# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """The CC-News dataset is based on Common Crawl News Dataset by Sebastian Nagel""" import json import os import tarfile from fnmatch import fnmatch import datasets def custom_iter_archive(path_or_buf, _filter=lambda x: True): def _iter_archive(f): stream = tarfile.open(fileobj=f, mode="r|*") for i, tarinfo in enumerate(stream): if not _filter(i): continue file_path = tarinfo.name if not tarinfo.isreg(): continue if file_path is None: continue if os.path.basename(file_path).startswith(".") or os.path.basename(file_path).startswith("__"): # skipping hidden files continue file_obj = stream.extractfile(tarinfo) yield file_path, file_obj stream.members = [] del stream if hasattr(path_or_buf, "read"): yield from _iter_archive(path_or_buf) else: with open(path_or_buf, "rb") as f: yield from _iter_archive(f) logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """\ CC-News containing news articles from news sites all over the world \ The data is available on AWS S3 in the Common Crawl bucket at /crawl-data/CC-NEWS/. \ This version of the dataset has 708241 articles. It represents a small portion of English \ language subset of the CC-News dataset created using news-please(Hamborg et al.,2017) to \ collect and extract English language portion of CC-News. """ _CITATION = """\ @InProceedings{Hamborg2017, author = {Hamborg, Felix and Meuschke, Norman and Breitinger, Corinna and Gipp, Bela}, title = {news-please: A Generic News Crawler and Extractor}, year = {2017}, booktitle = {Proceedings of the 15th International Symposium of Information Science}, location = {Berlin}, doi = {10.5281/zenodo.4120316}, pages = {218--223}, month = {March} } """ _PROJECT_URL = "https://commoncrawl.org/2016/10/news-dataset-available/" _DOWNLOAD_URL = "https://storage.googleapis.com/huggingface-nlp/datasets/cc_news/cc_news.tar.gz" class CCNewsConfig(datasets.BuilderConfig): """BuilderConfig for CCNews.""" def __init__(self, **kwargs): """BuilderConfig for CCNews. Args: **kwargs: keyword arguments forwarded to super. """ super(CCNewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) class CCNews(datasets.GeneratorBasedBuilder): """CC-News dataset.""" BUILDER_CONFIGS = [ CCNewsConfig( name="plain_text", description="Plain text", ), CCNewsConfig( name="plain_text_sentences", description="Plain text (sentence level)", ) ] def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "title": datasets.Value("string"), "text": datasets.Value("string"), "domain": datasets.Value("string"), "date": datasets.Value("string"), "description": datasets.Value("string"), "url": datasets.Value("string"), "image_url": datasets.Value("string"), } ), supervised_keys=None, homepage=_PROJECT_URL, citation=_CITATION, ) def _split_generators(self, dl_manager): archive = dl_manager.download(_DOWNLOAD_URL) train_filter = lambda x : (x%10) < 8 val_filter = lambda x: (x%10) == 8 test_filter = lambda x: (x%10) == 9 level = "doc" if self.config.name == "plain_text" else "sentence" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": custom_iter_archive(archive, train_filter), "level": level}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"files": custom_iter_archive(archive, val_filter), "level": level}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"files": custom_iter_archive(archive, test_filter), "level": level}), ] def _generate_examples(self, files, level): id_ = 0 for article_file_path, f in files: if fnmatch(os.path.basename(article_file_path), "*.json"): article = json.load(f) if level == "sentence": full_article = article["maintext"].strip() if article["maintext"] is not None else "" doc_dict = { "title": article["title"].strip() if article["title"] is not None else "", "domain": article["source_domain"].strip() if article["source_domain"] is not None else "", "date": article["date_publish"].strip() if article["date_publish"] is not None else "", "description": article["description"].strip() if article["description"] is not None else "", "url": article["url"].strip() if article["url"] is not None else "", "image_url": article["image_url"].strip() if article["image_url"] is not None else "", } for sent in full_article.split("\n"): doc_dict["text"] = sent yield id_, doc_dict id_ += 1 else: yield id_, { "text": article["maintext"].strip() if article["maintext"] is not None else "", } id_ += 1