--- license: cc-by-sa-4.0 dataset_info: features: - name: video_id dtype: string - name: chunk_idx dtype: int64 - name: chunk_text dtype: string - name: video_metadata dtype: string - name: video_language dtype: string - name: chunk_media dtype: string splits: - name: shard_0 num_bytes: 2152532 num_examples: 694 - name: shard_1 num_bytes: 2039321 num_examples: 628 - name: shard_10 num_bytes: 1711625 num_examples: 502 - name: shard_100 num_bytes: 1879092 num_examples: 608 - name: shard_1000 num_bytes: 2554377 num_examples: 631 - name: shard_10000 num_bytes: 1436826 num_examples: 409 - name: shard_10001 num_bytes: 2566374 num_examples: 919 - name: shard_10002 num_bytes: 1441850 num_examples: 416 - name: shard_10003 num_bytes: 1479331 num_examples: 453 - name: shard_10004 num_bytes: 2304946 num_examples: 665 - name: shard_10005 num_bytes: 2326767 num_examples: 765 - name: shard_10008 num_bytes: 2405272 num_examples: 769 - name: shard_10006 num_bytes: 2272052 num_examples: 667 - name: shard_10007 num_bytes: 2369366 num_examples: 632 - name: shard_10009 num_bytes: 2081310 num_examples: 626 - name: shard_1001 num_bytes: 2383462 num_examples: 664 - name: shard_10010 num_bytes: 4633710 num_examples: 1011 - name: shard_10011 num_bytes: 2031992 num_examples: 572 - name: shard_10016 num_bytes: 1524141 num_examples: 440 - name: shard_10027 num_bytes: 2009449 num_examples: 561 - name: shard_1004 num_bytes: 2236232 num_examples: 679 - name: shard_10015 num_bytes: 1936158 num_examples: 651 - name: shard_10022 num_bytes: 1375721 num_examples: 381 - name: shard_10020 num_bytes: 1851431 num_examples: 572 - name: shard_10024 num_bytes: 2066917 num_examples: 621 - name: shard_10012 num_bytes: 2046815 num_examples: 626 - name: shard_10013 num_bytes: 2377377 num_examples: 691 - name: shard_10014 num_bytes: 1775675 num_examples: 492 - name: shard_10017 num_bytes: 3541944 num_examples: 1225 - name: shard_1002 num_bytes: 2343929 num_examples: 603 - name: shard_10039 num_bytes: 2087969 num_examples: 600 - name: shard_10033 num_bytes: 2335915 num_examples: 676 - name: shard_10031 num_bytes: 1783883 num_examples: 478 - name: shard_10036 num_bytes: 1701763 num_examples: 490 - name: shard_10026 num_bytes: 1930478 num_examples: 585 - name: shard_10060 num_bytes: 2259114 num_examples: 677 - name: shard_1005 num_bytes: 2555364 num_examples: 580 - name: shard_10035 num_bytes: 1755575 num_examples: 572 - name: shard_10021 num_bytes: 2182556 num_examples: 599 - name: shard_10025 num_bytes: 1763936 num_examples: 547 - name: shard_10057 num_bytes: 1655171 num_examples: 514 - name: shard_10071 num_bytes: 2342632 num_examples: 668 - name: shard_10082 num_bytes: 2396177 num_examples: 690 - name: shard_10093 num_bytes: 1926455 num_examples: 618 - name: shard_1003 num_bytes: 2167793 num_examples: 739 - name: shard_10069 num_bytes: 2212952 num_examples: 625 - name: shard_10058 num_bytes: 2245824 num_examples: 679 - name: shard_10078 num_bytes: 1851423 num_examples: 539 - name: shard_10084 num_bytes: 1937783 num_examples: 604 - name: shard_10059 num_bytes: 2326223 num_examples: 666 - name: shard_10052 num_bytes: 2533841 num_examples: 689 - name: shard_10088 num_bytes: 1971321 num_examples: 615 - name: shard_10046 num_bytes: 1849419 num_examples: 521 - name: shard_10074 num_bytes: 1722048 num_examples: 435 - name: shard_10110 num_bytes: 1936246 num_examples: 500 - name: shard_10102 num_bytes: 1304033 num_examples: 352 - name: shard_10097 num_bytes: 2877224 num_examples: 912 - name: shard_10109 num_bytes: 1777242 num_examples: 494 - name: shard_10051 num_bytes: 2558254 num_examples: 746 - name: shard_10118 num_bytes: 2148115 num_examples: 595 - name: shard_10086 num_bytes: 1216622 num_examples: 384 download_size: 135162670 dataset_size: 