
TOWARDS BENCHMARK DATASETS FOR MACHINE LEARNING
BASED WEBSITE PHISHING DETECTION: AN EXPERIMENTAL

STUDY

A PREPRINT

Abdelhakim Hannousse
Department of Computer Science

Universté 8 Mai 1945, Guelma
BP 401, Guelma 24000, Algeria

hannousse.abdelhakim@univ-guelma.dz

Salima Yahiouche
Department of Computer Science

LRS laboratory, Badji Mokhtar University
BP 12, Annaba 23000, Algeria

yahiouche.salima@univ-annaba.dz

October 27, 2020

ABSTRACT

The increasing popularity of the Internet led to a substantial growth of e-commerce. However, such
activities have main security challenges primary caused by cyberfraud and identity theft. Therefore,
checking the legitimacy of visited web pages is a crucial task to secure costumers’ identities and
prevent phishing attacks. The use of machine learning is widely recognized as a promising solution.
The literature is rich with studies that use machine learning techniques for website phishing detection.
However, their findings are dataset dependent and are far away from generalization. Two main reasons
for this unfortunate state are the impracticable replication and absence of appropriate benchmark
datasets for fair evaluation of systems. Moreover, phishing tactics are continuously evolving and
proposed systems are not following those rapid changes. In this paper, we present a general scheme
for building reproducible and extensible datasets for website phishing detection. The aim is to
(1) enable comparison of systems using different features, (2) overtake the short-lived nature of
phishing websites, and (3) keep track of the evolution of phishing tactics. For experimenting the
proposed scheme, we start by adopting a refined classification of website phishing features and we
systematically select a total of 87 commonly recognized ones, we classify them, and we made them
subjects for relevance and runtime analysis. We use the collected set of features to build a dataset
in light of the proposed scheme. Thereafter, we use a conceptual replication approach to check
the genericity of former findings for the built dataset. Specifically, we evaluate the performance of
classifiers on individual classes and on combinations of classes, we investigate different combinations
of models, and we explore the effects of filter and wrapper methods on the selection of discriminative
features. The results show that Random Forest is the most predictive classifier. Features gathered
from external services are found the most discriminative where features extracted from web page
contents are found less distinguishing. Besides external service based features, some web page
content features are found time consuming and not suitable for runtime detection. The use of hybrid
features provided the best accuracy score of 96.61%. By investigating different feature selection
methods, filter-based ranking together with incremental removal of less important features improved
the performance up to 96.83% better than wrapper methods.

Keywords Website phishing attacks · Machine learning · Dataset benchmarking · Information security

1 Introduction

Phishing has been recognized as the easiest and widespread cybercriminality threat. Hackers do not need to crack any
complex cypher code neither breach a hard firewall. Instead, they simply send emotional, critical or sensible e-mails
urging recipients to introduce their personal credentials by clicking on a link. Recipients are then redirected to fake web

ar
X

iv
:2

01
0.

12
84

7v
1

 [
cs

.C
R

]
 2

4
O

ct
 2

02
0

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

pages that look very similar to those targeted authentic websites. Consequently, recipients are trapped in fake websites
like fishes. Recently, hackers start doing their jobs very professionally, the recent phishing activity trends report [2]
showed that 78% of all phishing websites use SSL protection that was exclusively used by authentic websites. Wandera
stated in its 2020 Mobile Threat Landscape Report [25] that a new phishing website launches every 20 seconds. All
these facts advocate deep research studies on the detection and prevention of such cybercriminality attacks.

The detection of phishing attacks is mainly mapped into a classification problem. Therefore, machine learning
techniques are considered as promising solutions. However, three major aspects need to be considered when adopting
such techniques: (1) selection of efficient classifiers, (2) usage of distinguishing features, and (3) collection of
representative dataset samples for training. Machine learning based systems developed for phishing detection are mostly
classified into two main categories: content-based and URL-based systems. In the former case, phishing is detected by
active or passive examination of the content of visited web pages. In the latter case, only URLs of visited web pages are
examined.

Recently, Das et al. have conducted a systematic review of published studies in the period 2010-2017 that used
machine learning techniques for website phishing detection [6]. It was found that SVM is the most used classifier for
content-based phishing detection, followed by Logistic Regression, Decision Tree and Naïve Bayes. For URL-based
detection, Decision Tree came first, followed by Random Forest, SVM, and Logistic Regression. This shows divergent
views on which classifier is more predictive for each class of features. However, the results in [6] are only based on
statistical analysis and do not amount to be a decisive fact.

Moreover, a large number of distinct features are proposed for feeding classifiers. Das et al. rated features according
to the number of studies stating them [6]. The use of IP addresses instead of domain names was found the most
adopted feature for URL-based approaches, followed by length of URLs, frequency of special characters and number of
dots. Most used features extracted from web page contents were the number of internal/external links, term frequency,
HTML tag attributes and the number of various tag types. Chiew et al. have advocated the exclusive use of URLs for
phishing detection to reduce the risk of accessing harmful web pages [4]. Jain et al. used only content-based features
and suggested the exclusion of external-based features for their time consuming [13]. This shows again the lack of
common agreement on which class of features is suitable for the detection of phishing websites. Dou et al. in [7] stated
that despite being discriminative, selected features must also be robust. Therefore, even if features are distinguishing
enough, they must not be manipulated easily by hackers. In addition, the time taken for their extraction is also very
important to avoid any delay in the real time detection of instances.

Furthermore, the majority of contemporary studies use self-collected datasets from different sources. The UCI
repository1 also provides a pre-elaborated dataset for phishing detection. However, those datasets are not suitable for
replication and experimentation with new features. This is due to two primary causes:

1. Absence of URLs used for building the datasets.
2. The short-lived nature of phishing websites.

The above causes prevent the quality analysis of used datasets and make the comparison of systems within a same
dataset quasi impossible. Hence, proposed systems can easily be considered as dataset dependent and the findings
cannot be generalized. Therefore, the presence of benchmark datasets becomes a necessity. To alleviate this problem,
the contribution of the present paper are as follows:

1. Propose and experiment a construction scheme of reproducible and extensible datasets for web page phishing
detection. A dataset is built in light of the proposed scheme which may serve as a benchmark for comparing
systems.

2. Propose a refined classification of features for phishing detection. Commonly used features are systematically
collected from recent reviews and classified following the proposed classification scheme.

3. Examine former findings regarding the performance of classifiers and the suitability of features for runtime
detection.

4. Experiment different feature selection methods.
5. Identify the model that provides the best accuracy for the collected dataset.

The remaining of the paper is organized as follows. Section 2 discusses related works. Section 3 describes the proposed
scheme for the collection of reproducible and extensible datasets for website phishing detection. Section 4 experiments
the proposed guidelines through the collection of a dataset sample that is used for the experimentations conducted in

1UCI repository: https://archive.ics.uci.edu/

2

https://archive.ics.uci.edu/

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

the study. Section 5 describes the methodology adopted for conducting the experiments within the collected dataset.
Section 6 presents the obtained results, section 7 discusses the results and draws some conclusions, and section 8
concludes the paper and shows some perspectives.

2 Related Work

The literature is rich with studies proposing machine learning techniques for website phishing detection, and the number
of papers increases continuously every year. Figure 1 shows the number of publications per year in the last decade. The
results has been retrieved from Dimensions research grants database2.

0

50

100

150

200

250

300

350

400

450

2010 2012 2014 2016 2018 2020

#	
PU

BL
IC
AT
IO
N
S

YEAR

Figure 1: Number of publications per year focusing on the use of machine learning for the detection of phishing
websites. The results are taken the 16th of September 2020 from https://app.dimensions.ai using the following
query search: "website" AND "phishing detection" AND "machine learning".

Dou et al. in [7] have conducted a systematic review on machine learning based phishing detection systems. The
authors noticed that runtime performance was neglected by most systems, URL and content-based features are the
most commonly used, and studies that incorporate more features have better performance results. Das et al. in [6] have
conducted a similar review but also ranked classifiers regarding the number of studies adopting them. However, those
conclusions are only derived from statistical analysis of examined studies. Contrary to these works, the aim of the
present study is to check the validity of those results experimentally.

Few are the studies that use merely content-based features. Jain et al. in [13] extracted 12 features based on the nature
of hyperlinks in the content of web pages. The experimentation of several classifiers showed that logistic regression
has the best accuracy score. However, most of found studies in the literature use hybrid set of features. Jain et al. in
[12] used an SVM trained on a mixed set of URL and third party based features. The experimentation showed more
than 90% of accuracy in detecting phishing websites. Srinivasa-Rao et al. [21] used random forest classifier trained on
35 URL based features and term frequency and inverse document frequency (TF-IDF) based features extracted from
the content of web pages. The model has achieved an accuracy up to 98.25%. Shirazi et al. [24] used only 7 features
extracted from both URLs and web page contents. The authors experimented the performance of several classifiers.
Best results were obtained by a gradient boosting classifier with 97% of accuracy. Zaini et al. [27] selected 15 features
from different classes. They experimented five machine learning classifiers and found that random forest achieved the
highest detection accuracy of 94.79%. In this study, we experiment the importance of individual class of features and
all the different possible combinations of feature classes.

