|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pickle |
|
from pathlib import Path |
|
from typing import Callable, Dict, List, Optional, Tuple, Union |
|
|
|
import numpy as np |
|
import torch |
|
from torch import nn |
|
from torch.optim import Adam |
|
from torch.utils.data import DataLoader, Subset |
|
|
|
|
|
def slide_level_train_step( |
|
model: torch.nn.Module, |
|
train_dataloader: torch.utils.data.DataLoader, |
|
criterion: torch.nn.Module, |
|
optimizer: torch.optim.Optimizer, |
|
device: str = "cpu", |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
"""Training step for slide-level experiments. This will serve as the |
|
``train_step`` in ``TorchTrainer``printclass. |
|
|
|
Parameters |
|
---------- |
|
model: nn.Module |
|
The PyTorch model to be trained. |
|
train_dataloader: torch.utils.data.DataLoader |
|
Training data loader. |
|
criterion: nn.Module |
|
The loss criterion used for training. |
|
optimizer: Callable = Adam |
|
The optimizer class to use. |
|
device : str = "cpu" |
|
The device to use for training and evaluation. |
|
""" |
|
model.train() |
|
|
|
_epoch_loss, _epoch_logits, _epoch_labels = [], [], [] |
|
|
|
for batch in train_dataloader: |
|
|
|
features, mask, labels = batch |
|
|
|
|
|
features = features.to(device) |
|
mask = mask.to(device) |
|
labels = labels.to(device) |
|
|
|
|
|
logits = model(features, mask) |
|
loss = criterion(logits, labels) |
|
loss.backward() |
|
optimizer.step() |
|
optimizer.zero_grad() |
|
|
|
|
|
_epoch_loss.append(loss.detach().cpu().numpy()) |
|
_epoch_logits.append(logits.detach()) |
|
_epoch_labels.append(labels.detach()) |
|
|
|
_epoch_loss = np.mean(_epoch_loss) |
|
_epoch_logits = torch.cat(_epoch_logits, dim=0).cpu().numpy() |
|
_epoch_labels = torch.cat(_epoch_labels, dim=0).cpu().numpy() |
|
|
|
return _epoch_loss, _epoch_logits, _epoch_labels |
|
|
|
|
|
def slide_level_val_step( |
|
model: torch.nn.Module, |
|
val_dataloader: torch.utils.data.DataLoader, |
|
criterion: torch.nn.Module, |
|
device: str, |
|
) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: |
|
"""Inference step for slide-level experiments. This will serve as the |
|
``val_step`` in ``TorchTrainer``class. |
|
|
|
Parameters |
|
---------- |
|
model: nn.Module |
|
The PyTorch model to be trained. |
|
val_dataloader: torch.utils.data.DataLoader |
|
Inference data loader. |
|
criterion: nn.Module |
|
The loss criterion used for training. |
|
device : str = "cpu" |
|
The device to use for training and evaluation. |
|
""" |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
_epoch_loss, _epoch_logits, _epoch_labels = [], [], [] |
|
|
|
for batch in val_dataloader: |
|
|
|
features, mask, labels = batch |
|
|
|
|
|
features = features.to(device) |
|
mask = mask.to(device) |
|
labels = labels.to(device) |
|
|
|
|
|
logits = model(features, mask) |
|
loss = criterion(logits, labels) |
|
|
|
|
|
_epoch_loss.append(loss.detach().cpu().numpy()) |
|
_epoch_logits.append(logits.detach()) |
|
_epoch_labels.append(labels.detach()) |
|
|
|
_epoch_loss = np.mean(_epoch_loss) |
|
_epoch_logits = torch.cat(_epoch_logits, dim=0).cpu().numpy() |
|
_epoch_labels = torch.cat(_epoch_labels, dim=0).cpu().numpy() |
|
|
|
return _epoch_loss, _epoch_logits, _epoch_labels |
|
|
|
|
|
class BaseTrainer: |
|
"""Base trainer class with ``train``, ``evaluate``, ``save`` and ``load`` |
|
methods. ``train`` and ``evaluate`` methods should be overriden.""" |
|
|
|
def __init__(self): |
|
pass |
|
|
|
def train( |
|
self, |
|
train_set: Subset, |
|
val_set: Subset, |
|
) -> Tuple[Dict[str, float], Dict[str, float]]: |
|
"""Training function.""" |
|
raise NotImplementedError |
|
|
|
def evaluate( |
|
self, |
