File size: 19,559 Bytes
faa4dea 30e9659 31f2abc 4a9895d 3916f34 d85d1df 65a1ba2 6ffae49 cdf7b04 9713763 ae3ae8f 2de2eea dd45fd8 c5cda10 75fb32b 44e55f7 9c2c27c 6069fd2 808c18f c4c7d0e 4d41ab7 004b824 bfcea5a 0618d19 882fe78 b0c2dbd ac21dc5 697c6f1 393f550 1101dc9 77ca396 916dfe1 fff4bde 77af593 d8e7ac7 eb1a7fe 02b4a72 6df96d6 e37a757 361a490 e657e05 0ef3976 27b155c a692cc6 ecc82e6 babbb6f 658e438 6cef651 2e68c53 d697f26 6e4e83e 9477c42 96915e0 ca35948 3b980fd fdde8bf f7104e5 a35152c ff1a2c1 a8ef9fb d53b893 55537ec 99383b3 8daabef 6622e67 2d17a9e 89ed52e ae764c0 859cb18 d09db98 d59133f faa4dea 30e9659 60ebae7 5a7386c 467af37 54489e1 6e7f700 19a379d 3916f34 d85d1df 65a1ba2 88e3057 21a38a7 a51effb eea7817 4f6110d 08fb342 64019ba db0cc88 3c1e8a9 07bf7b7 1116bd5 672ab6e 79a4c7d c4c7d0e 4d41ab7 882fe78 9a19803 cd025d4 b0c2dbd 697c6f1 393f550 77ca396 916dfe1 a5a33f2 fff4bde 77af593 bb8c3a9 eb1a7fe 02b4a72 6df96d6 e37a757 361a490 36054b5 e657e05 e89abe8 27b155c fef5839 a692cc6 babbb6f 658e438 6cef651 d697f26 6e4e83e 6afd5a6 d52b3b5 96915e0 ca35948 f7104e5 a35152c ff1a2c1 a8ef9fb d53b893 d17f8cb 55537ec 99383b3 8daabef 6622e67 2d17a9e e771be4 d09db98 d59133f faa4dea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
---
license: cc-by-sa-4.0
dataset_info:
features:
- name: video_id
dtype: string
- name: chunk_idx
dtype: int64
- name: chunk_text
dtype: string
- name: video_metadata
dtype: string
- name: video_language
dtype: string
- name: chunk_media
dtype: string
splits:
- name: shard_0
num_bytes: 2152532
num_examples: 694
- name: shard_1
num_bytes: 2039321
num_examples: 628
- name: shard_10
num_bytes: 1711625
num_examples: 502
- name: shard_100
num_bytes: 1879092
num_examples: 608
- name: shard_1000
num_bytes: 2554377
num_examples: 631
- name: shard_10000
num_bytes: 1436826
num_examples: 409
- name: shard_10001
num_bytes: 2566374
num_examples: 919
- name: shard_10002
num_bytes: 1441850
num_examples: 416
- name: shard_10003
num_bytes: 1479331
num_examples: 453
- name: shard_10004
num_bytes: 2304946
num_examples: 665
- name: shard_10005
num_bytes: 2326767
num_examples: 765
- name: shard_10008
num_bytes: 2405272
num_examples: 769
- name: shard_10006
num_bytes: 2272052
num_examples: 667
- name: shard_10007
num_bytes: 2369366
num_examples: 632
- name: shard_10009
num_bytes: 2081310
num_examples: 626
- name: shard_1001
num_bytes: 2383462
num_examples: 664
- name: shard_10010
num_bytes: 4633710
num_examples: 1011
- name: shard_10011
num_bytes: 2031992
num_examples: 572
- name: shard_10016
num_bytes: 1524141
num_examples: 440
- name: shard_10027
num_bytes: 2009449
num_examples: 561
- name: shard_1004
num_bytes: 2236232
num_examples: 679
- name: shard_10015
num_bytes: 1936158
num_examples: 651
- name: shard_10022
num_bytes: 1375721
num_examples: 381
- name: shard_10020
num_bytes: 1851431
num_examples: 572
- name: shard_10024
num_bytes: 2066917
num_examples: 621
- name: shard_10012
num_bytes: 2046815
num_examples: 626
- name: shard_10013
num_bytes: 2377377
num_examples: 691
- name: shard_10014
num_bytes: 1775675
num_examples: 492
- name: shard_10017
num_bytes: 3541944
num_examples: 1225
- name: shard_1002
num_bytes: 2343929
num_examples: 603
- name: shard_10039
num_bytes: 2087969
num_examples: 600
- name: shard_10033
num_bytes: 2335915
num_examples: 676
- name: shard_10031
num_bytes: 1783883
num_examples: 478
- name: shard_10036
num_bytes: 1701763
num_examples: 490
- name: shard_10060
num_bytes: 2259114
num_examples: 677
- name: shard_1005
num_bytes: 2555364
num_examples: 580
- name: shard_10035
num_bytes: 1755575
num_examples: 572
- name: shard_10021
num_bytes: 2182556
num_examples: 599
- name: shard_10025
num_bytes: 1763936
num_examples: 547
- name: shard_10057
num_bytes: 1655171
num_examples: 514
- name: shard_10071
num_bytes: 2342632
num_examples: 668
- name: shard_10082
num_bytes: 2396177
num_examples: 690
- name: shard_10093
num_bytes: 1926455
num_examples: 618
- name: shard_1003
num_bytes: 2167793
num_examples: 739
- name: shard_10069
num_bytes: 2212952
num_examples: 625
- name: shard_10058
num_bytes: 2245824
num_examples: 679