Several techniques are used for the selection of discriminative features. These techniques include the use of ranking
filters and wrapper algorithms. Korkmaz et al. [16] identified 120 features used in existing studies. Those features are
classified into three separate classes. Like previously discussed works [7, 6], features were compared regarding the
number of studies adopting them. Additionally, features were ranked using chi-square, f-statistic, mutual information,
and Pearson correlation but only one class of features were tested. Rajab et al. [20] proposed a new ranking metric of
features by combining estimated ranks by information gain and chi-square algorithms. The authors experimented the
results within the UCI dataset and two classifiers, namely C4.5 and JRIP. The results showed an improvement in the

2Dimensions research grants database: https://app.dimensions.ai

3

 https://app.dimensions.ai
 https://app.dimensions.ai

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

accuracy of the C4.5 classifier that attains more than 95.5%. Nagaraj et al. [18] started with 21 features and reduced the
number to 6 using a threshold adopted for the outputs of Boruta wrapper algorithm ranking [17]. In this paper, we also
experiment the selection of features using ranking filters like in [16] but we take into account all classes of features. We
also experiment different wrapper algorithms for features selection including the Boruta wrapper algorithm used in [18].

Some studies tried to combine classifiers to improve the accuracy in the detection of phishing websites. Nagaraj et
al. [18] developed a two fold ensemble learner by using the outputs of a random forest classifier to feed a neural network
classifier. Sameen et al. [23] designed an ensemble machine learning based on majority voting. The authors of [23]
adopted 17 features extracted from URLs and used 10 machine learning classifiers within a multi-threaded technique to
speed up the process and enable real time detection. The proposed model achieved 98% in term of accuracy. In this
study, we experiment the effect of different combinations of classifiers including stacking as in [18] and majority voting
as in [23].

3 Scheme for constructing reproducible and extensible datasets

Benchmark datasets for website phishing detection are not available. This is due to the fact that phishing websites are
short-time living and dead URLs cannot be used in content-based analysis. Besides, most available datasets contain
only the values of experimented features without referring to used URLs. This prevents replication and experimenting
those datasets with different features. Moreover, El-Aassal et al. [8] evaluated the impact of the ratio between phishing
and legitimate samples in datasets. The experiments showed that imbalanced datasets may decline the performance
of classifiers from 5.9% to 42% in term of F-1 score. For such reasons, we propose the following guidelines for
the construction of reproducible and extensible datasets for website phishing detection. Those datasets may serve as
benchmarks in the domain. The following proposed guidelines are deduced from current common and best practices in
the field:

G1: Start by collecting URLs preferably from different sources. It is found in [7] that a large number of studies collect
legitimate websites from Alexa3. However, Alexa only proposes top ranked domains without referring neither
to sub-domains nor paths. Therefore, for the homogeneity of the dataset, one cannot use Alexa lists directly
especially when features concerned with subdomains and paths are adopted. To deal with this issue, it is
proposed in [6] to use the list of top domains provided by Alexa as seeds to crawl more generative URLs. For
the diversity of URLs, one may use URLs from Alexa categories as used in [6, 8].

G2: Collected URLs need to be preprocessed. The preprocessing step includes: (1) remove duplicate URLs, (2) avoid
using much URLs from the same domain since those URLs are likely to have similar feature values. This
enables obtaining more representative samples.

G3: When extracting features, keep track of used URLs either by using them as an index for the dataset or saving them
in a separate file and made them available for users. This enables the reproduction of URL-based features and
extend the main dataset with more features.

G4: To overcome the short-lived nature of phishing web pages, one can use available tools to generate the Document
Object Model (DOM) tree of pages and save them in the dataset or in a separate dataset indexed by URLs. This
enables experimenting and extending the main dataset with more content-based features even with dead links.

G5: Final datasets should be shuffled and balanced evading the issue reported in [8] regarding the impact of unbalanced
datasets on the performance of classifiers.

G6: Collected datasets should be dated. Therefore, systems can be tested on datasets collected in different and
reasonable time spans checking the efficiency of models and the significance of adopted features. This also
enables keeping track of phishing tactics evolution over time.

4 Dataset preparation

In this section, we use the proposed scheme in section 3 for the collection of a dataset that is used later for the
experiments conducted in this study. Hence, we collected a reasonable in size dataset of 11430 phishing and legitimate
URLs. Figure 2 depicts the overall process adopted for the construction of the dataset.

3Alexa website: https://www.alexa.com/

4

https://www.alexa.com/

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

Preprocessing

Yandex
(36400)

Alexa
(500)

Phishtank
(16167)

Openphish
(10668)

Legitimate webpage sources

Phishing webpage sources

URL-based feature
extraction

Content-based
feature extraction

External service
feature extraction

Feature Extraction

dataset (B)
CSV format

Shuffling
&

Balancing

revised and dated
dataset (B)
CSV format

Yandex
Alexa

Phishtank
Openphish

2998
2717

1602
6210

Legitimate Phishing

Yandex
Alexa

Phishtank
Openphish

2998
2717

1518
4197

Legitimate Phishing

Total 5715 Total 5715

Feature vector

Crawling

Alexa
(6000)

dataset (A)
(URL, DOM obj, src)

Pickle format

HTML DOM
generation

G1

G2 G3, G4 G5

G6

Figure 2: Dataset construction process.

4.1 URL collection

Legitimate web page URLs are collected from Alexa and Yandex 4. In the first case, the first 500 top domains provided
by Alexa for free are used. Those top domains are adopted as seeds for crawling 12 URLs per domain. Therefore, we
ended up with 6000 URLs from Alexa. In the second case, we used still active legitimate URLs provided by Sahingoz
et al. [22]. Those legitimate URLs were originally collected from Yandex. For phishing URLs, both lists of URLs
provided by Phishtank5 and Openphish6 are used. Collected URLs are preprocessed where all duplicate and dead URLs
are removed and maximum of 12 URLs with the same domain name are kept. Approved URLs are stored keeping track
of their sources (i.e., Alexa, Phishtank, etc.). Afterwards, HTML Document Object Model (DOM) trees are generated
for all approved URLs and stored in a supplementary dataset (dataset A in Figure 2). HTML DOM Parser for Python7

is used for this task and dataset A is stored in a separate pickle file. DOM trees enable the exploration of the structures
and contents of URL web pages in an efficient way, where pickle8 is a module that implements binary protocols for
serializing and de-serializing complex Python objects.

4.2 Feature extraction

As the aim of the study is to experiment a maximum number of popular features, we examined recent reviews analyzing
the usage frequency of features used for website phishing detection. The list of examined reviews are given in Table 1.
The examination showed that several features are given with different names and/or different measures (e.g., ratio or
absolute number). To alleviate these issues, we iteratively executed the following two-step process and we ended up
with 87 features: (1) identify and remove duplicate features, and (2) adopt a single and commonly used measurement
for each feature.

Table 1: List of reviews used for collecting features

Reviews Year #Features

Korkmaz et al. [16] 2020 120
Das et al. [6] 2020 88
El-Assal et al. [8] 2020 83
Althobaiti et al. [1] 2019 40

4Yandex search engine: https://tech.yandex.com.tr/xml/
5Phishtank website: https://www.phishtank.com/
6Openphish website: https://openphish.com/
7HTML DOM Parser package for Python: http://thehtmldom.sourceforge.net/
8Python pickle module: https://docs.python.org/3/library/pickle.html

5

https://tech.yandex.com.tr/xml/
https://www.phishtank.com/
https://openphish.com/
http://thehtmldom.sourceforge.net/
https://docs.python.org/3/library/pickle.html

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

The examination of the literature showed different classification schemes of website phishing features. Figure 3 depicts
a feature diagram showing common, alternative and optional class of features adopted by existing antiphishing systems.
This classification is used to categorize the features examined in this study.

Internal

Website phishing Features

URL

External

Content (HTML)

StructuralStatisticalHyperlinks Abnormal contents

I E

IC IU

IU1IU2IC1 IC2

Mandatory
Optional
Or
Optionally requires

Legend:

Figure 3: Classification of antiphishing features.

Contemporary machine learning-based antiphishing systems are found using internal with or without external features.
This is modeled in Figure 3 by a mandatory relationship with internal features and an optional relationship with external
features. Internal features (I) are extracted either directly from URLs (IU) or from HTML contents of their corespondent
web pages (IC). Hybrid systems use collection of features from both IC and IU. This is modeled by the Or relationship
in Figure 3. External features (E) are used as complementary and often considered as URL-based features. This is due
to the fact that they are attained through querying external services with URLs or URL domains.

