---
license: cc-by-sa-4.0
dataset_info:
features:
- name: video_id
dtype: string
- name: chunk_idx
dtype: int64
- name: chunk_text
dtype: string
- name: video_metadata
dtype: string
- name: video_language
dtype: string
- name: chunk_media
dtype: string
splits:
- name: shard_0
num_bytes: 2152532
num_examples: 694
- name: shard_1
num_bytes: 2039321
num_examples: 628
- name: shard_10
num_bytes: 1711625
num_examples: 502
- name: shard_100
num_bytes: 1879092
num_examples: 608
- name: shard_1000
num_bytes: 2554377
num_examples: 631
- name: shard_10000
num_bytes: 1436826
num_examples: 409
- name: shard_10001
num_bytes: 2566374
num_examples: 919
- name: shard_10002
num_bytes: 1441850
num_examples: 416
- name: shard_10003
num_bytes: 1479331
num_examples: 453
- name: shard_10004
num_bytes: 2304946
num_examples: 665
- name: shard_10005
num_bytes: 2326767
num_examples: 765
- name: shard_10008
num_bytes: 2405272
num_examples: 769
- name: shard_10006
num_bytes: 2272052
num_examples: 667
- name: shard_10007
num_bytes: 2369366
num_examples: 632
- name: shard_10009
num_bytes: 2081310
num_examples: 626
- name: shard_1001
num_bytes: 2383462
num_examples: 664
- name: shard_10010
num_bytes: 4633710
num_examples: 1011
- name: shard_10011
num_bytes: 2031992
num_examples: 572
- name: shard_10016
num_bytes: 1524141
num_examples: 440
- name: shard_10027
num_bytes: 2009449
num_examples: 561
- name: shard_1004
num_bytes: 2236232
num_examples: 679
- name: shard_10015
num_bytes: 1936158
num_examples: 651
- name: shard_10022
num_bytes: 1375721
num_examples: 381
- name: shard_10020
num_bytes: 1851431
num_examples: 572
- name: shard_10024
num_bytes: 2066917
num_examples: 621
- name: shard_10012
num_bytes: 2046815
num_examples: 626
- name: shard_10013
num_bytes: 2377377
num_examples: 691
- name: shard_10014
num_bytes: 1775675
num_examples: 492
- name: shard_10017
num_bytes: 3541944
num_examples: 1225
- name: shard_1002
num_bytes: 2343929
num_examples: 603
- name: shard_10039
num_bytes: 2087969
num_examples: 600
- name: shard_10033
num_bytes: 2335915
num_examples: 676
- name: shard_10031
num_bytes: 1783883
num_examples: 478
- name: shard_10036
num_bytes: 1701763
num_examples: 490
- name: shard_10026
num_bytes: 1930478
num_examples: 585
- name: shard_10060
num_bytes: 2259114
num_examples: 677
- name: shard_1005
num_bytes: 2555364
num_examples: 580
- name: shard_10035
num_bytes: 1755575
num_examples: 572
- name: shard_10021
num_bytes: 2182556
num_examples: 599
- name: shard_10025
num_bytes: 1763936
num_examples: 547
- name: shard_10057
num_bytes: 1655171
num_examples: 514
- name: shard_10071
num_bytes: 2342632
num_examples: 668
- name: shard_10082
num_bytes: 2396177
num_examples: 690
- name: shard_10093
num_bytes: 1926455
num_examples: 618
- name: shard_1003
num_bytes: 2167793
num_examples: 739
- name: shard_10069
num_bytes: 2212952
num_examples: 625
- name: shard_10058
num_bytes: 2245824
num_examples: 679
- name: shard_10078
num_bytes: 1851423
num_examples: 539
- name: shard_10084
num_bytes: 1937783
num_examples: 604
- name: shard_10059
num_bytes: 2326223
num_examples: 666
- name: shard_10052
num_bytes: 2533841
num_examples: 689
- name: shard_10088
num_bytes: 1971321
num_examples: 615
- name: shard_10046
num_bytes: 1849419
num_examples: 521
- name: shard_10074
num_bytes: 1722048
num_examples: 435
- name: shard_10110
num_bytes: 1936246
num_examples: 500
- name: shard_10102
num_bytes: 1304033
num_examples: 352
- name: shard_10097
num_bytes: 2877224
num_examples: 912
- name: shard_10109
num_bytes: 1777242
num_examples: 494
- name: shard_10051
num_bytes: 2558254
num_examples: 746
- name: shard_10118
num_bytes: 2148115
num_examples: 595
- name: shard_10086
num_bytes: 1216622
num_examples: 384
download_size: 135162670
