Datasets:

License:
File size: 19,559 Bytes
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e9659
 
 
31f2abc
 
 
4a9895d
 
 
3916f34
 
 
d85d1df
 
 
65a1ba2
 
 
6ffae49
 
 
cdf7b04
 
 
9713763
 
 
ae3ae8f
 
 
2de2eea
 
 
dd45fd8
 
 
c5cda10
 
 
75fb32b
 
 
44e55f7
 
 
9c2c27c
 
 
6069fd2
 
 
808c18f
 
 
c4c7d0e
 
 
4d41ab7
 
 
004b824
 
 
bfcea5a
 
 
0618d19
 
 
882fe78
 
 
b0c2dbd
 
 
ac21dc5
 
 
697c6f1
 
 
393f550
 
 
1101dc9
 
 
77ca396
 
 
916dfe1
 
 
fff4bde
 
 
 
 
 
77af593
 
 
d8e7ac7
 
 
eb1a7fe
 
 
02b4a72
 
 
6df96d6
 
 
e37a757
 
 
361a490
 
 
e657e05
 
 
0ef3976
 
 
27b155c
 
 
a692cc6
 
 
ecc82e6
 
 
babbb6f
 
 
658e438
 
 
6cef651
 
 
2e68c53
 
 
d697f26
 
 
6e4e83e
 
 
9477c42
 
 
96915e0
 
 
ca35948
 
 
3b980fd
 
 
fdde8bf
 
 
f7104e5
 
 
a35152c
 
 
ff1a2c1
 
 
a8ef9fb
 
 
d53b893
 
 
55537ec
 
 
99383b3
 
 
8daabef
 
 
6622e67
 
 
2d17a9e
 
 
89ed52e
 
 
ae764c0
 
 
859cb18
 
 
d09db98
 
 
d59133f
 
 
 