- name: shard_10078
num_bytes: 1851423
num_examples: 539
- name: shard_10084
num_bytes: 1937783
num_examples: 604
- name: shard_10059
num_bytes: 2326223
num_examples: 666
- name: shard_10052
num_bytes: 2533841
num_examples: 689
- name: shard_10088
num_bytes: 1971321
num_examples: 615
- name: shard_10046
num_bytes: 1849419
num_examples: 521
- name: shard_10110
num_bytes: 1936246
num_examples: 500
- name: shard_10102
num_bytes: 1304033
num_examples: 352
- name: shard_10097
num_bytes: 2877224
num_examples: 912
- name: shard_10109
num_bytes: 1777242
num_examples: 494
- name: shard_10051
num_bytes: 2558254
num_examples: 746
- name: shard_10086
num_bytes: 1216622
num_examples: 384
- name: shard_10074
num_bytes: 1722048
num_examples: 435
- name: shard_10048
num_bytes: 2076505
num_examples: 628
- name: shard_1008
num_bytes: 2280900
num_examples: 603
- name: shard_10118
num_bytes: 2148115
num_examples: 595
- name: shard_10096
num_bytes: 2506838
num_examples: 643
- name: shard_10114
num_bytes: 2792948
num_examples: 806
- name: shard_1014
num_bytes: 2048102
num_examples: 554
- name: shard_10026
num_bytes: 1930478
num_examples: 585
- name: shard_10029
num_bytes: 2677901
num_examples: 649
- name: shard_10147
num_bytes: 2202408
num_examples: 689
- name: shard_10125
num_bytes: 2278114
num_examples: 812
- name: shard_10134
num_bytes: 1225283
num_examples: 382
- name: shard_10054
num_bytes: 2575907
num_examples: 766
- name: shard_10128
num_bytes: 2113780
num_examples: 711
- name: shard_10169
num_bytes: 1591806
num_examples: 477
- name: shard_10143
num_bytes: 1507293
num_examples: 487
- name: shard_10150
num_bytes: 1752046
num_examples: 551
- name: shard_10136
num_bytes: 1738496
num_examples: 470
- name: shard_10065
num_bytes: 1731505
num_examples: 467
- name: shard_10111
num_bytes: 1679102
num_examples: 608
- name: shard_10090
num_bytes: 1720164
num_examples: 512
- name: shard_10106
num_bytes: 2082507
num_examples: 618
- name: shard_10161
num_bytes: 1344032
num_examples: 409
download_size: 152928565
dataset_size: 168394982
configs:
- config_name: default
data_files:
- split: shard_0
path: data/shard_0-*
- split: shard_1
path: data/shard_1-*
- split: shard_10
path: data/shard_10-*
- split: shard_100
path: data/shard_100-*
- split: shard_1000
path: data/shard_1000-*
- split: shard_10000
path: data/shard_10000-*
- split: shard_10001
path: data/shard_10001-*
- split: shard_10002
path: data/shard_10002-*
- split: shard_10003
path: data/shard_10003-*
- split: shard_10004
path: data/shard_10004-*
- split: shard_10005
path: data/shard_10005-*
- split: shard_10011
path: data/shard_10011-*
- split: shard_10008
path: data/shard_10008-*
- split: shard_10010
path: data/shard_10010-*
- split: shard_10013
path: data/shard_10013-*
- split: shard_10006
path: data/shard_10006-*
- split: shard_10012
path: data/shard_10012-*
- split: shard_10007
path: data/shard_10007-*
- split: shard_10009
path: data/shard_10009-*
- split: shard_1001
path: data/shard_1001-*
- split: shard_10014
path: data/shard_10014-*
- split: shard_10016
path: data/shard_10016-*
- split: shard_10015
path: data/shard_10015-*
- split: shard_10022
path: data/shard_10022-*
- split: shard_10025
path: data/shard_10025-*
- split: shard_10020
path: data/shard_10020-*
- split: shard_10027
path: data/shard_10027-*
- split: shard_10031
path: data/shard_10031-*
- split: shard_10024
path: data/shard_10024-*
- split: shard_10046
path: data/shard_10046-*
- split: shard_1004
path: data/shard_1004-*
- split: shard_10039
path: data/shard_10039-*
- split: shard_10033
path: data/shard_10033-*
- split: shard_10017
path: data/shard_10017-*
- split: shard_1002
path: data/shard_1002-*
- split: shard_10036
path: data/shard_10036-*
- split: shard_1005
path: data/shard_1005-*
- split: shard_10026
path: data/shard_10026-*
- split: shard_10060
path: data/shard_10060-*
- split: shard_10035
path: data/shard_10035-*
- split: shard_10021
path: data/shard_10021-*
- split: shard_10057
path: data/shard_10057-*
- split: shard_10071
path: data/shard_10071-*
- split: shard_10082
path: data/shard_10082-*