|
test_set: Subset, |
|
) -> Dict[str, float]: |
|
"""Inference function.""" |
|
raise NotImplementedError |
|
|
|
def save(self, filepath: Union[Path, str]): |
|
"""Model serialization.""" |
|
filepath = Path(filepath).with_suffix(".pkl") |
|
with filepath.open("wb") as p: |
|
pickle.dump(self, p) |
|
|
|
@classmethod |
|
def load(cls, filepath: Union[Path, str]): |
|
"""Model loading.""" |
|
del cls |
|
filepath = Path(filepath).with_suffix(".pkl") |
|
with filepath.open("rb") as p: |
|
obj = pickle.load(p) |
|
return obj |
|
|
|
|
|
class TorchTrainer(BaseTrainer): |
|
"""Trainer class for training and evaluating PyTorch models. |
|
|
|
Parameters |
|
---------- |
|
model: nn.Module |
|
The PyTorch model to be trained. |
|
criterion: nn.Module |
|
The loss criterion used for training. |
|
metrics: Dict[str, Callable] |
|
Dictionary of metrics functions to evaluate the model's performance. |
|
batch_size: int = 16 |
|
The batch size for training and evaluation |
|
num_epochs : int = 10 |
|
The number of training epochs. |
|
learning_rate: float = 1.0e-3 |
|
The learning rate for the optimizer. |
|
weight_decay: float = 0.0 |
|
The weight decay for the optimizer. |
|
device : str = "cpu" |
|
The device to use for training and evaluation. |
|
optimizer: Callable = Adam |
|
The optimizer class to use. |
|
train_step: Callable = slide_level_train_step |
|
The function for training step. |
|
val_step: Callable = slide_level_val_step |
|
The function for validation step. |
|
collator: Optional[Callable] = None |
|
The collator function for data preprocessing. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
model: nn.Module, |
|
criterion: nn.Module, |
|
metrics: Dict[str, Callable], |
|
batch_size: int = 16, |
|
num_epochs: int = 10, |
|
learning_rate: float = 1.0e-3, |
|
weight_decay: float = 0.0, |
|
device: str = "cpu", |
|
optimizer: Callable = Adam, |
|
train_step: Callable = slide_level_train_step, |
|
val_step: Callable = slide_level_val_step, |
|
collator: Optional[Callable] = None, |
|
): |
|
super().__init__() |
|
self.model = model |
|
self.criterion = criterion |
|
self.optimizer = optimizer |
|
self.metrics = metrics |
|
|
|
self.train_step = train_step |
|
self.val_step = val_step |
|
|
|
self.num_epochs = num_epochs |
|
self.batch_size = batch_size |
|
self.learning_rate = learning_rate |
|
self.weight_decay = weight_decay |
|
|
|
self.collator = collator |
|
self.device = device |
|
|
|
self.train_losses: List[float] |
|
self.val_losses: List[float] |
|
self.train_metrics: Dict[str, List[float]] |
|
self.val_metrics: Dict[str, List[float]] |
|
|
|
def train( |
|
self, |
|
train_set: Subset, |
|
val_set: Subset, |
|
) -> Tuple[Dict[str, List[float]], Dict[str, List[float]]]: |
|
""" |
|
Train the model using the provided training and validation datasets. |
|
|
|
Parameters |
|
---------- |
|
train_set: Subset |
|
The training dataset. |
|
val_set: Subset |
|
The validation dataset. |
|
|
|
Returns |
|
------- |
|
Tuple[Dict[str, List[float]], Dict[str, List[float]]] |
|
2 dictionaries containing the training and validation metrics for each epoch. |
|
""" |
|
|
|
train_dataloader = DataLoader( |
|
dataset=train_set, |
|
shuffle=True, |
|
batch_size=self.batch_size, |
|
pin_memory=True, |
|
collate_fn=self.collator, |
|
drop_last=True, |
|
) |
|
val_dataloader = DataLoader( |
|
dataset=val_set, |
|
shuffle=False, |
|
batch_size=self.batch_size, |
|
pin_memory=True, |
|
collate_fn=self.collator, |
|
drop_last=False, |
|
) |
|
|
|
|
|
model = self.model.to(self.device) |
|
criterion = self.criterion.to(self.device) |
|
optimizer = self.optimizer( |
|
params=model.parameters(), |
|
lr=self.learning_rate, |
|