In this study, the feature extraction process is fully automated by developing a Python script that takes a web page URL
as input and generates its correspondent feature vector of size 87x1. For keeping track of the source URL and made it
available for further usage, we used the input URL as an index for the generated dataset. The subsequent subsections
describe the different features of each class presented in Figure 3.

URL-based features

URL-based features (IU) are obtained by simply analyzing the text of URLs. Features of this class can also be divided
into structural and statistical features. Structural-based features (IU1) are concerned with the presence, position and
nature of URL base elements (i.e., protocol, domain, subdomans, path, port, and top level domain). Examples of
such features are the presence of ports, use of ’https’ protocol, and position of the top level domain (TLD). Some
structural-based features may require the use of external services for their estimation. Examples of such features
are checking for the suspiciousness of TLDs and brand domains. Alternatively, predefined lists of required data
can be collected and used for each feature. This justifies the optionally requires relationship between structural and
external-based features in Figure 3. Statistical-based features (IU2) are concerned with the number or distribution of
URL base elements, specific words, or characters in the text of URLs. Examples of those features are the number of
dots and subdomains and length of words. The set of experimented features of this class are given in Table 2 together
with their type of values, subclasses, and intuitions behind their adoption. In the table, IU1∗ refers to structural features
that may require external services for their estimation.

Table 2: URL-based features for website phishing detection

Index Feature Type Class Intuition

f1-2 URL parts
lengths

Int IU2 Long URLs are used to hide real domains and subdomains. We consider: full
URL length (f1) and hostname length (f2).

f3 IP 0/1 IU1 IP addresses are used in hostnames to hide the identity of websites. IPs can also
be used without dots or hexadecimal encoded. Presence of IPs in any format in
hostnames is considered as phishing indicator.

f4-20 Special Char-
acters

Int IU2 Special characters are used to deceive novice users of real domains and subdo-
mains. We consider the number of occurrences of the following characters: ’.’
(f4), ’-’ (f5), ’@’ (f6) , ’?’ (f7), ’&’ (f8), ’|’ (f9), ’=’ (f10), ’_’ (f11), ’˜’ (f12),
’%’ (f13), ’/’ (f14), ’*’ (f15), ’:’ (f16), ’,’ (f17), ’;’ (f18), ’$’ (f19), ’%20’ or
space (f20).

6

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

f21-24 #common
terms

Int IU2 Common terms in URLs such as ’www’ (f21), ’.com’ (f22), ’http’ (f23) and
’//’ (f24) are used only once in legitimate URLs where it is observed that they
are used more than once in phishing URLs.

f25 HTTPS
token

0/1 IU1 Most phishing websites do not provide any security facilities compared with
legitimate ones. Thus, the use of HTTPS is a legitimacy indicator.

f26-27 Ratio of
digits

Float IU2 High number of digits in URLs is considered as a phishing indicator. We
consider ratio of digits in full URLs (f26) and hostnames (f27).

f28 Punycode 0/1 IU1 Punycode is used in domain names to replace some ASCIIs with Unicode
characters. URLs will then look legitimate where they refer to different websites.
URLs with punycodes are considered phishing.

f29 Port 0/1 IU1 Port numbers are rarely used in legitimate URLs. Therefore, URLs with port
indicator are considered phishing.

f30-31 TLD po-
sition

0/1 IU1 In well-formed URLs, top-level domains (TLDs) appear only before the path.
When TLDs appear in the path (f30) or in the subdomain part (f31), the URL is
considered phishing.

f32 Abnormal
subdomains

0/1 IU1 Phishing URLs may use the following pattern ’w[w]?[0-9]*’ instead of ’www’
to deceive users. Thus, URLs with subdomains matching such pattern are
considered phishing.

f33 #subdomains Int IU2 Phishing URLs use more number of subdomains compared with legitimate ones.
Thus, the number of subdomains is a phishing feature.

f34 Prefix Suffix 0/1 IU1 Prefixes and suffixes separated by "-" are used in domain names to make users
feel that they are dealing with legitimate pages. Thus, when "-" is found in
domain names, the URL is considered phishing.

f35 Random do-
mains

0/1 IU1 Phishing URLs use words formed from random characters. Therefore, domain
names are checked for randomness.

f36 Shortening
service

0/1 IU1∗ URL shortening service is used to indicate short URLs that serve as a redirect
to other long and complex URLs. This service can be used in phishing to hide
the name of real hosts. Therefore, the use of shortening service is considered
as a phishing indicator. The list of shortners are extracted from URLTeam
tracker available at https://www.archiveteam.org/index.php?title=
URLTeam#URL_shorteners.

f37 Path ex-
tension

0/1 IU1∗ Malicious scripts can be added to legitimate pages. Some file extensions used in
URL paths may lunch such kind of attacks. Presence of the following malicious
path extensions is considered: ’txt’, ’exe’, ’js’

f38-39 Redirections Int IU2 URL redirection is a technique used to open pages with different URLs than
those initially selected by users. This is useful to prevent access to broken
links when web pages are moved. URLs can be redirected to pages with the
same domain (i.e. internal redirection) or to pages from different domains
(i.e., external redirections). However, redirection can also be used for hostile
purposes. The number of redirections (f38) and external redirections (f39) are
considered as phishing indicators.

f40-50 NLP fea-
tures

Int IU2 Natural language processing and word-raw features are also used in phishing
detection. We consider number of words (f40), char repeat (f41), shortest
words in URLs (f42), hostnames (f43), and paths (f44), longest words in URLs
(f45), hostnames (f46), and paths (f47), average length of words in URLs (f48),
hostnames (f49), and paths (f50).

f51 Phish hints Int IU2 Phishing URLs use sensitive words to gain trust on visited web pages. The
number of such words in URLs is considered as phishing indicator.

f52-54 Brand do-
mains

0/1 IU1∗ Phishing URLs use brand domain names in different URL parts. The presence
of brand names in the domain part is considered as a legitimacy indicator (f52)
where their presence in subdomains (f53) or paths (f54) is considered as a
phishing indicator. The list of brand domain names are collected from https:
//www.101domain.com/.

7

https://www.archiveteam.org/index.php?title=URLTeam#URL_shorteners
https://www.archiveteam.org/index.php?title=URLTeam#URL_shorteners
https://www.101domain.com/
https://www.101domain.com/

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

f55 Suspicious
TLD

0/1 IU1∗ TLDs are checked for suspiciousness. List of suspicious TLDs, used in this
study, are collected from: Spamhaus.org (https://www.spamhaus.org) and
Blue coast system Inc. (https://www.broadcom.com/).

f56 Statistical re-
port

0/1 IU1∗ URL domains are checked if their IP addresses match one of top phishing
domains. The list is collected from previous works.

Content-based features

Content-based features (IC) are extracted by loading the web pages of URLs and analyzing their HTML contents. They
can be divided into hyperlink and abnormal content based features. Hyperlink features (IC1) are concerned with the
number, status, and nature of hyperlinks (i.e., internal/external) used in HTML tags. Abnormal content features (IC2)
are concerned with the identification of suspicious contents or scripts implementing suspicious behaviors. Examples
of suspicious contents are the use of empty links and different domain names in the title tag of web pages. Examples
of suspicious behaviors are submitting form contents to emails and disabling right clicks. Content-based features
experimented in this study are given in Table 3.

Table 3: Content-based features for website phishing detection

Index Feature Type Class Intuition

f57 #hyperlinks Int IC1 Legitimate websites are supposed to consist of bigger number of pages compared
with phishing ones. Therefore, the number of links in URL web page contents
is considered for distinguishing phishing websites.

f58-59 Ratio inter-
nal/external
hyperlinks

Float IC1 Legitimate pages usually use hyperlinks with the same base domain of the
website while phishing pages use more external hyperlinks pointing to target
websites. The ratio of internal (f58) and external (f59) hyperlinks of web pages
are considered as phishing indicators.

f60 Ratio null hy-
perlinks

Float IC1 To mimic target pages, the same hyperlinks of legitimate web pages appear in
phishing web pages but with empty links. Therefore the ratio of null hyperlinks
in tags is used as a phishing indicator.

f61 #External
CSS

Int IC1 Legitimate websites use an internal style or more than one CSS file. Instead,
phishing websites use only a sole external CSS file that contains links to CSS
files of target websites. Consequently, the number of external CSS files is
considered as a phishing indicator.

f62-63 #Internal/ Ex-
ternal redirec-
tions

Int IC1 Links in phishing web pages may redirect to other legitimate or fake pages. The
ratio of internal (f62) and external (63) redirections are proposed for distinguish-
ing phishing web pages.

f64-65 Ratio Inter-
nal/External
errors

Float IC1 Fake hyperlinks are usually present in phishing web pages. Therefore, all
hyperlinks of web pages are checked and the ratio of internal (f64) and external
(f65) hyperlinks connection errors are counted.

f66 Login forms 0/1 IC2 Login forms are another means commonly used for stealing infor-
mation of web users. Login forms with external action links or
empty actions are considered phishing. Empty action formats con-
sidered in this study are: "", "#", "#nothing", "#doesnotexist",
"#null", "#void", "#whatever", "#content", "javascript::void(0)",
"javascript::void(0);", "javascript::;", "javascript".

f67 External favi-
con

0/1 IC1 To mimic legitimate websites, phishers use the same favicon icon of the target
website in the address bar of navigators. Therefore, websites using external
favicons are considered phishing.

f68 Links in tags Float IC1 In legitimate websites it is expected that <Link> tags use links pointing to web
pages of the same domain as the URL. Therefore, the ratio of internal links in
<Link> tags is considered for phishing detection.

f69 Submit to
Email

0/1 IC2 Phishers submit user inputs in web forms into specific email addresses. Form
actions containing ’mailto:’ or ’mail()’ are considered phishing.