 
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30e9659
 
60ebae7
 
5a7386c
 
467af37
 
54489e1
 
6e7f700
 
19a379d
 
3916f34
 
d85d1df
 
65a1ba2
 
88e3057
 
21a38a7
 
a51effb
 
eea7817
 
4f6110d
 
08fb342
 
64019ba
 
db0cc88
 
3c1e8a9
 
07bf7b7
 
1116bd5
 
672ab6e
 
79a4c7d
 
c4c7d0e
 
4d41ab7
 
882fe78
 
9a19803
 
cd025d4
 
b0c2dbd
 
697c6f1
 
393f550
 
77ca396
 
916dfe1
 
a5a33f2
 
fff4bde
 
77af593
 
bb8c3a9
 
eb1a7fe
 
02b4a72
 
6df96d6
 
e37a757
 
361a490
 
36054b5
 
e657e05
 
e89abe8
 
27b155c
 
fef5839
 
a692cc6
 
babbb6f
 
658e438
 
6cef651
 
d697f26
 
6e4e83e
 
6afd5a6
 
d52b3b5
 
96915e0
 
ca35948
 
f7104e5
 
a35152c
 
ff1a2c1
 
a8ef9fb
 
d53b893
 
d17f8cb
 
55537ec
 
99383b3
 
8daabef
 
6622e67
 
2d17a9e
 
e771be4
 
d09db98
 
d59133f
 
faa4dea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
---
license: cc-by-sa-4.0
dataset_info:
  features:
  - name: video_id
    dtype: string
  - name: chunk_idx
    dtype: int64
  - name: chunk_text
    dtype: string
  - name: video_metadata
    dtype: string
  - name: video_language
    dtype: string
  - name: chunk_media
    dtype: string
  splits:
  - name: shard_0
    num_bytes: 2152532
    num_examples: 694
  - name: shard_1
    num_bytes: 2039321
    num_examples: 628
  - name: shard_10
    num_bytes: 1711625
    num_examples: 502
  - name: shard_100
    num_bytes: 1879092
    num_examples: 608
  - name: shard_1000
    num_bytes: 2554377
    num_examples: 631
  - name: shard_10000
    num_bytes: 1436826
    num_examples: 409
  - name: shard_10001
    num_bytes: 2566374
    num_examples: 919
  - name: shard_10002
    num_bytes: 1441850
    num_examples: 416
  - name: shard_10003
    num_bytes: 1479331
    num_examples: 453
  - name: shard_10004
    num_bytes: 2304946
    num_examples: 665
  - name: shard_10005
    num_bytes: 2326767
    num_examples: 765
  - name: shard_10008
    num_bytes: 2405272
    num_examples: 769
  - name: shard_10006
    num_bytes: 2272052
    num_examples: 667
  - name: shard_10007
    num_bytes: 2369366
    num_examples: 632
  - name: shard_10009
    num_bytes: 2081310
    num_examples: 626
  - name: shard_1001
    num_bytes: 2383462
    num_examples: 664
  - name: shard_10010
    num_bytes: 4633710
    num_examples: 1011
  - name: shard_10011
    num_bytes: 2031992
    num_examples: 572
  - name: shard_10016
    num_bytes: 1524141
    num_examples: 440
  - name: shard_10027
    num_bytes: 2009449
    num_examples: 561
  - name: shard_1004
    num_bytes: 2236232
    num_examples: 679
  - name: shard_10015
    num_bytes: 1936158
    num_examples: 651
  - name: shard_10022
    num_bytes: 1375721
    num_examples: 381
  - name: shard_10020
    num_bytes: 1851431
    num_examples: 572
  - name: shard_10024
    num_bytes: 2066917
    num_examples: 621
  - name: shard_10012
    num_bytes: 2046815
    num_examples: 626
  - name: shard_10013
    num_bytes: 2377377
    num_examples: 691
  - name: shard_10014
    num_bytes: 1775675
    num_examples: 492
  - name: shard_10017
    num_bytes: 3541944
    num_examples: 1225
  - name: shard_1002
    num_bytes: 2343929
    num_examples: 603
  - name: shard_10039
    num_bytes: 2087969
    num_examples: 600
  - name: shard_10033
    num_bytes: 2335915
    num_examples: 676
  - name: shard_10031
    num_bytes: 1783883
    num_examples: 478
  - name: shard_10036
    num_bytes: 1701763
    num_examples: 490
  - name: shard_10060
    num_bytes: 2259114
    num_examples: 677
  - name: shard_1005
    num_bytes: 2555364
    num_examples: 580
  - name: shard_10035
    num_bytes: 1755575
    num_examples: 572
  - name: shard_10021
    num_bytes: 2182556
    num_examples: 599
  - name: shard_10025
    num_bytes: 1763936
    num_examples: 547
  - name: shard_10057
    num_bytes: 1655171
    num_examples: 514
  - name: shard_10071
    num_bytes: 2342632
    num_examples: 668
  - name: shard_10082
    num_bytes: 2396177
    num_examples: 690
  - name: shard_10093
    num_bytes: 1926455
    num_examples: 618
  - name: shard_1003
    num_bytes: 2167793
    num_examples: 739
  - name: shard_10069
    num_bytes: 2212952
    num_examples: 625
  - name: shard_10058
    num_bytes: 2245824
    num_examples: 679
  - name: shard_10078
    num_bytes: 1851423
    num_examples: 539
  - name: shard_10084
    num_bytes: 1937783
    num_examples: 604
  - name: shard_10059
    num_bytes: 2326223
    num_examples: 666
  - name: shard_10052
    num_bytes: 2533841
    num_examples: 689
  - name: shard_10088
    num_bytes: 1971321
    num_examples: 615
  - name: shard_10046
    num_bytes: 1849419
    num_examples: 521
  - name: shard_10110
    num_bytes: 1936246
    num_examples: 500
  - name: shard_10102
    num_bytes: 1304033
    num_examples: 352
  - name: shard_10097
    num_bytes: 2877224
    num_examples: 912
  - name: shard_10109
    num_bytes: 1777242
    num_examples: 494
  - name: shard_10051
    num_bytes: 2558254
    num_examples: 746
  - name: shard_10086
    num_bytes: 1216622
    num_examples: 384
  - name: shard_10074
    num_bytes: 1722048
    num_examples: 435
  - name: shard_10048
    num_bytes: 2076505
    num_examples: 628
  - name: shard_1008
    num_bytes: 2280900
    num_examples: 603
  - name: shard_10118
    num_bytes: 2148115
    num_examples: 595
  - name: shard_10096
    num_bytes: 2506838
    num_examples: 643
  - name: shard_10114
    num_bytes: 2792948
    num_examples: 806
