved to common code, but unlikely to be ever triggered anywhere else
Image.MAX_IMAGE_PIXELS = None # disable check in Pillow and rely on check below to allow large custom image sizes
grid_mp = round(len(xs) * len(ys) * len(zs) * p.width * p.height / 1000000)
assert grid_mp < opts.img_max_size_mp, f'Error: Resulting grid would be too large ({grid_mp} MPixels) (max configured size is {opts.img_max_size_mp} MPixels)'
def fix_axis_seeds(axis_opt, axis_list):
if axis_opt.label in ['Seed', 'Var. seed']:
return [int(random.randrange(4294967294)) if val is None or val == '' or val == -1 else val for val in axis_list]
else:
return axis_list
if not no_fixed_seeds:
xs = fix_axis_seeds(x_opt, xs)
ys = fix_axis_seeds(y_opt, ys)
zs = fix_axis_seeds(z_opt, zs)
if x_opt.label == 'Steps':
total_steps = sum(xs) * len(ys) * len(zs)
elif y_opt.label == 'Steps':
total_steps = sum(ys) * len(xs) * len(zs)
elif z_opt.label == 'Steps':
total_steps = sum(zs) * len(xs) * len(ys)
else:
total_steps = p.steps * len(xs) * len(ys) * len(zs)
if isinstance(p, StableDiffusionProcessingTxt2Img) and p.enable_hr:
if x_opt.label == "Hires steps":
total_steps += sum(xs) * len(ys) * len(zs)
elif y_opt.label == "Hires steps":
total_steps += sum(ys) * len(xs) * len(zs)
elif z_opt.label == "Hires steps":
total_steps += sum(zs) * len(xs) * len(ys)
elif p.hr_second_pass_steps:
total_steps += p.hr_second_pass_steps * len(xs) * len(ys) * len(zs)
else:
total_steps *= 2
total_steps *= p.n_iter
image_cell_count = p.n_iter * p.batch_size
cell_console_text = f"; {image_cell_count} images per cell" if image_cell_count > 1 else ""
plural_s = 's' if len(zs) > 1 else ''
print(f"X/Y/Z plot will create {len(xs) * len(ys) * len(zs) * image_cell_count} images on {len(zs)} {len(xs)}x{len(ys)} grid{plural_s}{cell_console_text}. (Total steps to process: {total_steps})")
shared.total_tqdm.updateTotal(total_steps)
state.xyz_plot_x = AxisInfo(x_opt, xs)
state.xyz_plot_y = AxisInfo(y_opt, ys)
state.xyz_plot_z = AxisInfo(z_opt, zs)
# If one of the axes is very slow to change between (like SD model
# checkpoint), then make sure it is in the outer iteration of the nested
# `for` loop.
first_axes_processed = 'z'
second_axes_processed = 'y'
if x_opt.cost > y_opt.cost and x_opt.cost > z_opt.cost:
first_axes_processed = 'x'
if y_opt.cost > z_opt.cost:
second_axes_processed = 'y'
else:
second_axes_processed = 'z'
elif y_opt.cost > x_opt.cost and y_opt.cost > z_opt.cost:
first_axes_processed = 'y'
if x_opt.cost > z_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'z'
elif z_opt.cost > x_opt.cost and z_opt.cost > y_opt.cost:
first_axes_processed = 'z'
if x_opt.cost > y_opt.cost:
second_axes_processed = 'x'
else:
second_axes_processed = 'y'
grid_infotext = [None] * (1 + len(zs))
def cell(x, y, z, ix, iy, iz):
if shared.state.interrupted:
return Processed(p, [], p.seed, "")
pc = copy(p)
pc.styles = pc.styles[:]
x_opt.apply(pc, x, xs)
y_opt.apply(pc, y, ys)
z_opt.apply(pc, z, zs)
try:
res = process_images(pc)
except Exception as e:
errors.display(e, "generating image for xyz plot")
res = Processed(p, [], p.seed, "")
# Sets subgrid infotexts
subgrid_index = 1 + iz
if grid_infotext[subgrid_index] is None and ix == 0 and iy == 0:
pc.extra_generation_params = copy(pc.extra_generation_params)
pc.extra_generation_params['Script'] = self.title()
if x_opt.label != 'Nothing':
pc.extra_generation_params["X Type"] = x_opt.label
pc.extra_generation_params["X Values"] = x_values
if x_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed X Values"] = ", ".join([str(x) for x in xs])
if y_opt.label != 'Nothing':
pc.extra_generation_params["Y Type"] = y_opt.label
pc.extra_generation_params["Y Values"] = y_values
if y_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Y Values"] = ", ".join([str(y) for y in ys])
grid_infotext[subgrid_index] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
# Sets main grid infotext
if grid_infotext[0] is None and ix == 0 and iy == 0 and iz == 0:
pc.extra_generation_params = copy(pc.extra_generation_params)
if z_opt.label != 'Nothing':
pc.extra_generation_params["Z Type"] = z_opt.label
pc.extra_generation_params["Z Values"] = z_values
if z_opt.label in ["Seed", "Var. seed"] and not no_fixed_seeds:
pc.extra_generation_params["Fixed Z Values"] = ", ".join([str(z) for z in zs])
grid_infotext[0] = processing.create_infotext(pc, pc.all_prompts, pc.all_seeds, pc.all_subseeds)
return res
with SharedSettingsStackHelper():
processed = draw_xyz_grid(
p,
xs=xs,
ys=ys,
zs=zs,
x_labels=[x_opt.format_value(p, x_opt, x) for x in xs],
y_labels=[y_opt.format_value(p, y_opt, y) for y in ys],
z_labels=[z_opt.format_value(p, z_opt, z) for z in zs],
cell=cell,
draw_legend=draw_legend,
include_lone_images=include_lone_images,
include_sub_grids=include_sub_grids,
first_axes_processed=first_axes_processed,
second_axes_processed=second_axes_processed,
margin_size=margin_size
)
if not processed.images:
# It broke, no further handling needed.
return processed
z_count = len(zs)
# Set the grid infotexts to the real ones with extra_generation_params (1 main grid + z_count sub-grids)
processed.infotexts[:1+z_count] = grid_infotext[:1+z_count]
if not include_lone_images:
# Don't need sub-images anymore, drop from list:
processed.images = processed.images[:z_count+1]
if opts.grid_save:
# Auto-save main and sub-grids:
grid_count = z_count + 1 if z_count > 1 else 1
for g in range(grid_count):
# TODO: See previous comment about intentional data misalignment.
adj_g = g-1 if g > 0 else g
images.save_image(processed.images[g], p.outpath_grids, "xyz_grid", info=processed.infotexts[g], extension=opts.grid_format, prompt=processed.all_prompts[adj_g], seed=processed.all_seeds[adj_g], grid=True, p=processed)
if not include_sub_grids: # if not include_sub_grids then skip saving after the first grid
break
if not include_sub_grids:
# Done with sub-grids, drop all related information:
for _ in range(z_count):
del processed.images[1]
del processed.all_prompts[1]
del processed.all_seeds[1]
del processed.infotexts[1]
return processed