dataset_size: 128469345
configs:
- config_name: default
data_files:
- split: shard_0
path: data/shard_0-*
- split: shard_1
path: data/shard_1-*
- split: shard_10
path: data/shard_10-*
- split: shard_100
path: data/shard_100-*
- split: shard_1000
path: data/shard_1000-*
- split: shard_10000
path: data/shard_10000-*
- split: shard_10001
path: data/shard_10001-*
- split: shard_10002
path: data/shard_10002-*
- split: shard_10003
path: data/shard_10003-*
- split: shard_10004
path: data/shard_10004-*
- split: shard_10005
path: data/shard_10005-*
- split: shard_10011
path: data/shard_10011-*
- split: shard_10008
path: data/shard_10008-*
- split: shard_10010
path: data/shard_10010-*
- split: shard_10013
path: data/shard_10013-*
- split: shard_10006
path: data/shard_10006-*
- split: shard_10012
path: data/shard_10012-*
- split: shard_10007
path: data/shard_10007-*
- split: shard_10009
path: data/shard_10009-*
- split: shard_1001
path: data/shard_1001-*
- split: shard_10014
path: data/shard_10014-*
- split: shard_10016
path: data/shard_10016-*
- split: shard_10015
path: data/shard_10015-*
- split: shard_10022
path: data/shard_10022-*
- split: shard_10025
path: data/shard_10025-*
- split: shard_10020
path: data/shard_10020-*
- split: shard_10027
path: data/shard_10027-*
- split: shard_10031
path: data/shard_10031-*
- split: shard_10024
path: data/shard_10024-*
- split: shard_10046
path: data/shard_10046-*
- split: shard_1004
path: data/shard_1004-*
- split: shard_10039
path: data/shard_10039-*
- split: shard_10033
path: data/shard_10033-*
- split: shard_10017
path: data/shard_10017-*
- split: shard_1002
path: data/shard_1002-*
- split: shard_10036
path: data/shard_10036-*
- split: shard_1005
path: data/shard_1005-*
- split: shard_10026
path: data/shard_10026-*
- split: shard_10060
path: data/shard_10060-*
- split: shard_10035
path: data/shard_10035-*
- split: shard_10021
path: data/shard_10021-*
- split: shard_10057
path: data/shard_10057-*
- split: shard_10071
path: data/shard_10071-*
- split: shard_10082
path: data/shard_10082-*
- split: shard_10093
path: data/shard_10093-*
- split: shard_1003
path: data/shard_1003-*
- split: shard_10069
path: data/shard_10069-*
- split: shard_10058
path: data/shard_10058-*
- split: shard_10078
path: data/shard_10078-*
- split: shard_10084
path: data/shard_10084-*
- split: shard_10059
path: data/shard_10059-*
- split: shard_10052
path: data/shard_10052-*
- split: shard_10097
path: data/shard_10097-*
- split: shard_10088
path: data/shard_10088-*
- split: shard_10074
path: data/shard_10074-*
- split: shard_10110
path: data/shard_10110-*
- split: shard_10118
path: data/shard_10118-*
- split: shard_10102
path: data/shard_10102-*
- split: shard_10109
path: data/shard_10109-*
- split: shard_10051
path: data/shard_10051-*
- split: shard_10086
path: data/shard_10086-*
---
![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp)
# VALID (Video-Audio Large Interleaved Dataset)
## Overview
The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.
## Features
- Audio-Video-Text Format:
A combination of:
```
English text
```
- The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well.
Even though each audio video snippets are no more than 10 seconds (e.g., if a data item has two 10 second videos, then the corresponding English corresponds roughly to 20 seconds of video).
The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion.
- Data Components:
- **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2.
- **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English.
- **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.
- Dataset Size:
- **About 15,000,000 images.**
- **About 30,000,000 audio snippets.**
## File Organization
- Each data entry follows the `