  - name: shard_1014
    num_bytes: 2048102
    num_examples: 554
  - name: shard_10026
    num_bytes: 1930478
    num_examples: 585
  - name: shard_10029
    num_bytes: 2677901
    num_examples: 649
  - name: shard_10147
    num_bytes: 2202408
    num_examples: 689
  - name: shard_10125
    num_bytes: 2278114
    num_examples: 812
  - name: shard_10134
    num_bytes: 1225283
    num_examples: 382
  - name: shard_10054
    num_bytes: 2575907
    num_examples: 766
  - name: shard_10128
    num_bytes: 2113780
    num_examples: 711
  - name: shard_10169
    num_bytes: 1591806
    num_examples: 477
  - name: shard_10143
    num_bytes: 1507293
    num_examples: 487
  - name: shard_10150
    num_bytes: 1752046
    num_examples: 551
  - name: shard_10136
    num_bytes: 1738496
    num_examples: 470
  - name: shard_10065
    num_bytes: 1731505
    num_examples: 467
  - name: shard_10111
    num_bytes: 1679102
    num_examples: 608
  - name: shard_10090
    num_bytes: 1720164
    num_examples: 512
  - name: shard_10106
    num_bytes: 2082507
    num_examples: 618
  - name: shard_10161
    num_bytes: 1344032
    num_examples: 409
  download_size: 152928565
  dataset_size: 168394982
configs:
- config_name: default
  data_files:
  - split: shard_0
    path: data/shard_0-*
  - split: shard_1
    path: data/shard_1-*
  - split: shard_10
    path: data/shard_10-*
  - split: shard_100
    path: data/shard_100-*
  - split: shard_1000
    path: data/shard_1000-*
  - split: shard_10000
    path: data/shard_10000-*
  - split: shard_10001
    path: data/shard_10001-*
  - split: shard_10002
    path: data/shard_10002-*
  - split: shard_10003
    path: data/shard_10003-*
  - split: shard_10004
    path: data/shard_10004-*
  - split: shard_10005
    path: data/shard_10005-*
  - split: shard_10011
    path: data/shard_10011-*
  - split: shard_10008
    path: data/shard_10008-*
  - split: shard_10010
    path: data/shard_10010-*
  - split: shard_10013
    path: data/shard_10013-*
  - split: shard_10006
    path: data/shard_10006-*
  - split: shard_10012
    path: data/shard_10012-*
  - split: shard_10007
    path: data/shard_10007-*
  - split: shard_10009
    path: data/shard_10009-*
  - split: shard_1001
    path: data/shard_1001-*
  - split: shard_10014
    path: data/shard_10014-*
  - split: shard_10016
    path: data/shard_10016-*
  - split: shard_10015
    path: data/shard_10015-*
  - split: shard_10022
    path: data/shard_10022-*
  - split: shard_10025
    path: data/shard_10025-*
  - split: shard_10020
    path: data/shard_10020-*
  - split: shard_10027
    path: data/shard_10027-*
  - split: shard_10031
    path: data/shard_10031-*
  - split: shard_10024
    path: data/shard_10024-*
  - split: shard_10046
    path: data/shard_10046-*
  - split: shard_1004
    path: data/shard_1004-*
  - split: shard_10039
    path: data/shard_10039-*
  - split: shard_10033
    path: data/shard_10033-*
  - split: shard_10017
    path: data/shard_10017-*
  - split: shard_1002
    path: data/shard_1002-*
  - split: shard_10036
    path: data/shard_10036-*
  - split: shard_1005
    path: data/shard_1005-*
  - split: shard_10026
    path: data/shard_10026-*
  - split: shard_10060
    path: data/shard_10060-*
  - split: shard_10035
    path: data/shard_10035-*
  - split: shard_10021
    path: data/shard_10021-*
  - split: shard_10057
    path: data/shard_10057-*
  - split: shard_10071
    path: data/shard_10071-*
  - split: shard_10082
    path: data/shard_10082-*
  - split: shard_10093
    path: data/shard_10093-*
  - split: shard_1003
    path: data/shard_1003-*
  - split: shard_10069
    path: data/shard_10069-*
  - split: shard_10058
    path: data/shard_10058-*
  - split: shard_10078
    path: data/shard_10078-*
  - split: shard_10084
    path: data/shard_10084-*
  - split: shard_10059
    path: data/shard_10059-*
  - split: shard_10052
    path: data/shard_10052-*
  - split: shard_10097
    path: data/shard_10097-*
  - split: shard_10088
    path: data/shard_10088-*
  - split: shard_10074
    path: data/shard_10074-*
  - split: shard_10110
    path: data/shard_10110-*
  - split: shard_10118
    path: data/shard_10118-*
  - split: shard_10102
    path: data/shard_10102-*
  - split: shard_10109
    path: data/shard_10109-*
  - split: shard_10051
    path: data/shard_10051-*
  - split: shard_10086
    path: data/shard_10086-*
  - split: shard_10048
    path: data/shard_10048-*
  - split: shard_1008
    path: data/shard_1008-*
  - split: shard_10090
    path: data/shard_10090-*
  - split: shard_1014
    path: data/shard_1014-*
  - split: shard_10096
    path: data/shard_10096-*
  - split: shard_10114
    path: data/shard_10114-*
  - split: shard_10029
    path: data/shard_10029-*
  - split: shard_10147
    path: data/shard_10147-*
  - split: shard_10125
    path: data/shard_10125-*
  - split: shard_10134
    path: data/shard_10134-*
  - split: shard_10054
    path: data/shard_10054-*
  - split: shard_10065
    path: data/shard_10065-*
  - split: shard_10128
    path: data/shard_10128-*
  - split: shard_10169
    path: data/shard_10169-*
  - split: shard_10143
    path: data/shard_10143-*
  - split: shard_10150
    path: data/shard_10150-*
  - split: shard_10136
    path: data/shard_10136-*
  - split: shard_10111
    path: data/shard_10111-*
  - split: shard_10106
    path: data/shard_10106-*
  - split: shard_10161
    path: data/shard_10161-*
---