8

https://www.spamhaus.org
https://www.broadcom.com/

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

f70-71 Ratio inter-
nal/external
media

Int IC1 Legitimate websites mostly use media (images, audio, video) stored in the same
domain. Phishing websites use more external media, usually stored in the target
website domain, to save the storage space. Ratios of internal (f70) and external
(f71) media file links are counted and used for distinguishing legitimate form
phishing websites.

f72 SFH 0/1 IC2 Normally, actions should be taken upon submitted information on web page
forms. Therefore, Forms with an empty string or ’about:blank’ are considered
parts of phishing web pages.

f73 Invisible
iframe

0/1 IC2 Frame tags are used to incorporate additional web pages to those actually
shown. Phishing websites may use <iframe> with invisible border so that
users may think that additional pages are part of current websites while they are
actually from different domains. Therefore, the use of invisible <iframe> tags
is considered as a phishing indicator.

f74 Pop-up
window

0/1 IC2 Pop-up windows are used by legitimate websites to alert users with warnings
but rarely used to submit user information. The presence of pop-up windows
with text fields is considered as a phishing indicator.

f75 Safe anchor Int IC2 The <a> tag is used to enable linking from one page to another. Tags with one
of the following links {’#’, ’javascript’, ’mailto’} are considered unsafe.
Thus, we consider the number of unsafe anchors.

f76-77 Right-click 0/1 IC2 Scripts can be used to disable the right-click function. However, this can also be
used by phishers to unable viewing the source code of web pages. Therefore, the
presence of onmouseover’ attribute (f76) and use of ’event.button==2’ as
an action to ’onmouseover’ attribute (f77) is considered as a phishing indicator.

f78 Empty title 0/1 IC2 Most legitimate websites describe the title of web pages in the <title> tag.
The absence of web page title is considered as phishing indicator.

f79 Domain in ti-
tle

0/1 IC2 Legitimate websites often use the domain name as part of the title of web pages.
Phishing websites use legitimate domains in titles to deceive users. Therefore,
the presence of the domain of URL as part of the web page title is considered as
legitimacy indicator.

f80 Domain
within
copyright

0/1 IC2 Legitimate websites indicate their domain name within the copyright logo.
Phishing websites do not use their actual domain. Presence of the domain of
URLs within the copyright logo is a legitimacy indicator.

External-based features

External features (E) are obtained by querying reference third party services and search engines. Examples of such third
party services are WHOIS9, Alexa, Openpagerank10 and Google11. The list of external-based features experimented in
this study are given in Table 4.

Table 4: External-based features for website phishing detection

Index Feature Type Class Intuition

f81 WHOIS regis-
tered domain

0/1 E Domains of phishing websites do not match any WHOIS database record con-
trary to most legitimate domains. Therefore, URLs with domains not registered
in WHOIS are considered phishing.

f82 Domain regis-
tration length

Int E Phishing websites live for a short period of time, while legitimate websites
are regularly paid for several years in advance. Instead of proposing a specific
threshold as proposed in [20, 18, 27], we use the number of years the domain
renewal amount was paid as a phishing indicator.

f83 Domain age Int E Since phishing websites are short lived, the age of URL domains is considered
as a phishing indicator.

9WHOIS service: https://www.domain.com/whois
10Openpagerank website: https://openpagerank.com
11Google search engine: https://www.google.com

9

https://www.domain.com/whois
https://openpagerank.com
https://www.google.com

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

f84 Web traffic Int E Phishing websites generally have less number of visitors compared with legiti-
mate websites. Alexa is used to identify the web traffic of URLs.

f85 DNS record 0/1 E Domain Name Server (DNS) is mandatory to retrieve the IP address of URLs
for access. Therefore, URL domains must be registered within the DNS. A
missing DNS recored is a phishing indicator.

f86 Google index 0/1 E Phishing websites live for short times and are often accessible through direct
links sent to users in emails, they do not need to be indexed by Google. Web
pages not indexed by Google are supposed phishing.

f87 Page rank Int E Phishing web pages are not very popular, hence, they suppose to have low page
ranks compared with legitimate web pages. We use Openpagerank to get the
value of this feature.

4.3 Dataset generation

Features are extracted for each URL making use of information stored in a dataset indexed by the URL field (dataset A
in Figure 2). Dataset A is stored in pickle format where each row contains an URL, its source (i.e., Yandex, Alexa,
Phishtank, Openpish) and its generated DOM tree object. Generated feature vectors are stored in a separate dataset
indexed by URLs in CSV format (dataset B in Figure 2). Thereafter, dataset B is balanced with 50% for each class
(i.e., legitimate, phishing). Finally, rows are shuffled and the dataset is made ready to use. The collection process was
elaborated on March 2020 and the source code for features extraction and final datasets A and B are made available to
users for replication and enhancement.

5 Experiments

In this study we perform five experiments on the collected dataset. The aim of the two first experiments is to identify
best classifier(s) for website phishing detection, where the aim of the two next experiments is to investigate the role
of feature selection methods in improving the performance of classifiers. Finally, the last experiment aims to identify
features and/or feature classes suitable for instant phishing detection. For this last experiment, we use Python scripts to
estimate the average extraction time of features.

We conduct the first four experiments within the Weka platform [9] without any modification in the core development
of the tool. Therefore, default parameter values associated to each used algorithm are adopted. For the experiments, we
make use of the 10-fold cross-validation method [19, 10] to measure the predictive ability of classifiers. The adoption
of this method aims to minimize the bias produced by random sampling of train and test data samples. For performance
evaluation, we use two main metrics:

1. Accuracy: represents the ratio of correct predicted samples to the total number of samples. Accuracy metric
works well for balanced datasets which is the case of the dataset used in this study. The accuracy of a model is
calculated using the following formula:

Accuracy =
TP + TN

TP + TN + FP + FN

True Positive (TP) designates the number of correct predictions of phishing web pages where True Negative
(TN) designates the number of correct predictions for legitimate web pages. Similarly, False Positive (FP)
designates the number of incorrect predictions of phishing web pages where False Negative (FN) designates
the number of incorrect predictions of legitimate web pages

2. Macro F1-score: captures the mean of class-wise F1-scores. Macro F1-score is obtained by averaging
F1-scores computed for each class i. Macro F1-score is calculated as described in the following formula:

Macro F1-score =
1

N

N∑
i=0

F1-scorei

F1-score for each class represents the best trade-off between precision and recall of the class. It is calculated
using the following formula:

10

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

F1-scorei = 2 ∗ Precisioni ∗ Recalli
Precisioni + Recalli

Recall and precision are calculated in terms of TP, FP and FN as follows:

Recall =
TP

TP + FN

Precision =
TP

TP + FP

5.1 Classifier evaluation

The aim of the experiments of this part is to identify the best classifier(s) for website phishing detection. Das et
al. [6] elaborated a ranking based on their usage frequency in previous studies. In this study, we test and compare the
performance of the five best classifiers identified in [6] on the collected dataset considering: (1) the different classes of
features, and (2) the effect of combining best models for each class.

Experiment I

In the first experiment we aim to identify the best classifier(s) for each individual class of features and best combination
of feature classes. Achieving this goal, we apply several classifiers individually to different classes of features. The
performance of each classifier is saved and compared with other classifiers. Best performed classifiers for each class of
features are made candidates for Experiment II. Moreover, we test all the classifiers with hybrid selection of features.
Therefore, we experiment the different possible combinations of feature classes. Figure 4 depicts the overall process
adopted for this first experiment.

