File size: 6,285 Bytes
8d31e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ce79c2
8d31e52
 
 
 
91c633a
8d31e52
 
91c633a
 
 
8d31e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe091d8
 
 
 
8d31e52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91c633a
 
 
 
fe091d8
 
8d31e52
 
fe091d8
 
86cbaf4
8d31e52
 
fe091d8
8d31e52
 
 
 
fe091d8
 
8f389a4
fe091d8
 
 
 
 
 
 
8f389a4
e236fee
8f389a4
 
 
 
fe091d8
8d31e52
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""The CC-News dataset is based on Common Crawl News Dataset by Sebastian Nagel"""

import json
import os
import tarfile
from fnmatch import fnmatch

import datasets

def custom_iter_archive(path_or_buf, _filter=lambda x: True):
    def _iter_archive(f):
        stream = tarfile.open(fileobj=f, mode="r|*")
        for i, tarinfo in enumerate(stream):
            if not _filter(i):
                continue
            file_path = tarinfo.name
            if not tarinfo.isreg():
                continue
            if file_path is None:
                continue
            if os.path.basename(file_path).startswith(".") or os.path.basename(file_path).startswith("__"):
                # skipping hidden files
                continue
            file_obj = stream.extractfile(tarinfo)
            yield file_path, file_obj
            stream.members = []
        del stream

    if hasattr(path_or_buf, "read"):
        yield from _iter_archive(path_or_buf)
    else:
        with open(path_or_buf, "rb") as f:
            yield from _iter_archive(f)

logger = datasets.logging.get_logger(__name__)


_DESCRIPTION = """\
CC-News containing news articles from news sites all over the world \
The data is available on AWS S3 in the Common Crawl bucket at /crawl-data/CC-NEWS/. \
This version of the dataset has 708241 articles. It represents a small portion of English  \
language subset of the CC-News dataset created using news-please(Hamborg et al.,2017) to \
collect and extract English language portion of CC-News.
"""

_CITATION = """\
@InProceedings{Hamborg2017,
  author     = {Hamborg, Felix and Meuschke, Norman and Breitinger, Corinna and Gipp, Bela},
  title      = {news-please: A Generic News Crawler and Extractor},
  year       = {2017},
  booktitle  = {Proceedings of the 15th International Symposium of Information Science},
  location   = {Berlin},
  doi        = {10.5281/zenodo.4120316},
  pages      = {218--223},
  month      = {March}
}
"""
_PROJECT_URL = "https://commoncrawl.org/2016/10/news-dataset-available/"
_DOWNLOAD_URL = "https://storage.googleapis.com/huggingface-nlp/datasets/cc_news/cc_news.tar.gz"


class CCNewsConfig(datasets.BuilderConfig):
    """BuilderConfig for CCNews."""

    def __init__(self, **kwargs):
        """BuilderConfig for CCNews.
        Args:
        **kwargs: keyword arguments forwarded to super.
        """
        super(CCNewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)


class CCNews(datasets.GeneratorBasedBuilder):
    """CC-News dataset."""

    BUILDER_CONFIGS = [
        CCNewsConfig(
            name="plain_text",
            description="Plain text",
        ),
        CCNewsConfig(
            name="plain_text_sentences",
            description="Plain text (sentence level)",
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "title": datasets.Value("string"),
                    "text": datasets.Value("string"),
                    "domain": datasets.Value("string"),
                    "date": datasets.Value("string"),
                    "description": datasets.Value("string"),
                    "url": datasets.Value("string"),
                    "image_url": datasets.Value("string"),
                }
            ),
            supervised_keys=None,
            homepage=_PROJECT_URL,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive = dl_manager.download(_DOWNLOAD_URL)
        
        train_filter = lambda x : (x%10) < 8
        val_filter = lambda x: (x%10) == 8
        test_filter = lambda x: (x%10) == 9
        
        level = "doc" if self.config.name == "plain_text" else "sentence"

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": custom_iter_archive(archive, train_filter), "level": level}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"files": custom_iter_archive(archive, val_filter), "level": level}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"files": custom_iter_archive(archive, test_filter), "level": level}),
        ]

    def _generate_examples(self, files, level):
        id_ = 0
        for article_file_path, f in files:
            if fnmatch(os.path.basename(article_file_path), "*.json"):
                article = json.load(f)
                if level == "sentence":
                    full_article = article["maintext"].strip() if article["maintext"] is not None else ""
                    doc_dict = {
                        "title": article["title"].strip() if article["title"] is not None else "",
                        "domain": article["source_domain"].strip() if article["source_domain"] is not None else "",
                        "date": article["date_publish"].strip() if article["date_publish"] is not None else "",
                        "description": article["description"].strip() if article["description"] is not None else "",
                        "url": article["url"].strip() if article["url"] is not None else "",
                        "image_url": article["image_url"].strip() if article["image_url"] is not None else "",
                    }
                    for sent in full_article.split("\n"):
                        doc_dict["text"] = sent
                        yield id_, doc_dict
                        id_ += 1
                else:
                    yield id_, 
                    id_ += 1