brwac / brwac-clean.py
nskwal's picture
brwac clean
1a5574e
# coding=utf-8
import collections
import gzip
import datasets
logger = datasets.logging.get_logger(__name__)
_BASE_DIR = "/home/diogo/extracted/brwac-clean/"
_BASE_DATA_DIR = "/home/diogo/extracted/brwac-clean/data/"
class BrwacCleanConfig(datasets.BuilderConfig):
"""BRWAC-clean corpus."""
def __init__(self, **kwargs):
# Initialize the base class.
name = "brwac-clean"
description = "brwac-clean dataset"
super(BrwacCleanConfig, self).__init__(name=name, description=description, **kwargs)
# Additional attributes
self.base_data_url = _BASE_DATA_DIR
class BrwacClean(datasets.GeneratorBasedBuilder):
"""BRWAC corpus."""
BUILDER_CONFIGS = [
BrwacCleanConfig(
version=datasets.Version("1.0.0"),
)
]
BUILDER_CONFIG_CLASS = BrwacCleanConfig
def _info(self):
return datasets.DatasetInfo(
features=datasets.Features({"id": datasets.Value("int64"), "text": datasets.Value("string")}),
supervised_keys=None,
)
def _split_generators(self, dl_manager):
files = _BASE_DIR + "file_names.txt"
with open(files, encoding="utf-8") as f:
data_filenames = [line.split("\t")[0] for line in f if line]
data_urls = [self.config.base_data_url + data_filename.strip() for data_filename in data_filenames]
downloaded_files = dl_manager.download(data_urls)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": downloaded_files}),
]
def _generate_examples(self, filepaths):
"""This function returns the examples in the raw (text) form by iterating on all the files."""
id_ = 0
for filepath in filepaths:
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f:
for line in f:
feature = id_, {"id": id_, "text": line.replace("<END>", "\n").rstrip()}
yield feature
id_ += 1