Feature selection

▪ List of URL-based features (IU)
▪ List of Content-based features (IC)
▪ List of External service based features (E)

 ▪ IU + IC
▪ IU + E
▪ IC + E
▪ IU + IC + E

Gauge model
Performance

Apply classifier algorithms

▪ Decision Tree
▪ Random Forest
▪ Logistic Regression
▪ Naïve Bayes
▪ SVM

[More cases remain]

 Features
list

5 Classification
models

Best combination
of feature classes

Comparison of accuracies

[Otherwise]

Best classifier
for class IU

Best classifier
for class IC

Best classifier
for class E

Figure 4: Identification process for best classifier(s) and best combination of feature classes.

Experiment II

Best classifiers of each individual class identified in Experiment I are used to check potential performance improvements
that may result from their combinations. We examine four types of combinations:

• AND combination: each one of the three classifiers makes a prediction for each test instance. A test instance is
considered phishing if all the three classifiers predict it as phishing.

• OR combination: each one of the three classifiers makes a prediction for each test instance. A test instance is
considered phishing if at least one of the three classifiers predicts it as phishing.

• Stacking: a new classifier is trained on the outputs of the three base classifiers. The final prediction is the one
produced by the new classifier.

11

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

• Majority voting: each one of the three classifiers makes a prediction (vote) for each test instance and the final
prediction is the one that receives more than one vote.

Figure 5 depicts the overall process adopted for this experiment.

Best
classifier for

class IU

Combination of classifiers

▪ AND
▪ OR
▪ Stacking
▪ Majority voting

Gauge model
Performance

[More cases remain]

Best classifier
combination

[Otherwise]

Classification
model

Comparison of accuracies[Otherwise]

Best
classifier for

class IC

Best
classifier for

class E

Figure 5: Combination of models trained on different classes of features.

5.2 Feature selection methods evaluation

The experiments of this part are concerned with the selection of best feature subsets to improve the accuracy of models.
For this sake, we examine the ability of existing techniques in the selection of discriminative features, namely filter and
wrapper methods. The aim of the experiments is to check the validity of the widely accepted hypothesis stating that
higher ranked features provide higher classification accuracy.

Experiment III

Filter methods select features independently of any machine learning algorithm. They select features based on scores
associated to features based on their correlation with the class attribute values. In this experiment, we examine the
efficiency of different filter-based algorithms in the selection of distinguishing features. For this purpose, we adopt the
process depicted in Figure 6.

Four ranking filters are tested: chi-square, Pearson correlation, information gain and relief [14].

• Chi-Square: estimates the value of each feature by measuring the chi-squared statistic value with respect to
the class attribute values.

• Pearson’s correlation: estimates the value of each feature by quantifying the linear dependency between the
features and the class attribute values.

• Information gain: entropy-based feature evaluation method that estimates the quality of a feature by measuring
the amount of information provided by the feature with respect to the class attribute value.

• Relief : estimates the quality of a feature according to how well its value distinguishes between nearest
instances to each other.

Firstly, all the features are selected and a ranking filter is applied each time. Best found classifier(s) from Experiment II
are tested on ranked features. Thereafter, less important features are removed from the list one by one and classifiers are
trained on the remaining features. Best subset of features is the one giving best accuracy values of applied classifiers.

Experiment IV

Compared with filter methods, the feature selection in wrapper methods depends on the selected machine learning
algorithm. Those methods start by feeding the selected classifier with a subset of features. Based on the obtained

12

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

Apply ranking filter

▪ Chi-Square
▪ Pearson correlation
▪ Information gain
▪ Relief

Save classifier(s) accuracy
n ::= n-1

Apply best found classifier(s)

[n > 0]

[Otherwise]

Save feature subsets giving
the best accuracy

Select top n features

[More filters remain]

[Otherwise]

Best ranking filter
&

subset of features

List of features

 List of ranked
features List of top n features

Classification
model(s)

Comparison of accuracies

Figure 6: Identification process for best filter(s) and feature subset(s).

accuracy and inferences drawn from previous computations, the algorithm decides to add or remove features from the
subset until reaching the best accuracy. In this experiment, we focus in the evaluation of the efficiency of different
wrapper-based algorithms for the selection of features. Specifically, we examine both ClassifierSubsetEval and
WraperSubsetEval evaluators [9]. Both evaluators are applied with the set training dataset option of Weka. Best-First
search is adopted since it is found in [15] as the best performing method. Figure 7 depicts the process adopted for this
experiment. In addition, we use Python implementation of the Boruta wrapper 12 to check its efficiency in the selection
of best features.

Apply wrapper filter

▪ ClassifierSubsetEval
▪ WrapperSubsetEval
▪ Boruta

Apply best found
classifier(s)

List of features

 List of selected
features

Best wrapper
algorithm

More wrapper remain [Otherwise] Comparison of accuracies
and response time

Figure 7: Identification process for the best wrapper algorithm for feature selection.

5.3 Experiment V: Feature extraction runtime analysis

In this experiment, we examine the required time for the construction of feature vectors used as inputs for machine
learning classifiers. This is needed to identify suitable features for runtime detection. For this sake, we firstly check the
performance of each class individually. When notable delays are noticed, we inspect individual features in each class in
the aim to identify those who may cause such delays. For the experiment, we estimate the average extraction time of all
the 11430 samples of the collected dataset. Since the extraction time may differ from legitimate to phishing web pages

12Python implementation of Boruta wrapper algorithm: https://pypi.org/project/Boruta/

13

https://pypi.org/project/Boruta/

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

due their different size of contents, our adoption of all the instances of the dataset is feasible due the balance nature of
the dataset.

6 Experimental results

In this section, we present the details of the different conducted experiments with the obtained results. In total, five
experiments are performed. In the first four experiment, we evaluate the performance of used classifiers and check for
potential improvements. In the last experiment, we estimate the extraction time of different features and feature classes.

6.1 Experiment I. Performance of classifiers trained on different classes of features

In this experiment, we evaluate the predictive ability of five common used classifiers for website phishing detection on
different classes of features. Decision Tree, Random Forest, Logistic Regression, Naïve Bayes and SVM are found
in [6] as the most frequently used classifiers by contemporary studies. Those same classifiers are used in this experiment
and trained individually on each class of features. Figure 8 shows the experimental results of the examined classifiers on
URL, content and external-based features. The results clearly show that Random Forest outperforms all the examined
classifiers with higher values of both accuracy and Macro F1-score. This, in fact, is consistent with the results obtained
by earlier studies that claim that Random Forest is the best classifier in term of accuracy [3, 22]. Contrary to the results
obtained by Jain et al. [13], logistic regression classifier provides the third best accuracy score for content-based features
regarding the collected dataset. Jain et al. [13] used features f57-f67 that are also experimented separately and gave
an accuracy score of 77.11% within logistic regression which is less than that obtained by Random Forest classifier
86.46%. This clearly indicates that the results of Jain et al. [13] are dataset dependent.

88
.1
0
%

88
.1
1
%

86
.0
0
%

86
.0
4
%

93
.1
0
%

93
.1
4
%

91
.0
0
%

91
.0
3
%

89
.9
0
%

89
.8
7
%

94
.1
0
%

94
.0
9
%

85
.0
0
%

85
.0
2%

77
.6
0
%

77
.6
9
% 87
.1
0
%

87
.1
3
%

86
.8
0
%

86
.8
2
%

88
.3
0
%

88
.2
8
%

85
.0
0
%

85
.2
2
%

74
.6
0
%

75
.4
8
%

75
.7
0
%

75
.9
6
%

84
.2
0
%

84
.1
6
%

MACRO	 F1-SCORE ACCURACY MACRO	 F1-SCORE ACCURACY MACRO	 F1-SCORE ACCURACY

URL-BASED	FEATUES 	(56) CONTENT-BASED	 FEATURES 	(24) EXTERNAL-BASED	 FEATURES 	(7)

Decision	Tree Random	Forest Logistic	Regression SVM Naïve	Bayes

Figure 8: Performance of classifiers trained on individual class of features.

The results also show that external-based features provide the best accuracy score 94.09% within Random Forest
classifier. URL-based features come in the second place with an accuracy score 91.03%, where content-based features
provide the less accuracy score 89.87%. This also invalidate the results obtained by Choo et al. in [5] where it was
found that URL-based features are more important than the other two classes of features. Choo et al. in [5] used only
three external-based features f83-85. Using conceptual replication of the work of Choo et al. [5] within the collected
dataset, we obtained an accuracy score of 86.42% within Random Forest classifier which is much more less that that
obtained by including all external based features.

Regarding the obtained results using individual class of features, it can be concluded that none of the classes has the
potential of being used independently for website phishing detection. Therefore, we examine the effect of combining
features from different classes in improving the performance of classifiers. We start by pairwise combination of classes
and we end with the combination of all the features. Figure 9 shows the results of the experiment. The results confirm
again that Random Forest outperforms all the other classifiers and provides higher accuracy scores. The performance of
the Random Forest classifier is increased in all the cases where the combination of URL and external-based features
provide the higher accuracy score 96.60%. This was expected since these two classes provided the higher scores
when they are considered individually. The combination of content with external based features also improved the

14

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

performance with 1.04% compared with considering merely external-based features. Surprisingly, the combination of
all the features gave the second best accuracy sore 96.61% but with the exact same Macro F1-score 96.60%.

