nightingal3 commited on
Commit
81b445e
·
1 Parent(s): 1a3a1c2

add dataset card

Browse files
Files changed (1) hide show
  1. README.md +92 -1
README.md CHANGED
@@ -1,3 +1,94 @@
1
  ---
2
- license: mit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ annotations_creators:
3
+ - expert-generated
4
+ - crowdsourced
5
+ language_creators:
6
+ - crowdsourced
7
+ languages:
8
+ - en
9
+ licenses:
10
+ - mit
11
+ multilinguality:
12
+ - monolingual
13
+ pretty_name: Fig-QA
14
+ size_categories:
15
+ - 1K<n<10K
16
+ source_datasets:
17
+ - original
18
+ task_categories:
19
+ - multiple-choice
20
+ task_ids:
21
+ - multiple-choice-qa
22
  ---
23
+
24
+ # Dataset Card for Fig-QA
25
+
26
+ ## Table of Contents
27
+ - [Table of Contents](#table-of-contents)
28
+ - [Dataset Description](#dataset-description)
29
+ - [Dataset Summary](#dataset-summary)
30
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
31
+ - [Languages](#languages)
32
+ - [Dataset Structure](#dataset-structure)
33
+ - [Data Splits](#data-splits)
34
+ - [Considerations for Using the Data](#considerations-for-using-the-data)
35
+ - [Discussion of Biases](#discussion-of-biases)
36
+ - [Additional Information](#additional-information)
37
+ - [Licensing Information](#licensing-information)
38
+ - [Citation Information](#citation-information)
39
+
40
+ ## Dataset Description
41
+
42
+ - **Repository:** https://github.com/nightingal3/Fig-QA
43
+ - **Paper:** https://arxiv.org/abs/2204.12632
44
+ - **Leaderboard:** https://explainaboard.inspiredco.ai/leaderboards?dataset=fig_qa
45
+ - **Point of Contact:** [email protected]
46
+
47
+ ### Dataset Summary
48
+
49
+ This is the dataset for the paper [Testing the Ability of Language Models to Interpret Figurative Language](https://arxiv.org/abs/2204.12632). Fig-QA consists of 10256 examples of human-written creative metaphors that are paired as a Winograd schema. It can be used to evaluate the commonsense reasoning of models. The metaphors themselves can also be used as training data for other tasks, such as metaphor detection or generation.
50
+
51
+ ### Supported Tasks and Leaderboards
52
+
53
+ You can evaluate your models on the test set by submitting to the [leaderboard](https://explainaboard.inspiredco.ai/leaderboards?dataset=fig_qa) on Explainaboard. Click on "New" and select `qa-multiple-choice` for the task field. Select `accuracy` for the metric. You should upload results in the form of a system output file in JSON or JSONL format.
54
+
55
+ ### Languages
56
+
57
+ English only currently
58
+
59
+ ### Data Splits
60
+
61
+ Train-{S, M(no suffix), XL}: different training set sizes
62
+ Dev
63
+ Test (labels not provided for test set)
64
+
65
+ ## Considerations for Using the Data
66
+
67
+ ### Discussion of Biases
68
+
69
+ These metaphors are human-generated and may contain insults or other explicit content. Authors of the paper manually removed offensive content, but users should keep in mind that some potentially offensive content may remain in the dataset.
70
+
71
+ ## Additional Information
72
+
73
+ ### Licensing Information
74
+
75
+ MIT License
76
+
77
+ ### Citation Information
78
+
79
+ If you found the dataset useful, please cite this paper:
80
+
81
+ @misc{https://doi.org/10.48550/arxiv.2204.12632,
82
+ doi = {10.48550/ARXIV.2204.12632},
83
+ url = {https://arxiv.org/abs/2204.12632},
84
+ author = {Liu, Emmy and Cui, Chen and Zheng, Kenneth and Neubig, Graham},
85
+ keywords = {Computation and Language (cs.CL), Artificial Intelligence (cs.AI), FOS: Computer and information sciences, FOS: Computer and information sciences},
86
+ title = {Testing the Ability of Language Models to Interpret Figurative Language},
87
+ publisher = {arXiv},
88
+ year = {2022},
89
+ copyright = {Creative Commons Attribution Share Alike 4.0 International}
90
+ }
91
+
92
+ ### Contributions
93
+
94
+ Thanks to [@github-username](https://github.com/<github-username>) for adding this dataset.