- split: shard_10093
path: data/shard_10093-*
- split: shard_1003
path: data/shard_1003-*
- split: shard_10069
path: data/shard_10069-*
- split: shard_10058
path: data/shard_10058-*
- split: shard_10078
path: data/shard_10078-*
- split: shard_10084
path: data/shard_10084-*
- split: shard_10059
path: data/shard_10059-*
- split: shard_10052
path: data/shard_10052-*
- split: shard_10097
path: data/shard_10097-*
- split: shard_10088
path: data/shard_10088-*
- split: shard_10074
path: data/shard_10074-*
- split: shard_10110
path: data/shard_10110-*
- split: shard_10118
path: data/shard_10118-*
- split: shard_10102
path: data/shard_10102-*
- split: shard_10109
path: data/shard_10109-*
- split: shard_10051
path: data/shard_10051-*
- split: shard_10086
path: data/shard_10086-*
- split: shard_10048
path: data/shard_10048-*
- split: shard_1008
path: data/shard_1008-*
- split: shard_10090
path: data/shard_10090-*
- split: shard_1014
path: data/shard_1014-*
- split: shard_10096
path: data/shard_10096-*
- split: shard_10114
path: data/shard_10114-*
- split: shard_10029
path: data/shard_10029-*
- split: shard_10147
path: data/shard_10147-*
- split: shard_10125
path: data/shard_10125-*
- split: shard_10134
path: data/shard_10134-*
- split: shard_10054
path: data/shard_10054-*
- split: shard_10065
path: data/shard_10065-*
- split: shard_10128
path: data/shard_10128-*
- split: shard_10169
path: data/shard_10169-*
- split: shard_10143
path: data/shard_10143-*
- split: shard_10150
path: data/shard_10150-*
- split: shard_10136
path: data/shard_10136-*
- split: shard_10111
path: data/shard_10111-*
- split: shard_10106
path: data/shard_10106-*
- split: shard_10161
path: data/shard_10161-*
---
![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp)
# VALID (Video-Audio Large Interleaved Dataset)
## Overview
The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.
## Features
- Audio-Video-Text Format:
A combination of:
```
<video>
<caption><image> the caption </caption>
<caption><image> the caption </caption>
<caption><image> the caption </caption>
</video>
<transcript> <audio> multi-lingual transcript </transcript>
English text
```
- The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and text captions for each image. There can also be standalone images interleaved as well.
Even though each audio video snippets are no more than 10 seconds (e.g., if a data item has two 10 second videos, then the corresponding English <text> corresponds roughly to 20 seconds of video).
The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion.
- Data Components:
- **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2.
- **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English.
- **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.
- Dataset Size:
- **About 15,000,000 images.**
- **About 30,000,000 audio snippets.**
## File Organization
- Each data entry follows the `<video><image(s)><audio><text>` structure as described above.
- Metadata includes timestamps and alignment between modalities.
## Multimodal Details
- **Audio-Video Alignment**: Snippets allow learning temporal relationships between audio and visual elements.
- **Text Annotations**: Text descriptions, including captions and contextual keywords, provide linguistic alignment.
## Preprocessing
- **Phashing for Images**: Ensures that images within the dataset are dynamic and non-static.
- **Audio Snippet Lengths**: Music and sound effects are clipped to 1–3 seconds to minimize copyright concerns.
------
## Licenses
All videos in VALID are CC BY, as declared by their original uploaders on YouTube. We publish the snippets of these videos here under these rights and under the principles of fair use. However, we cannot guarantee that original uploaders had the rights to share the content.
[Todo: Put in AS-IS WHERE-AS usage disclaimer]
## Intended Uses
- **Primary Use Case**: Training models for multimodal understanding, such as contrastive multimodal learning (e.g., CLIP).
- **Not Recommended For**: Generation tasks, as the dataset's quality may not meet generative model requirements.
