File size: 24,258 Bytes
371c363
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
import logging
import os
import re

import lora_patches
import network
import network_lora
import network_glora
import network_hada
import network_ia3
import network_lokr
import network_full
import network_norm
import network_oft

import torch
from typing import Union

from modules import shared, devices, sd_models, errors, scripts, sd_hijack
import modules.textual_inversion.textual_inversion as textual_inversion

from lora_logger import logger

module_types = [
    network_lora.ModuleTypeLora(),
    network_hada.ModuleTypeHada(),
    network_ia3.ModuleTypeIa3(),
    network_lokr.ModuleTypeLokr(),
    network_full.ModuleTypeFull(),
    network_norm.ModuleTypeNorm(),
    network_glora.ModuleTypeGLora(),
    network_oft.ModuleTypeOFT(),
]


re_digits = re.compile(r"\d+")
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
re_compiled = {}

suffix_conversion = {
    "attentions": {},
    "resnets": {
        "conv1": "in_layers_2",
        "conv2": "out_layers_3",
        "norm1": "in_layers_0",
        "norm2": "out_layers_0",
        "time_emb_proj": "emb_layers_1",
        "conv_shortcut": "skip_connection",
    }
}


def convert_diffusers_name_to_compvis(key, is_sd2):
    def match(match_list, regex_text):
        regex = re_compiled.get(regex_text)
        if regex is None:
            regex = re.compile(regex_text)
            re_compiled[regex_text] = regex

        r = re.match(regex, key)
        if not r:
            return False

        match_list.clear()
        match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
        return True

    m = []

    if match(m, r"lora_unet_conv_in(.*)"):
        return f'diffusion_model_input_blocks_0_0{m[0]}'

    if match(m, r"lora_unet_conv_out(.*)"):
        return f'diffusion_model_out_2{m[0]}'

    if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
        return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"

    if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
        suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
        return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"

    if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
        suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
        return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"

    if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
        suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
        return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"

    if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
        return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"

    if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
        return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"

    if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
        if is_sd2:
            if 'mlp_fc1' in m[1]:
                return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
            elif 'mlp_fc2' in m[1]:
                return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
            else:
                return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"

        return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"

    if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
        if 'mlp_fc1' in m[1]:
            return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
        elif 'mlp_fc2' in m[1]:
            return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
        else:
            return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"

    return key


def assign_network_names_to_compvis_modules(sd_model):
    network_layer_mapping = {}

    if shared.sd_model.is_sdxl:
        for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
            if not hasattr(embedder, 'wrapped'):
                continue

            for name, module in embedder.wrapped.named_modules():
                network_name = f'{i}_{name.replace(".", "_")}'
                network_layer_mapping[network_name] = module
                module.network_layer_name = network_name
    else:
        for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
            network_name = name.replace(".", "_")
            network_layer_mapping[network_name] = module
            module.network_layer_name = network_name

    for name, module in shared.sd_model.model.named_modules():
        network_name = name.replace(".", "_")
        network_layer_mapping[network_name] = module
        module.network_layer_name = network_name

    sd_model.network_layer_mapping = network_layer_mapping


def load_network(name, network_on_disk):
    net = network.Network(name, network_on_disk)
    net.mtime = os.path.getmtime(network_on_disk.filename)

    sd = sd_models.read_state_dict(network_on_disk.filename)

    # this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
    if not hasattr(shared.sd_model, 'network_layer_mapping'):
        assign_network_names_to_compvis_modules(shared.sd_model)

    keys_failed_to_match = {}
    is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping

    matched_networks = {}
    bundle_embeddings = {}

    for key_network, weight in sd.items():
        key_network_without_network_parts, _, network_part = key_network.partition(".")

        if key_network_without_network_parts == "bundle_emb":
            emb_name, vec_name = network_part.split(".", 1)
            emb_dict = bundle_embeddings.get(emb_name, {})
            if vec_name.split('.')[0] == 'string_to_param':
                _, k2 = vec_name.split('.', 1)
                emb_dict['string_to_param'] = {k2: weight}
            else:
                emb_dict[vec_name] = weight
            bundle_embeddings[emb_name] = emb_dict

        key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
        sd_module = shared.sd_model.network_layer_mapping.get(key, None)

        if sd_module is None:
            m = re_x_proj.match(key)
            if m:
                sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)

        # SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
        if sd_module is None and "lora_unet" in key_network_without_network_parts:
            key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
            sd_module = shared.sd_model.network_layer_mapping.get(key, None)
        elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
            key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
            sd_module = shared.sd_model.network_layer_mapping.get(key, None)

            # some SD1 Loras also have correct compvis keys
            if sd_module is None:
                key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
                sd_module = shared.sd_model.network_layer_mapping.get(key, None)

        # kohya_ss OFT module
        elif sd_module is None and "oft_unet" in key_network_without_network_parts:
            key = key_network_without_network_parts.replace("oft_unet", "diffusion_model")
            sd_module = shared.sd_model.network_layer_mapping.get(key, None)

        # KohakuBlueLeaf OFT module
        if sd_module is None and "oft_diag" in key:
            key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
            key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
            sd_module = shared.sd_model.network_layer_mapping.get(key, None)

        if sd_module is None:
            keys_failed_to_match[key_network] = key
            continue

        if key not in matched_networks:
            matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)

        matched_networks[key].w[network_part] = weight

    for key, weights in matched_networks.items():
        net_module = None
        for nettype in module_types:
            net_module = nettype.create_module(net, weights)
            if net_module is not None:
                break

        if net_module is None:
            raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")

        net.modules[key] = net_module

    embeddings = {}
    for emb_name, data in bundle_embeddings.items():
        embedding = textual_inversion.create_embedding_from_data(data, emb_name, filename=network_on_disk.filename + "/" + emb_name)
        embedding.loaded = None
        embeddings[emb_name] = embedding

    net.bundle_embeddings = embeddings

    if keys_failed_to_match:
        logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}")

    return net


def purge_networks_from_memory():
    while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0:
        name = next(iter(networks_in_memory))
        networks_in_memory.pop(name, None)

    devices.torch_gc()


def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
    emb_db = sd_hijack.model_hijack.embedding_db
    already_loaded = {}

    for net in loaded_networks:
        if net.name in names:
            already_loaded[net.name] = net
        for emb_name, embedding in net.bundle_embeddings.items():
            if embedding.loaded:
                emb_db.register_embedding_by_name(None, shared.sd_model, emb_name)

    loaded_networks.clear()

    networks_on_disk = [available_network_aliases.get(name, None) for name in names]
    if any(x is None for x in networks_on_disk):
        list_available_networks()

        networks_on_disk = [available_network_aliases.get(name, None) for name in names]

    failed_to_load_networks = []

    for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)):
        net = already_loaded.get(name, None)

        if network_on_disk is not None:
            if net is None:
                net = networks_in_memory.get(name)

            if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
                try:
                    net = load_network(name, network_on_disk)

                    networks_in_memory.pop(name, None)
                    networks_in_memory[name] = net
                except Exception as e:
                    errors.display(e, f"loading network {network_on_disk.filename}")
                    continue

            net.mentioned_name = name

            network_on_disk.read_hash()

        if net is None:
            failed_to_load_networks.append(name)
            logging.info(f"Couldn't find network with name {name}")
            continue

        net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
        net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
        net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
        loaded_networks.append(net)

        for emb_name, embedding in net.bundle_embeddings.items():
            if embedding.loaded is None and emb_name in emb_db.word_embeddings:
                logger.warning(
                    f'Skip bundle embedding: "{emb_name}"'
                    ' as it was already loaded from embeddings folder'
                )
                continue

            embedding.loaded = False
            if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape:
                embedding.loaded = True
                emb_db.register_embedding(embedding, shared.sd_model)
            else:
                emb_db.skipped_embeddings[name] = embedding

    if failed_to_load_networks:
        sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks))

    purge_networks_from_memory()


