pchristm commited on
Commit
c39ac45
·
1 Parent(s): 66f6cb4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +1 -1
README.md CHANGED
@@ -38,7 +38,7 @@ Further details will be provided in a dedicated write-up soon.
38
 
39
 
40
  ### Dataset Creation
41
- CompMix collates the completed versions of the conversational questions in ConvMix, and are provided directly by the crowdworkers.
42
 
43
  The ConvMix benchmark, on which CompMix is based, was created by real humans. We tried to ensure that the collected data is as natural as possible. Master crowdworkers on Amazon Mechanical Turk (AMT) selected an entity of interest in a specific domain, and then started issuing conversational questions on this entity, potentially drifting to other topics of interest throughout the course of the conversation. By letting users choose the entities themselves, we aimed to ensure that they are more interested into the topics the conversations are based on. After writing a question, users were asked to find the answer in eithers Wikidata, Wikipedia text, a Wikipedia table or a Wikipedia infobox, whatever they find more natural for the specific question at hand. Since Wikidata requires some basic understanding of knowledge bases, we provided video guidelines that illustrated how Wikidata can be used for detecting answers, following an example conversation. For each conversational question, that might be incomplete, the crowdworker provides a completed question that is intent-explicit, and can be answered without the conversational context. These questions constitute the CompMix dataset. We provide also the answer source the user found the answer in and question entities.
44
 
 
38
 
39
 
40
  ### Dataset Creation
41
+ CompMix collates the completed versions of the conversational questions in ConvMix, that are provided directly by the crowdworkers.
42
 
43
  The ConvMix benchmark, on which CompMix is based, was created by real humans. We tried to ensure that the collected data is as natural as possible. Master crowdworkers on Amazon Mechanical Turk (AMT) selected an entity of interest in a specific domain, and then started issuing conversational questions on this entity, potentially drifting to other topics of interest throughout the course of the conversation. By letting users choose the entities themselves, we aimed to ensure that they are more interested into the topics the conversations are based on. After writing a question, users were asked to find the answer in eithers Wikidata, Wikipedia text, a Wikipedia table or a Wikipedia infobox, whatever they find more natural for the specific question at hand. Since Wikidata requires some basic understanding of knowledge bases, we provided video guidelines that illustrated how Wikidata can be used for detecting answers, following an example conversation. For each conversational question, that might be incomplete, the crowdworker provides a completed question that is intent-explicit, and can be answered without the conversational context. These questions constitute the CompMix dataset. We provide also the answer source the user found the answer in and question entities.
44