90
.5
0
%

90
.5
2
%

94
.2
0
%

94
.2
0
%

93
.0
0
%

93
.0
4
%

94
.1
0
%

94
.0
9
%

94
.1
0
%

94
.1
0
%

96
.6
0
%

96
.6
5
%

95
.1
0
%

95
.1
3
%

96
.6
0
%

96
.6
1
%

89
.7
0
%

89
.6
8
%

93
.9
0
%

93
.9
5
%

90
.2
0
%

90
.2
5
%

94
.5
0
%

94
.4
8
%

76
.8
0
%

77
.4
2
%

76
.4
0
%

77
.1
4
%

85
.5
0
%

85
.5
6
%

79
.8
0
%

80
.1
7
%

81
.4
0
%

81
.7
4
%

75
.3
0
%

76
.5
0
%

79
.4
0
%

80
.2
0
%

72
.1
0
%

73
.9
5
%

MACRO	 F1 -SCORE ACCURACY MACRO	 F1 -SCORE ACCURACY MACRO	 F1 -SCORE ACCURACY MACRO	 F1 -SCORE ACCURACY

U	 +	 C 	 (80) U	 +	 E	 (63) C 	 +	 E	 (31) U	 +	 C 	 +	 E	 (87)

Decision	Tree Random	Forest Logistic	Regression Naïve	Bayes SVM

Figure 9: Performance of classifiers trained on pairwise combined class of features.

As can be noticed, Random Forest outperforms all the other classifiers in all cases but provides the highest scores within
hybrid features. Moreover, not all the classes are equally important; content-based features are found less important
and external based features gave about the same score obtained when combining URL and content-based features (i.e.,
96.09% against 96.10%). This advocates the use of Random Forest classifier with hybrid features instead of individual
classes. Moreover, Decision Tree comes in the second place except when all the features are considered, where Logistic
regression comes close to Random Forest. SVM classifier gave the worst performances except in the case of combining
URL and content-based features.

6.2 Experiment II. Performance of combined models each trained on a different class of features

Following the process given in Figure 5, we examine, in this experiment, the combination of three Random Forest
models each trained on one class of features aiming to improve predictions accuracy. AND, OR, stacking and majority
voting combinations are examined. In each case, the final prediction for test instances depends on the prediction of
the three base models. The results presented in Figure 10 show that none of the combinations improves the accuracy.
However, stacking and majority voting gave approximate scores to those obtained by using a single model trained on
content assembled with external-based features.

88
.9
0
%

90
.1
6
%

95
.6
7
%

95
.8
7
%

89
.9
6
%

89
.1
8
%

95
.6
3
%

95
.9
0
%

AND OR STACKING	 MAJORITY	 VOTING

Macro	F1-score Accuracy

Figure 10: Performance of combined models.

15

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

6.3 Experiment III. Performance by training on features selected using filter ranking methods

In this experiment, we evaluate the accuracy of the best found classifier (i.e., Random Forest) on decremental selection
of the features set. Features, are first ranked using chi-square, Pearson correlation, information gain and relief filters.
Thereafter, the Random Forest classifier performance is evaluated on selected features where the lowest ranked features
are eliminated one by one in each step. Table 5 shows the list of the top 25 ranked features using the different examined
filters with respect to the class of web page URLs. From the table, google_index (f86) is the top feature identified
by all the filters and 7 features (i.e; f86, f87, f21, f26, f79, f83, f58) are found in the top 25 features of all the filters.
Examining only those 7 features we reached a maximum accuracy score 94.67% with Random Forest. Moreover, the
top 25 features of all the filters come from the three different classes which justifies the need for using hybrid features
for the identification of phishing web pages. Specifically, IU2 is found to be the best class where the presence of their
incorporated features into the top 25 lists varies from 20% to 60%. In the contrary IC2 is found to be the worst class
since the presence of their features in to top 25 lists varies only from 8% to 12%.

Table 5: Top 25 ranked features per each used filter

Pearson correlation Information gain Relief Chi-Square

Order Feature Class Feature Class Feature Class Feature Class

1 f86 E f86 E f86 E f86 E
2 f87 E f84 E f87 E f84 E
3 f21 IU2 f57 IC1 f21 IU2 f57 IC1
4 f26 IU2 f87 E f83 E f87 E
5 f79 IC2 f83 E f3 IU1 f83 E
6 f57 IC1 f59 IC1 f75 IC2 f59 IC1
7 f51 IU2 f58 IC1 f33 IU2 f58 IC1
8 f83 E f75 IC2 f79 IC2 f75 IC2
9 f3 IU1 f82 E f71 IC1 f21 IU2

10 f7 IU2 f47 IU2 f80 IC2 f63 IC1
11 f1 IU2 f21 IU2 f68 IC1 f82 E
12 f58 IC1 f63 IC1 f25 IU1 f47 IU2
13 f14 IU2 f68 IC1 f59 IC1 f68 IC1
14 f2 IU2 f26 IU2 f70 IC1 f26 IU2
15 f10 IU2 f51 IU2 f58 IC1 f41 IU2
16 f27 IU2 f41 IU2 f31 IU1 f43 IU2
17 f43 IU2 f45 IU2 f34 IU1 f51 IU2
18 f34 IU1 f43 IU2 f52 IU1∗ f45 IU2
19 f47 IU2 f50 IU2 f67 IC1 f50 IU2
20 f31 IU1 f1 IU2 f38 IU2 f65 IC1
21 f78 IC2 f49 IU2 f26 IU2 f79 IC2
22 f4 IU2 f2 IU1 f36 IU1∗ f1 IU2
23 f45 IU2 f65 IC1 f84 E f70 IC1
24 f50 IU2 f4 IU1 f7 IU2 f4 IU2
25 f49 IU2 f79 IC2 f63 IC1 f49 IU2

Figure 11 shows the accuracy graphs with respect to selected features based on the ranking results of the different filters.
The features are selected such that the lowest ranked features are eliminated first and one by one in each step. The
first value in Figure 11 designates the accuracy of the model when only the top ranked feature is selected, where the
last value designates the accuracy when all the 87 features are selected. The results show that maximum accuracy rate
96.83% is reached by selecting 73 features using chi-square filter. This value is slightly reduced by adding lower ranked
features.

From these results, it can be concluded that the use of ranking filters improves the accuracy of Random Forst. Specifically,
chi-square filter gives better accuracy than other filters with less number of features. Table 6 shows the set of less
important features detected by each filter. The results show that content-based features are less important since 37.50%
of these features were detected less important by three filters with a single common feature (i.e.; f10). Moreover,
all external service based features are found important which indicates the efficiency of such class of features in
distinguishing phishing web pages.

6.4 Experiment IV. Performance by training on features selected using wrapper methods

In this last experiment, we examine wrapper methods effect on the selection of features. Wrapper methods are time
expensive since they involve training a selected model using different subsets of features. However, such methods are
recognized to be more efficient in the selection of discriminative features and their ability to make models more prone
to overfitting. For such reasons, we decided to evaluate the efficiency of wrapper methods in improving the accuracy of
Random Forest classier regarding the collected dataset. Two wrapper evaluators provided by the Weka platform are
tested: ClassifierSubsetEval and WrapperSubsetEval. The former evaluator assesses the worth of feature subsets by

16

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

Information	Gain
(85,	96.84%)

Relief	
(80,	96.80%)

ChiSquare
(73,	96.86%)

Pearson	Correlation	
(83,	96.82%)

85

87

89

91

93

95

97

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85

Ac
cu
ra
cy
	(%

)

Number	of	selected	features

Information	Gain Pearson	Correlation Relief ChiSquare

Figure 11: Accuracies of random forest prediction model with respect to stepwise feature selection.

Table 6: List of less important features identified by used ranking filters

Filter IU IC E

Pearson Correlation f10 f60, f64, f69 None
Information gain f10, f29 f60 None
Relief f19, f18, f28, f10 f69, f72, f62 None
ChiSquare f10, f20, f35, f29, f37 f69, f62, f72, f64, f77, f60, f73, f66, f76 None

Total (De-duplicated) 8 9 0
Ratio 14.29% 37.50% 0%

their level of consistency with the class values when the training instances are projected onto the subset of features.
The latter, uses the cross validation technique to estimate the accuracy of the classifier for each subset of features [26].
We also examine the Boruta wrapper algorithm [17]. This latter finds the importance of features by creating shadow
features. Specifically, the Boruta algorithm focuses on finding all the features having impacts on the classifier prediction,
rather than finding subsets causing minimal errors on the performance of the classifier. Table 7 compares the obtained
results from the three wrapper evaluators indicating the list of selected features and their performances.