128469345 configs: - config_name: default data_files: - split: shard_0 path: data/shard_0-* - split: shard_1 path: data/shard_1-* - split: shard_10 path: data/shard_10-* - split: shard_100 path: data/shard_100-* - split: shard_1000 path: data/shard_1000-* - split: shard_10000 path: data/shard_10000-* - split: shard_10001 path: data/shard_10001-* - split: shard_10002 path: data/shard_10002-* - split: shard_10003 path: data/shard_10003-* - split: shard_10004 path: data/shard_10004-* - split: shard_10005 path: data/shard_10005-* - split: shard_10011 path: data/shard_10011-* - split: shard_10008 path: data/shard_10008-* - split: shard_10010 path: data/shard_10010-* - split: shard_10013 path: data/shard_10013-* - split: shard_10006 path: data/shard_10006-* - split: shard_10012 path: data/shard_10012-* - split: shard_10007 path: data/shard_10007-* - split: shard_10009 path: data/shard_10009-* - split: shard_1001 path: data/shard_1001-* - split: shard_10014 path: data/shard_10014-* - split: shard_10016 path: data/shard_10016-* - split: shard_10015 path: data/shard_10015-* - split: shard_10022 path: data/shard_10022-* - split: shard_10025 path: data/shard_10025-* - split: shard_10020 path: data/shard_10020-* - split: shard_10027 path: data/shard_10027-* - split: shard_10031 path: data/shard_10031-* - split: shard_10024 path: data/shard_10024-* - split: shard_10046 path: data/shard_10046-* - split: shard_1004 path: data/shard_1004-* - split: shard_10039 path: data/shard_10039-* - split: shard_10033 path: data/shard_10033-* - split: shard_10017 path: data/shard_10017-* - split: shard_1002 path: data/shard_1002-* - split: shard_10036 path: data/shard_10036-* - split: shard_1005 path: data/shard_1005-* - split: shard_10026 path: data/shard_10026-* - split: shard_10060 path: data/shard_10060-* - split: shard_10035 path: data/shard_10035-* - split: shard_10021 path: data/shard_10021-* - split: shard_10057 path: data/shard_10057-* - split: shard_10071 path: data/shard_10071-* - split: shard_10082 path: data/shard_10082-* - split: shard_10093 path: data/shard_10093-* - split: shard_1003 path: data/shard_1003-* - split: shard_10069 path: data/shard_10069-* - split: shard_10058 path: data/shard_10058-* - split: shard_10078 path: data/shard_10078-* - split: shard_10084 path: data/shard_10084-* - split: shard_10059 path: data/shard_10059-* - split: shard_10052 path: data/shard_10052-* - split: shard_10097 path: data/shard_10097-* - split: shard_10088 path: data/shard_10088-* - split: shard_10074 path: data/shard_10074-* - split: shard_10110 path: data/shard_10110-* - split: shard_10118 path: data/shard_10118-* - split: shard_10102 path: data/shard_10102-* - split: shard_10109 path: data/shard_10109-* - split: shard_10051 path: data/shard_10051-* - split: shard_10086 path: data/shard_10086-* --- ![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp) # VALID (Video-Audio Large Interleaved Dataset) ## Overview The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning. ## Features - Audio-Video-Text Format: A combination of: ``` English text ``` - The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well. Even though each audio video snippets are no more than 10 seconds (e.g., if a data item has two 10 second videos, then the corresponding English corresponds roughly to 20 seconds of video). The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion. - Data Components: - **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2. - **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English. - **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record. - Dataset Size: - **About 15,000,000 images.** - **About 30,000,000 audio snippets.** ## File Organization - Each data entry follows the `