def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
    weights_backup = getattr(self, "network_weights_backup", None)
    bias_backup = getattr(self, "network_bias_backup", None)

    if weights_backup is None and bias_backup is None:
        return

    if weights_backup is not None:
        if isinstance(self, torch.nn.MultiheadAttention):
            self.in_proj_weight.copy_(weights_backup[0])
            self.out_proj.weight.copy_(weights_backup[1])
        else:
            self.weight.copy_(weights_backup)

    if bias_backup is not None:
        if isinstance(self, torch.nn.MultiheadAttention):
            self.out_proj.bias.copy_(bias_backup)
        else:
            self.bias.copy_(bias_backup)
    else:
        if isinstance(self, torch.nn.MultiheadAttention):
            self.out_proj.bias = None
        else:
            self.bias = None


def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.GroupNorm, torch.nn.LayerNorm, torch.nn.MultiheadAttention]):
    """

    Applies the currently selected set of networks to the weights of torch layer self.

    If weights already have this particular set of networks applied, does nothing.

    If not, restores orginal weights from backup and alters weights according to networks.

    """

    network_layer_name = getattr(self, 'network_layer_name', None)
    if network_layer_name is None:
        return

    current_names = getattr(self, "network_current_names", ())
    wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)

    weights_backup = getattr(self, "network_weights_backup", None)
    if weights_backup is None and wanted_names != ():
        if current_names != ():
            raise RuntimeError("no backup weights found and current weights are not unchanged")

        if isinstance(self, torch.nn.MultiheadAttention):
            weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
        else:
            weights_backup = self.weight.to(devices.cpu, copy=True)

        self.network_weights_backup = weights_backup

    bias_backup = getattr(self, "network_bias_backup", None)
    if bias_backup is None:
        if isinstance(self, torch.nn.MultiheadAttention) and self.out_proj.bias is not None:
            bias_backup = self.out_proj.bias.to(devices.cpu, copy=True)
        elif getattr(self, 'bias', None) is not None:
            bias_backup = self.bias.to(devices.cpu, copy=True)
        else:
            bias_backup = None
        self.network_bias_backup = bias_backup

    if current_names != wanted_names:
        network_restore_weights_from_backup(self)

        for net in loaded_networks:
            module = net.modules.get(network_layer_name, None)
            if module is not None and hasattr(self, 'weight'):
                try:
                    with torch.no_grad():
                        updown, ex_bias = module.calc_updown(self.weight)

                        if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
                            # inpainting model. zero pad updown to make channel[1]  4 to 9
                            updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))

                        self.weight += updown
                        if ex_bias is not None and hasattr(self, 'bias'):
                            if self.bias is None:
                                self.bias = torch.nn.Parameter(ex_bias)
                            else:
                                self.bias += ex_bias
                except RuntimeError as e:
                    logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
                    extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1

                continue

            module_q = net.modules.get(network_layer_name + "_q_proj", None)
            module_k = net.modules.get(network_layer_name + "_k_proj", None)
            module_v = net.modules.get(network_layer_name + "_v_proj", None)
            module_out = net.modules.get(network_layer_name + "_out_proj", None)

            if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
                try:
                    with torch.no_grad():
                        updown_q, _ = module_q.calc_updown(self.in_proj_weight)
                        updown_k, _ = module_k.calc_updown(self.in_proj_weight)
                        updown_v, _ = module_v.calc_updown(self.in_proj_weight)
                        updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
                        updown_out, ex_bias = module_out.calc_updown(self.out_proj.weight)

                        self.in_proj_weight += updown_qkv
                        self.out_proj.weight += updown_out
                    if ex_bias is not None:
                        if self.out_proj.bias is None:
                            self.out_proj.bias = torch.nn.Parameter(ex_bias)
                        else:
                            self.out_proj.bias += ex_bias

                except RuntimeError as e:
                    logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
                    extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1

                continue

            if module is None:
                continue

            logging.debug(f"Network {net.name} layer {network_layer_name}: couldn't find supported operation")
            extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1

        self.network_current_names = wanted_names


def network_forward(module, input, original_forward):
    """

    Old way of applying Lora by executing operations during layer's forward.