![VALID Dataset](https://huggingface.co/datasets/ontocord/VALID/resolve/main/banner1-1.webp)

# VALID (Video-Audio Large Interleaved Dataset)
## Overview
The **VALID (Video-Audio Large Interleaved Dataset)** is a multimodal dataset comprising approximately 720,000 [Creative Commons licensed](https://creativecommons.org/share-your-work/cclicenses/) videos crawled from YouTube, and processed into audio-video-text data records for machine learning research. The dataset provides a unique opportunity for training models to understand relationships between modalities such as video frames, audio clips, and multilingual textual data, making it suitable for applications like multimodal representation learning.

## Features
- Audio-Video-Text Format:
A combination of:
```
<video>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
    <caption><image> the caption </caption>
</video>
<transcript> <audio> multi-lingual transcript </transcript>
English text
```

- The non-text multimodal portion begins the data item and can include multiple media. Some snippets may have more than one audio, and more than one video. Others may have only images/videos or only audio paired with English text. Each video contains multiple frames stored as images, and  text captions for each image. There can also be standalone images interleaved as well.
Even though each audio video snippets are no more than 10 seconds (e.g., if a data item has two 10 second videos, then the corresponding English <text> corresponds roughly to 20 seconds of video). 
The intention for this format is to teach a model to associate multiple modalities with each other, and understand multiple audio-video elements in an interleaved fashion. 

- Data Components:
  - **Images**: PNG format, phashed to ensure variability, with 0–10 images per audio snippet. Each image includes a caption created with Florence-2. 
  - **Audio**: OGG format, multilingual, ~10 seconds per snippet, with shorter sound or music snippets (1–3 seconds) to minimize copyright issues. Each audio snippet is transcribed either with Whisper for non-English, or with the original Youtube ASR for English. 
  - **Text**: Not including the captions and transcripts, the “text” portion is a concatenation of Youtube’s original English transcripts associated with the above media of around 1–40 words per data record.

- Dataset Size:
  - **About 15,000,000 images.**
  - **About 30,000,000 audio snippets.**

## File Organization
- Each data entry follows the `<video><image(s)><audio><text>` structure as described above.
- Metadata includes timestamps and alignment between modalities.

## Multimodal Details
- **Audio-Video Alignment**: Snippets allow learning temporal relationships between audio and visual elements.
- **Text Annotations**: Text descriptions, including captions and contextual keywords, provide linguistic alignment.

## Preprocessing
- **Phashing for Images**: Ensures that images within the dataset are dynamic and non-static.
- **Audio Snippet Lengths**: Music and sound effects are clipped to 1–3 seconds to minimize copyright concerns.

------

## Licenses
All videos in VALID are CC BY, as declared by their original uploaders on YouTube. We publish the snippets of these videos here under these rights and under the principles of fair use. However, we cannot guarantee that original uploaders had the rights to share the content. 
[Todo: Put in AS-IS WHERE-AS usage disclaimer]


## Intended Uses
- **Primary Use Case**: Training models for multimodal understanding, such as contrastive multimodal learning (e.g., CLIP).
- **Not Recommended For**: Generation tasks, as the dataset's quality may not meet generative model requirements.

## Dataset Limitations
- **Quality**: Images and audio are sourced from YouTube and may vary in resolution and clarity.
- **Rights Uncertainty**: While videos are marked as CC-BY by the third party authors of the videos, original rights may not be verifiable.
- **Biases**: The dataset's multilingual audio paired with English-only text may introduce linguistic biases. The large variety of videos may introduce bias. 