weight_decay=self.weight_decay, |
|
) |
|
|
|
|
|
train_losses, val_losses = [], [] |
|
train_metrics: Dict[str, List[float]] = { |
|
k: [] for k in self.metrics.keys() |
|
} |
|
val_metrics: Dict[str, List[float]] = { |
|
k: [] for k in self.metrics.keys() |
|
} |
|
for ep in range(self.num_epochs): |
|
|
|
( |
|
train_epoch_loss, |
|
train_epoch_logits, |
|
train_epoch_labels, |
|
) = self.train_step( |
|
model=model, |
|
train_dataloader=train_dataloader, |
|
criterion=criterion, |
|
optimizer=optimizer, |
|
device=self.device, |
|
) |
|
|
|
|
|
val_epoch_loss, val_epoch_logits, val_epoch_labels = self.val_step( |
|
model=model, |
|
val_dataloader=val_dataloader, |
|
criterion=criterion, |
|
device=self.device, |
|
) |
|
|
|
|
|
for k, m in self.metrics.items(): |
|
train_metric = m(train_epoch_labels, train_epoch_logits) |
|
val_metric = m(val_epoch_labels, val_epoch_logits) |
|
|
|
train_metrics[k].append(train_metric) |
|
val_metrics[k].append(val_metric) |
|
|
|
print( |
|
f"Epoch {ep+1}: train_loss={train_epoch_loss:.5f}, train_{k}={train_metric:.4f}, val_loss={val_epoch_loss:.5f}, val_{k}={val_metric:.4f}" |
|
) |
|
|
|
train_losses.append(train_epoch_loss) |
|
val_losses.append(val_epoch_loss) |
|
|
|
self.train_losses = train_losses |
|
self.val_losses = val_losses |
|
self.train_metrics = train_metrics |
|
self.val_metrics = val_metrics |
|
|
|
return train_metrics, val_metrics |
|
|
|
def evaluate( |
|
self, |
|
test_set: Subset, |
|
) -> Dict[str, float]: |
|
"""Evaluate the model using the provided test dataset. |
|
|
|
Parameters |
|
---------- |
|
test_set: Subset |
|
The test dataset. |
|
|
|
Returns |
|
------- |
|
Dict[str, float] |
|
A dictionary containing the test metrics. |
|
""" |
|
|
|
test_dataloader = DataLoader( |
|
dataset=test_set, |
|
shuffle=False, |
|
batch_size=self.batch_size, |
|
pin_memory=True, |
|
collate_fn=self.collator, |
|
drop_last=False, |
|
) |
|
|
|
|
|
model = self.model.to(self.device) |
|
criterion = self.criterion.to(self.device) |
|
|
|
|
|
_, test_epoch_logits, test_epoch_labels = self.val_step( |
|
model=model, |
|
val_dataloader=test_dataloader, |
|
criterion=criterion, |
|
device=self.device, |
|
) |
|
|
|
|
|
test_metrics = { |
|
k: m(test_epoch_labels, test_epoch_logits) |
|
for k, m in self.metrics.items() |
|
} |
|
|
|
return test_metrics |
|
|
|
def predict( |
|
self, |
|
test_set: Subset, |
|
) -> Tuple[np.array, np.array]: |
|
"""Make predictions using the provided test dataset. |
|
|
|
Parameters |
|
---------- |
|
test_set: Subset |
|
The test dataset. |
|
|
|
Returns |
|
-------- |
|
Tuple[np.array, np.array] |
|
A tuple containing the test labels and logits. |
|
""" |
|
|
|
test_dataloader = DataLoader( |
|
dataset=test_set, |
|
shuffle=False, |
|
batch_size=self.batch_size, |
|
pin_memory=True, |
|
collate_fn=self.collator, |
|
drop_last=False, |
|
) |
|
|
|
|
|
model = self.model.to(self.device) |
|
criterion = self.criterion.to(self.device) |
|
|
|
|
|
_, test_epoch_logits, test_epoch_labels = self.val_step( |
|
model=model, |
|
val_dataloader=test_dataloader, |
|
criterion=criterion, |
|
device=self.device, |
|
) |
|
|
|
return test_epoch_labels, test_epoch_logits |
|
|
|
def compute_metrics( |
|
self, labels: np.array, logits: np.array |
|
) -> Dict[str, float]: |
|
"""Compute metrics using the provided labels and logits. |
|
|
|
Parameters |
|
---------- |
|
labels: np.ndarray |
|
The ground truth labels. |
|
logits: np.ndarray |
|
The predicted logits. |
|
|
|
Returns: |
|
Dict[str, float] |
|
A dictionary containing the computed metrics. |
|
""" |
|
test_metrics = { |
|
k: metric(labels, logits) for k, metric in self.metrics.items() |
|
} |
|
return test_metrics |
|
|
|
|