Table 7: Results of the wrapper evaluators

Evaluator #Selected Features Macro F1-score Accuracy

ClassifierSubsetEval 11 f49, f68, f71, f75, f81, f82, f83, f84, f85, f86, f87 94.80% 94.84%
WrapperSubsetEval 81 All except f25, f43, f65, f67, f71, f76 96.70% 96.69%
Boruta 61 All except f9, f12, f15-17, f19, f23, f28-30, f35, f37, f39, f53-54, f60, f62, f64,

f66, f69, f72-74, f76-77, f81
96.60% 96.64%

The results show that ClassifierSubsetEval failed on the identification of features that improve the performance of the
Random Forest classifier. WrapperSubsetEval and Boruta provide better and close results but Boruta is much faster
than WrapperSubsetEval. While the former took 122 seconds, the latter took about 24 hours for producing the results.
However, the three evaluators fail on improving the Random Forest accuracy compared with the decremental selection
of features based on filter ranking used in Experiment III.

6.5 Experiment V. Runtime analysis of feature extraction

In this experiment, we examine the required time for the extraction of the different features and feature classes. The
experiment is performed in a MacBook Pro with OS X, 2.9 Ghz Intel Core i7 processor, and 8 GB of memory. Figure 12
(a) shows the average time spent for the extraction of the different feature classes.

17

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

(a)

(b)

41.16785 0.286198

109337.5515

1.03929 3737.384315

0
10000
20000
30000
40000
50000
60000
70000
80000
90000

100000
110000
120000

IU1 IU2 IC1 IC2 E

Av
er
ag
e	
Ex
tr
at
io
n	
Ti
m
e	
(m

s)

Feature	Classes

(c)

58060.37948

70242.80231

87.978625
0

10000

20000

30000

40000

50000

60000

70000

80000

f63 f65 others

Av
er
ag
e	
ex
tr
ac
tio

n	
Ti
m
e	
(m

s)

Content-based	featutes	(IC1)

1188.5604721114.098307

498.910158 298.431461 185.741523

801.056692 764.684009

4851.482622

0

1000

2000

3000

4000

5000

6000

f81 f82 f83 f84 f85 f86 f87 all

A
ve
ra
ge
	E
xt
ra
ct
io
n	
Ti
m
e	
(m

s)

External-based	Features	(E)

Figure 12: Average time for feature extraction

The results of Figure 12 (a) clearly indicate that both subclasses of URL-based features (IU1, IU2) and abnormal
content-based features (IC2) are the less time consuming. Particularly, all URL-based features require about 41.5 ms
for their extraction which makes them suitable enough for runtime detection systems.

Hyperlink-based features (IC1) are found much slower than external-based services (E). For such reason we decided
to go deeper in the investigation and inspect the performance of individual features of this class. Figure 12 (b) shows
that f63 and f65 are behind such delay. These two features require to check every link in the web page to find out if it
is a fake or authentic; the problem with f63 and f65 becomes serious when web pages use a considerable number of
hyperlinks and hence a great value of f57.

Figure 12 (c) shows that the extraction of all the external-based features (E) requires about 5 seconds. This can be
reduced to about 4 seconds since f81 and f82 come from the same service (i.e., WHOIS service) and hence they can be
extracted at once through a single WHOIS service call (see Figure 12 (a)).

7 Discussion and lessons learned

Benchmark datasets for web page phishing detection are not available and their construction is crucial for fair evaluation
of systems. To fill this gap, we proposed a generic process consisting of 6 main guidelines for the generation of
benchmark datasets overtaking the short-lived nature of phishing websites. The proposed guidelines are deduced from
best practices for ensuring homogeneity, consistency, and diversity of dataset samples. We collected a list of URLs
following the proposed guidelines and we developed our own Python scripts for the extraction of 87 examined features
and collected them into a unique dataset. In addition, a separate dataset in pickle format is built containing the list of
DOM tree objects generated for each URL web page. This enables (1) full replication, (2) testing the dataset with more
personalized features, and (3) fair comparison of systems. Collected datasets and Python scripts are both made publicly
available at [11].

By examining the literature, we noticed that most proposed website antiphishing systems use either a single class or
a limited number of features from different classes and most made choices are not well-justified. Since the aim of
the proposed study is to examine the effect of a maximum number of features on an arbitrary collected dataset, 87
features from different classes are used. Some features are found not discriminative enough for the dataset. However,
those features may have positive effects on other datasets. In fact, getting high-quality features is very crucial for the

18

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

effectiveness of antiphishing systems and strongly dependable on used datasets. In addition, phishers are continually
evolving their attack tactics bypassing existing antiphishing techniques. Therefore, higher distinguishing features in
the present days may be less distinguishing or useless in the coming days. As an example, submitting stolen user
information to phisher emails (f69) is identified as one of the strongest phishing indicators in [20, 3], in the collected
dataset none of the 5715 phishing web pages used such technique. Another example is that the use of IP addresses (f3) in
URL web pages is currently less used by phishers; in the collected dataset only 97 cases are identified from a set of 5715
phishing URLs. Moreover, it is stated in the recent phishing activity trends report [2] that 74% of all phishing websites
start using HTTPS protocol which may reduce the effect of f25 in future extracted datasets. A hybrid strategy where
features from different classes are used may alleviate this issue together with the proposed guidelines. Specifically, by
testing new generated datasets following the proposed guidelines, we can keep track of the significance of features over
time and upgrade systems by incorporating more discriminative features. Table 6 shows that all external-service based
features are important where 9 from the 24 content-based features where identified to be less important. This clearly
indicates the less importance of most examined content-based features regarding other classes of features. Therefore,
we advocate more research on identifying important content-based features for web page phishing detection.

Real-time detection of phishing web pages is essential for instant prevention of phishing attacks. External-based features
are claimed to be the slower features in [13] compared with content-based features. The results obtained in this study
invalidate this claim. We found that hyperlink-based features (IC1), specifically, f63 and f65 are much slower than
all the external-based features. Moreover, none of these features are identified as less important by examined feature
selection methods except f65 that is not selected by WrapperSubsetEval (see Table 6 and Table 7). Therefore, besides
external-based services, f63 and f65 features are also not suitable for real-time detection.

A combination of models trained on different classes of features are examined aiming to reduce the extraction cost.
Particularly, by examining OR combination we targeted reducing the extraction cost by calling faster models. Therefore,
input feature vectors of new instances required for each model are only built when their correspondent models need to
be invoked. Unfortunately, the results are found discouraging where only 89.18% of accuracy was reached. However,
we obtained an acceptable accuracy rate 96.65% by combining only URL and external service-based features (see
Figure 9). Since URL-based features can be extracted within a range of milliseconds, 4 seconds will be sufficient for
building the feature vector required for such model. However an extra time is needed for the model to identify the class
of the checked instance.

Moreover, as can be seen from obtained results, external features have considerable impacts on the detection of phishing
web pages. We reached 94.09% of accuracy using only 7 external service based features. For reliability purposes, only
information provided by independent services such as Google and WHOIS are used in this study. Phishtank presence of
URLs can also be considered as a good indicator of phishing. Phishtank service is not used in this study since it is used
as a source of phishing URLs of our dataset. Adopting Phishtank presence feature may improve the performance but
also causes an extra network delay.

Random Forest classifier is already identified by previous studies [3] as the best model for web page phishing detection
systems and hybrid features. The experiments conducted in this study validate this conclusion and generalize it to
all classes of features. However, the order in which features are presented in the dataset has also an impact for the
performance of some classifiers; particularly, Random Forest due to the incorporated mechanisms used for the selection
of root and decision node features for generated trees. It is found from Experiment III that the use of filters for ranking
features affects the accuracy of the Random Forest model. Table 8 compares the performance of the different classifiers
using feature extraction order and features ordered following the different filters. The results show that Decision tree,
Random Forest and SVM classifiers are quite sensitive to the order of features used as inputs. Moreover, chi-square
ranking improves the model accuracy up to 0.22%. In Experiment III, the incremental remove of less important features
improved the model accuracy up to 0.25% with chi-square filter. Therefore, ranking features improve the accuracy of
Random Forest models and together with decremental selection, one can get better performances than those obtained
with wrapper evaluators and with less time consuming except for Boruta algorithm.

Table 8: Sensitivity of classifiers against order of features.