## Ethical Considerations
The dataset was built under the principles of fair use and CC BY-SA licensing. Its creation strives to align with the spirit of the  EU AI Act, emphasizing transparency and safety in AI model development. Users must exercise caution and adhere to copyright and licensing rules when using VALID.

------

## Policy for Managing Video Deletion Requests

Our goal is to establish a clear process for removing videos from our dataset when requested by users or required by external factors, while balancing the rights of content owners, compliance with CC-BY licenses, and the community's ability to utilize the dataset for training and research purposes.

- **1. Respecting Content Owners' Rights:**
All videos in the dataset are under the CC-BY license. As such, proper attribution will always be maintained as required by the license.
If a content owner requests the removal of a video from the dataset, we will balance this request with the community's ability to train on the data, considering the original intent of the CC-BY license.

- **2. Deletion Request Process:**
  - Content owners or users can request the removal of a video by FIRST requesting it be removed from Youtube: [Here](https://support.google.com/youtube/answer/2807622?) and [Here](https://support.google.com/youtube/answer/2801895?hl=en). 
  - Then verifying that it has been removed from YouTube and providing this feedback to us [Here](https://forms.gle/f4zYzZpJU78SBPho9).
  - Requests must demonstrate that the video is no longer publicly available on YouTube.
  - We will remove the confirmed videos in the next release of this dataset.

- **3. Verification and Balancing Interests:**
All deletion requests will be verified by checking YouTube to ensure the video is no longer available.
We may also remove a video in our sole discretion. Decisions on video removal will take into account:
The rights and wishes of content owners, including their ability to remove their videos from public availability.
The community's need for robust datasets for training and research.
The spirit of the CC-BY license, which permits redistribution and use with proper attribution.

- **4. Responsibilities for Derivative Datasets:**
Users creating derivative datasets must ensure compliance by deleting videos listed in `delete_these_videos.json`.

- **5. Proactive Deletion:**
Videos may be removed proactively under the following circumstances:
- Requests from the hosting provider (e.g., Hugging Face).
- Legal requirements or enforcement actions.
- Internal decisions.

- **6. Community Considerations:**
- The community is encouraged to respect the balance between individual content owners’ wishes and the public benefit derived from open access datasets.
- Efforts will be made to keep the dataset robust while honoring legitimate requests for content removal.

- **7. Updates:**
Users are encouraged to check the `delete_these_videos.json`, from time to time to ensure their copy of the dataset is up to date.

------
## Related Materials:

  - If you are looking for CC-BY Youtube transcripts of videos, check out PleIAs’ [https://huggingface.co/datasets/PleIAs/YouTube-Commons](https://huggingface.co/datasets/PleIAs/YouTube-Commons).
  - Also, Huggingface has created an excellent CC-BY Youtube video dataset here: [https://huggingface.co/datasets/HuggingFaceFV/finevideo](https://huggingface.co/datasets/HuggingFaceFV/finevideo)

## Acknowledgement and Thanks

This dataset was built by Ontocord.AI in cooperation with Grass and LAION.AI. It was created as part of the EUHPC grant EUHPC_E03_068 for the Leonardo supercomputers resources in order to build safe multimodal models that comply with the EU AI Act. This dataset was built on a subset of the Grass Video Repository, a massive video dataset of creative commons videos. We deeply thank EuroHPC and Cineca, as well as Huggingface and the open source community for their support.

## About the Contributors:

- [**Grass**](https://www.getgrass.io/) is committed to making the public web accessible again. Through its network of millions of globally distributed nodes, it is capable of collecting petabyte-scale datasets for a variety of use cases, including training AI models. The network is run exclusively by users who have downloaded an application to their devices, allowing them to contribute their unused internet bandwidth to the network. On X: @getgrass_io  
- [**LAION**](https://www.laion.ai), is a non-profit organization, that provides datasets, tools and models to liberate machine learning research. By doing so, we encourage open public education and a more environment-friendly use of resources by reusing existing datasets and models.  
- [**Ontocord**](https://www.ontocord.ai/ ) is a technology company focused on legally compliant AI. Our mission is to make our AGI future lawful and accessible to everyone.  
- [**Alignment Lab AI**](https://x.com/alignment_lab): Our mission is to build a future leveraging AI as a force for good and as a tool that enhances human lives.  We believe everyone deserves to harness the power of personal intelligence. 
- And many others ...
  
## Citation
```
@misc{Huu2024VALID,
title = {VALID (Video-Audio Large Interleaved Dataset)},
author = {Huu Nguyen, Ken Tsui, Andrej Radonjic, Christoph Schuhmann},
year = {2024}
url = {https://huggingface.co/datasets/ontocord/VALID},
}
```