## Dataset Limitations
- **Quality**: Images and audio are sourced from YouTube and may vary in resolution and clarity.
- **Rights Uncertainty**: While videos are marked as CC-BY by the third party authors of the videos, original rights may not be verifiable.
- **Biases**: The dataset's multilingual audio paired with English-only text may introduce linguistic biases. The large variety of videos may introduce bias.
## Ethical Considerations
The dataset was built under the principles of fair use and CC BY-SA licensing. Its creation strives to align with the spirit of the EU AI Act, emphasizing transparency and safety in AI model development. Users must exercise caution and adhere to copyright and licensing rules when using VALID.
------
## Policy for Managing Video Deletion Requests
Our goal is to establish a clear process for removing videos from our dataset when requested by users or required by external factors, while balancing the rights of content owners, compliance with CC-BY licenses, and the community's ability to utilize the dataset for training and research purposes.
- **1. Respecting Content Owners' Rights:**
All videos in the dataset are under the CC-BY license. As such, proper attribution will always be maintained as required by the license.
If a content owner requests the removal of a video from the dataset, we will balance this request with the community's ability to train on the data, considering the original intent of the CC-BY license.
- **2. Deletion Request Process:**
- Content owners or users can request the removal of a video by FIRST requesting it be removed from Youtube: [Here](https://support.google.com/youtube/answer/2807622?) and [Here](https://support.google.com/youtube/answer/2801895?hl=en).
- Then verifying that it has been removed from YouTube and providing this feedback to us [Here](https://forms.gle/f4zYzZpJU78SBPho9).
- Requests must demonstrate that the video is no longer publicly available on YouTube.
- We will remove the confirmed videos in the next release of this dataset.
- **3. Verification and Balancing Interests:**
All deletion requests will be verified by checking YouTube to ensure the video is no longer available.
We may also remove a video in our sole discretion. Decisions on video removal will take into account:
The rights and wishes of content owners, including their ability to remove their videos from public availability.
The community's need for robust datasets for training and research.
The spirit of the CC-BY license, which permits redistribution and use with proper attribution.
- **4. Responsibilities for Derivative Datasets:**
Users creating derivative datasets must ensure compliance by deleting videos listed in `delete_these_videos.json`.
- **5. Proactive Deletion:**
Videos may be removed proactively under the following circumstances:
- Requests from the hosting provider (e.g., Hugging Face).
- Legal requirements or enforcement actions.
- Internal decisions.
- **6. Community Considerations:**
- The community is encouraged to respect the balance between individual content owners’ wishes and the public benefit derived from open access datasets.
- Efforts will be made to keep the dataset robust while honoring legitimate requests for content removal.
- **7. Updates:**
Users are encouraged to check the `delete_these_videos.json`, from time to time to ensure their copy of the dataset is up to date.
------
## Related Materials:
- If you are looking for CC-BY Youtube transcripts of videos, check out PleIAs’ [https://huggingface.co/datasets/PleIAs/YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
- Also, Huggingface has created an excellent CC-BY Youtube video dataset here: [https://huggingface.co/datasets/HuggingFaceFV/finevideo](https://huggingface.co/datasets/HuggingFaceFV/finevideo)
## Acknowledgement and Thanks
This dataset was built by Ontocord.AI in cooperation with Grass and LAION.AI. It was created as part of the EUHPC grant EUHPC_E03_068 for the Leonardo supercomputers resources in order to build safe multimodal models that comply with the EU AI Act. This dataset was built on a subset of the Grass Video Repository, a massive video dataset of creative commons videos. We deeply thank EuroHPC and Cineca, as well as Huggingface and the open source community for their support.
## About the Contributors:
- [**Grass**](https://www.getgrass.io/) is committed to making the public web accessible again. Through its network of millions of globally distributed nodes, it is capable of collecting petabyte-scale datasets for a variety of use cases, including training AI models. The network is run exclusively by users who have downloaded an application to their devices, allowing them to contribute their unused internet bandwidth to the network. On X: @getgrass_io
- [**LAION**](https://www.laion.ai), is a non-profit organization, that provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.
- [**Ontocord**](https://www.ontocord.ai/ ) is a technology company focused on legally compliant AI. Our mission is to make our AGI future lawful and accessible to everyone.
- [**Alignment Lab AI**](https://x.com/alignment_lab): Our mission is to build a future leveraging AI as a force for good and as a tool that enhances human lives. We believe everyone deserves to harness the power of personal intelligence.
- And many others ...
## Citation
```
@misc{Huu2024VALID,
title = {VALID (Video-Audio Large Interleaved Dataset)},
author = {Huu Nguyen, Ken Tsui, Andrej Radonjic, Christoph Schuhmann},
year = {2024}
url = {https://huggingface.co/datasets/ontocord/VALID},
}
```
|