    Stacking many loras this way results in big performance degradation.

    """

    if len(loaded_networks) == 0:
        return original_forward(module, input)

    input = devices.cond_cast_unet(input)

    network_restore_weights_from_backup(module)
    network_reset_cached_weight(module)

    y = original_forward(module, input)

    network_layer_name = getattr(module, 'network_layer_name', None)
    for lora in loaded_networks:
        module = lora.modules.get(network_layer_name, None)
        if module is None:
            continue

        y = module.forward(input, y)

    return y


def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
    self.network_current_names = ()
    self.network_weights_backup = None
    self.network_bias_backup = None


def network_Linear_forward(self, input):
    if shared.opts.lora_functional:
        return network_forward(self, input, originals.Linear_forward)

    network_apply_weights(self)

    return originals.Linear_forward(self, input)


def network_Linear_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)

    return originals.Linear_load_state_dict(self, *args, **kwargs)


def network_Conv2d_forward(self, input):
    if shared.opts.lora_functional:
        return network_forward(self, input, originals.Conv2d_forward)

    network_apply_weights(self)

    return originals.Conv2d_forward(self, input)


def network_Conv2d_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)

    return originals.Conv2d_load_state_dict(self, *args, **kwargs)


def network_GroupNorm_forward(self, input):
    if shared.opts.lora_functional:
        return network_forward(self, input, originals.GroupNorm_forward)

    network_apply_weights(self)

    return originals.GroupNorm_forward(self, input)


def network_GroupNorm_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)

    return originals.GroupNorm_load_state_dict(self, *args, **kwargs)


def network_LayerNorm_forward(self, input):
    if shared.opts.lora_functional:
        return network_forward(self, input, originals.LayerNorm_forward)

    network_apply_weights(self)

    return originals.LayerNorm_forward(self, input)


def network_LayerNorm_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)

    return originals.LayerNorm_load_state_dict(self, *args, **kwargs)


def network_MultiheadAttention_forward(self, *args, **kwargs):
    network_apply_weights(self)

    return originals.MultiheadAttention_forward(self, *args, **kwargs)


def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
    network_reset_cached_weight(self)

    return originals.MultiheadAttention_load_state_dict(self, *args, **kwargs)


def list_available_networks():
    available_networks.clear()
    available_network_aliases.clear()
    forbidden_network_aliases.clear()
    available_network_hash_lookup.clear()
    forbidden_network_aliases.update({"none": 1, "Addams": 1})

    os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)

    candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
    candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
    for filename in candidates:
        if os.path.isdir(filename):
            continue

        name = os.path.splitext(os.path.basename(filename))[0]
        try:
            entry = network.NetworkOnDisk(name, filename)
        except OSError:  # should catch FileNotFoundError and PermissionError etc.
            errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
            continue

        available_networks[name] = entry

        if entry.alias in available_network_aliases:
            forbidden_network_aliases[entry.alias.lower()] = 1

        available_network_aliases[name] = entry
        available_network_aliases[entry.alias] = entry


re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")


def infotext_pasted(infotext, params):
    if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
        return  # if the other extension is active, it will handle those fields, no need to do anything

    added = []

    for k in params:
        if not k.startswith("AddNet Model "):
            continue

        num = k[13:]

        if params.get("AddNet Module " + num) != "LoRA":
            continue

        name = params.get("AddNet Model " + num)
        if name is None:
            continue

        m = re_network_name.match(name)
        if m:
            name = m.group(1)

        multiplier = params.get("AddNet Weight A " + num, "1.0")

        added.append(f"<lora:{name}:{multiplier}>")

    if added:
        params["Prompt"] += "\n" + "".join(added)


originals: lora_patches.LoraPatches = None

extra_network_lora = None

available_networks = {}
available_network_aliases = {}
loaded_networks = []
loaded_bundle_embeddings = {}
networks_in_memory = {}
available_network_hash_lookup = {}
forbidden_network_aliases = {}

list_available_networks()