File size: 6,820 Bytes
adf7c9a
 
 
 
 
 
 
 
 
 
 
 
 
0daa810
 
 
 
 
 
 
adf7c9a
 
 
 
 
0daa810
 
36d5034
 
 
 
 
 
 
adf7c9a
36d5034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9346565
36d5034
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
44c74d9
30c66a8
ebe421d
30c66a8
36d5034
 
44c74d9
 
 
 
 
 
 
 
 
 
 
 
 
 
93c9409
30c66a8
44c74d9
b419f86
ebe421d
146bbb9
2b65111
28e96aa
2b65111
44c74d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
---
dataset_info:
  features:
  - name: repo_name
    dtype: string
  - name: repo_commit
    dtype: string
  - name: repo_content
    dtype: string
  - name: repo_readme
    dtype: string
  splits:
  - name: train
    num_bytes: 29227644
    num_examples: 158
  - name: test
    num_bytes: 8765331
    num_examples: 40
  download_size: 12307532
  dataset_size: 37992975
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- summarization
tags:
- code
size_categories:
- n<1K
---

# Generate README Eval

The generate-readme-eval is a dataset (train split) and benchmark (test split) to evaluate the effectiveness of LLMs
when summarizing entire GitHub repos in form of a README.md file. The datset is curated from top 400 real Python repositories
from GitHub with at least 1000 stars and 100 forks. The script used to generate the dataset can be found [here](_script_for_gen.py).
For the dataset we restrict ourselves to GH repositories that are less than 100k tokens in size to allow us to put the entire repo
in the context of LLM in a single call. The `train` split of the dataset can be used to fine-tune your own model, the results
reported here are for the `test` split.

To evaluate a LLM on the benchmark we can use the evaluation script given [here](_script_for_eval.py). During evaluation we prompt
the LLM to generate a structured README.md file using the entire contents of the repository (`repo_content`). We evaluate the output
response from LLM by comparing it with the actual README file of that repository across several different metrics.

In addition to the traditional NLP metircs like BLEU, ROUGE scores and cosine similarity, we also compute custom metrics 
that capture structural similarity, code consistency, readbility ([FRES](https://simple.wikipedia.org/wiki/Flesch_Reading_Ease)) and information retrieval (from code to README). The final score
is generated between by taking a weighted average of the metrics. The weights used for the final score are shown below.

```
weights = {
    'bleu': 0.1,
    'rouge-1': 0.033,
    'rouge-2': 0.033,
    'rouge-l': 0.034,
    'cosine_similarity': 0.1,
    'structural_similarity': 0.1,
    'information_retrieval': 0.2,
    'code_consistency': 0.2,
    'readability': 0.2
}
```

At the end of evaluation the script will print the metrics and store the entire run in a log file. If you want to add your model to the 
leaderboard please create a PR with the log file of the run and details about the model.

If we use the existing README.md files in the repositories as the golden output, we would get a score of 56.79 on this benchmark. 
We can validate it by running the evaluation script with `--oracle` flag.
The oracle run log is available [here](oracle_results_20240912_155859.log).

# Leaderboard

The current SOTA model on this benchmark in zero shot setting is **Gemini-1.5-Flash-Exp-0827**. 
It scores the highest across a number of different metrics.

bleu: 0.0072
rouge-1: 0.1196
rouge-2: 0.0169
rouge-l: 0.1151
cosine_similarity: 0.3029
structural_similarity: 0.2416
information_retrieval: 0.4450
code_consistency: 0.0796
readability: 0.3790
weighted_score: 0.2443