Extraction order Chi-Square order Pearson Correlation order Information gain order Relief order

Decision Tree 94.09% 94.13% 94.09% 94.12% 94.16%
Random Forest 96.61% 96.83% 96.65% 96.76% 96.66%
Logistic regression 94.48% 94.48% 94.48% 94.48% 94.48%
Naïve Bayes 79.80% 79.80% 79.80% 79.80% 79.80%
SVM 73.95% 73.95% 73.68% 73.91% 73.95%

Making our results practical, we developed a passive plugin for the Google Chrome browser. The plugin opens a popup
window to inform the users of the legitimacy status of the current page in the browser as depicted in Figure 13. The

19

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

plugin makes use of the best model found by the present study (i.e., Random forest trained on 73 features ranked
following the chi-square filter). The plugin can also be used to check its efficiency regarding the active warner embedded
in Google Chrome as shown in Figure 13 (b).

(a) case of legitimate (a) case of phishing

Figure 13: Screenshots of the passive plugin developed for the Chrome browser.

8 Conclusion

In this study, we proposed a set of guidelines for building reproducible and extensible datasets for website phishing
detection. Constructed datasets following the proposed guidelines may serve as benchmarks for machine learning based
systems. A sample dataset is collected in light of the proposed guidelines and used for the examination of exiting
findings. Experiments show that Random Forest classifier based systems can be used in browsers to effectively predict
phishing web pages. They have comparatively higher accuracy than all the other classifiers for different feature classes.
External service-based features despite their small number are found more effective in distinguishing phishing web pages.
However, those features may cause a network delay. Examined content-based features are found the less discriminative
and some hyperlink-based features may also cause severe network delays. Therefore, we advocate researchers and
practitioners to scrutinize the content of phishing websites for identifying more effective content-based features. Since
Random Forest is feature order sensitive, filter methods can effectively be used to improve the performance of the
model and reduce less important features. Filter ranking together with an incremental removal of less important features
provided better accuracy than wrapper methods. Regarding the examined features, the combination of models trained on
different classes of features is not capable to replace a single model trained on hybrid features. Therefore, using hybrid
features provides better accuracy than using single class of features. As a future work, we plan to validate the drawn
conclusions by experimenting more datasets built in the same way as described in section 4 and made as benchmarks
for phishing detection. Moreover, we plan to incorporate deep learning approaches used for phishing detection in a
performance analysis.

References

[1] Althobaiti, K., Rummani, G., & Vaniea, K. (2019). A review of human- and computer-facing url phishing features.
In 2019 IEEE European Symposium on Security and Privacy Workshops (EuroS PW) (pp. 182–191). Stockholm,
Sweden: IEEE.

[2] Anti-Phishing Working Group (2020). Phishing activity trends report. https://docs.apwg.org/reports/
apwg_trends_report_q2_2020.pdf.

[3] Chiew, K. L., Tan, C. L., Wong, K., Yong, K. S., & Tiong, W. K. (2019). A new hybrid ensemble feature selection
framework for machine learning-based phishing detection system. Information Sciences, 484, 153 – 166.

[4] Chiew, K. L., Yong, K. S. C., & Tan, C. L. (2018). A survey of phishing attacks: Their types, vectors and technical
approaches. Expert Systems with Applications, 106, 1 – 20.

[5] Choo, X., Chiew, K., Ibrahim, D., Musa, N., Sze, S., & Tiong, W. (2016). Feature-based phishing detection
technique. Journal of Theoretical and Applied Information Technology, 91, 101–106.

20

https://docs.apwg.org/reports/apwg_trends_report_q2_2020.pdf
https://docs.apwg.org/reports/apwg_trends_report_q2_2020.pdf

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

[6] Das, A., Baki, S., Aassal, A. E., Verma, R. M., & Dunbar, A. (2020). Sok: A comprehensive reexamination of
phishing research from the security perspective. IEEE Commun. Surv. Tutorials, 22, 671–708.

[7] Dou, Z., Khalil, I., Khreishah, A., Al-Fuqaha, A., & Guizani, M. (2017). Systematization of knowledge (sok): A
systematic review of software-based web phishing detection. IEEE Communications Surveys and Tutorials, 19,
2797–2819.

[8] El Aassal, A., Baki, S., Das, A., & Verma, R. M. (2020). An in-depth benchmarking and evaluation of phishing
detection research for security needs. IEEE Access, 8, 22170–22192.

[9] Frank, E., Hall, M., Holmes, G., Kirkby, R., Pfahringer, B., Witten, I. H., & Trigg, L. (2010). Weka-a machine
learning workbench for data mining. In O. Maimon, and L. Rokach (Eds.), Data Mining and Knowledge Discovery
Handbook (pp. 1269–1277). Boston, MA: Springer US.

[10] Gunasegaran, T., & Cheah, Y. (2017). Evolutionary cross validation. In 2017 8th International Conference on
Information Technology (ICIT) (pp. 89–95). Amman, Jordan.

[11] Hannousse, A., & Yahiouche, S. (2020). Web page phishing detection. Mendeley Data,, V2.
doi:doi:10.17632/c2gw7fy2j4.2.

[12] Jain, A. K., & Gupta, B. B. (2018). Phish-safe: Url features-based phishing detection system using machine
learning. In M. U. Bokhari, N. Agrawal, and D. Saini (Eds.), Cyber Security (pp. 467–474). Singapore: Springer
Singapore.

[13] Jain, A. K., & Gupta, B. B. (2019). A machine learning based approach for phishing detection using hyperlinks
information. Journal of Ambient Intelligence and Humanized Computing, 10, 2015–2028.

[14] Kira, K., & Rendell, L. A. (1992). A practical approach to feature selection. In D. Sleeman, and P. Edwards
(Eds.), Machine Learning Proceedings 1992 (pp. 249 – 256). San Francisco (CA): Morgan Kaufmann.

[15] Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97, 273 – 324.
[16] Korkmaz, M., Sahingoz, O. K., & Diri, B. (2020). Feature selections for the classification of webpages to detect

phishing attacks: A survey. In 2020 International Congress on Human-Computer Interaction, Optimization and
Robotic Applications (HORA) (pp. 1–9). Ankara, Turkey.

[17] Kursa, M. B., & Rudnicki, W. R. (2010). Feature selection with the boruta package. Journal of of Statistical
Software, 36, 1–13.

[18] Nagaraj, K., Bhattacharjee, B., Sridhar, A., & GS, S. (2018). Detection of phishing websites using a novel twofold
ensemble model. Journal of Systems and Information Technology, 20, 321–357.

[19] Picard, R. R., & Cook, R. D. (1984). Cross-validation of regression models. Journal of the American Statistical
Association, 79, 575–583.

[20] Rajab, K. D. (2017). New hybrid features selection method: A case study on websites phishing. Security and
Communication Networks, (pp. 1–10).

[21] Rao, R. S., Vaishnavi, T., & Pais, A. R. (2019). Catchphish: detection of phishing websites by inspecting urls. J.
Ambient Intell. Humaniz. Comput., 11, 813–825.

[22] Sahingoz, O. K., Buber, E., Demir, O., & Diri, B. (2019). Machine learning based phishing detection from urls.
Expert Systems with Applications, 117, 345 – 357.

[23] Sameen, M., Han, K., & Hwang, S. O. (2020). Phishhaven—an efficient real-time ai phishing urls detection
system. IEEE Access, 8, 83425–83443.

[24] Shirazi, H., Bezawada, B., & Ray, I. (2018). "know thy domain name”: Unbiased phishing detection using domain
name based features. In Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies
SACMAT ’18 (pp. 69–75). New York, NY, USA: Association for Computing Machinery.

[25] Wandera (2020). Mobile Threat Landscape 2020: Understanding the key trends in mobile enterprise security in
2020. Technical Report. https://www.wandera.com/mobile-threat-landscape/.

[26] Witten, I. H., Frank, E., & Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques.
(3rd ed.). San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

[27] Zaini, N., Stiawan, D., Faizal, M., Firdaus, A., Wan Din, W. I. S., Kasim, S., & Sutikno, T. (2020). Phishing
detection system using machine learning classifiers. Indonesian Journal of Electrical Engineering and Computer
Science, 17, 1165–1171.

21

https://doi.org/10.17632/c2gw7fy2j4.2
https://www.wandera.com/mobile-threat-landscape/

	1 Introduction
	2 Related Work
	3 Scheme for constructing reproducible and extensible datasets
	4 Dataset preparation
	4.1 URL collection
	4.2 Feature extraction
	4.3 Dataset generation

	5 Experiments
	5.1 Classifier evaluation
	5.2 Feature selection methods evaluation
	5.3 Experiment v: Feature extraction runtime analysis

	6 Experimental results
	6.1 Experiment i. Performance of classifiers trained on different classes of features
	6.2 Experiment ii. Performance of combined models each trained on a different class of features
	6.3 Experiment iii. Performance by training on features selected using filter ranking methods
	6.4 Experiment iv. Performance by training on features selected using wrapper methods
	6.5 Experiment v. Runtime analysis of feature extraction

	7 Discussion and lessons learned
	8 Conclusion