| Model | Score | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-l | Cosine-Sim | Structural-Sim | Info-Ret | Code-Consistency | Readability | Logs |  
|:-----:|:-----:|:----:|:-------:|:-------:|:-------:|:----------:|:--------------:|:--------:|:----------------:|:-----------:|:----:|
| llama3.1-8b-instruct | 24.43 | 0.72 | 11.96 | 1.69 | 11.51 | 30.29 | 24.16 | 44.50 | 7.96 | 37.90 | [link](llama3.1-8b-instruct-fp16_results_20240912_185437.log) |
| mistral-nemo-instruct-2407 | 25.62 | 1.09 | 11.24 | 1.70 | 10.94 | 26.62 | 24.26 | 52.00 | **8.80** | 37.30 | [link](mistral-nemo-12b-instruct-2407-fp16_results_20240912_182234.log) |
| gpt-4o-mini-2024-07-18 | 32.16 | 1.64 | 15.46 | 3.85 | 14.84 | 40.57 | 23.81 | 72.50 | 4.77 | 44.81 | [link](gpt-4o-mini-2024-07-18_results_20240912_161045.log) | 
| gpt-4o-2024-08-06 | 33.13 | 1.68 | 15.36 | 3.59 | 14.81 | 40.00 | 23.91 | 74.50 | 8.36 | 44.33 | [link](gpt-4o-2024-08-06_results_20240912_155645.log) | 
| gemini-1.5-flash-8b-exp-0827 | 32.12 | 1.36 | 14.66 | 3.31 | 14.14 | 38.31 | 23.00 | 70.00 | 7.43 | **46.47** | [link](gemini-1.5-flash-8b-exp-0827_results_20240912_134026.log) | 
| **gemini-1.5-flash-exp-0827** | **33.43** | 1.66 | **16.00** | 3.88 | **15.33** | **41.87** | 23.59 | **76.50** | 7.86 | 43.34 | [link](gemini-1.5-flash-exp-0827_results_20240912_144919.log) | 
| gemini-1.5-pro-exp-0827 | 32.51 | **2.55** | 15.27 | **4.97** | 14.86 | 41.09 | **23.94** | 72.82 | 6.73 | 43.34 | [link](gemini-1.5-pro-exp-0827_results_20240912_141225.log) | 
| oracle-score | 56.79 | 100.00 | 100.00  | 100.00  | 100.00  | 100.00  | 98.24 | 59.00 | 11.01 | 14.84 | [link](oracle_results_20240912_155859.log) | 

## Few-Shot

This benchmark is interesting because it is not that easy to few-shot your way to improve performance. There are couple of reasons for that:

1) The average context length required for each item can be up to 100k tokens which makes it out of the reach of most
models except Google Gemini which has a context legnth of up to 2 Million tokens.

2) There is a trade-off in accuracy inherit in the benchmark as adding more examples makes some of the metrics like `information_retrieval`
and `readability` worse. At larger contexts models do not have perfect recall and may miss important information. 

Our experiments with few-shot prompts confirm this, there is 1

bleu: 0.1924
rouge-1: 0.3231
rouge-2: 0.2148
rouge-l: 0.3174
cosine_similarity: 0.6149
structural_similarity: 0.3317
information_retrieval: 0.5950
code_consistency: 0.1148
readability: 0.2765
weighted_score: 0.3397

| Model | Score | BLEU | ROUGE-1 | ROUGE-2 | ROUGE-l | Cosine-Sim | Structural-Sim | Info-Ret | Code-Consistency | Readability | Logs |  
|:-----:|:-----:|:----:|:-------:|:-------:|:-------:|:----------:|:--------------:|:--------:|:----------------:|:-----------:|:----:|
| 0-shot-gemini-1.5-flash-exp-0827 | 33.43 | 1.66 | 16.00 | 3.88 | 15.33 | 41.87 | 23.59 | 76.50 | 7.86 | 43.34 | [link](gemini-1.5-flash-exp-0827_results_20240912_144919.log) | 
| 1-shot-gemini-1.5-flash-exp-0827 | 35.40 | 21.81 | 34.00 | 24.97 | 33.61 | 61.53 | 37.60 | 61.00 | 12.89 | 27.22 | [link](1-shot-gemini-1.5-flash-exp-0827_results_20240912_183343.log) | 
| 3-shot-gemini-1.5-flash-exp-0827 | 33.43 | 1.66 | 16.00 | 3.88 | 15.33 | 41.87 | 23.59 | 76.50 | 7.86 | 43.34 | [link](gemini-1.5-flash-exp-0827_results_20240912_144919.log) | 
| 5-shot-gemini-1.5-flash-exp-0827 | 33.97 | 19.24 | 32.31 | 21.48 | 31.74 | 61.49 | 33.17 | 59.50 | 11.48 | 27.65 | [link](5-shot-gemini-1.5-flash-exp-0827_results_20240912_180343.log) |