|
|
|
import json |
|
import logging |
|
import os |
|
|
|
import datasets |
|
|
|
from PIL import Image |
|
import numpy as np |
|
|
|
from transformers import AutoTokenizer |
|
|
|
def load_image(image_path, size=None): |
|
image = Image.open(image_path).convert("RGB") |
|
w, h = image.size |
|
if size is not None: |
|
|
|
image = image.resize((size, size)) |
|
image = np.asarray(image) |
|
image = image[:, :, ::-1] |
|
image = image.transpose(2, 0, 1) |
|
return image, (w, h) |
|
|
|
|
|
def normalize_bbox(bbox, size): |
|
return [ |
|
int(1000 * bbox[0] / size[0]), |
|
int(1000 * bbox[1] / size[1]), |
|
int(1000 * bbox[2] / size[0]), |
|
int(1000 * bbox[3] / size[1]), |
|
] |
|
|
|
|
|
def simplify_bbox(bbox): |
|
return [ |
|
min(bbox[0::2]), |
|
min(bbox[1::2]), |
|
max(bbox[2::2]), |
|
max(bbox[3::2]), |
|
] |
|
|
|
|
|
def merge_bbox(bbox_list): |
|
x0, y0, x1, y1 = list(zip(*bbox_list)) |
|
return [min(x0), min(y0), max(x1), max(y1)] |
|
|
|
|
|
_URL = "https://github.com/doc-analysis/XFUN/releases/download/v1.0/" |
|
|
|
_LANG = ["zh", "de", "es", "fr", "en", "it", "ja", "pt"] |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class XFUNConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for XFUN.""" |
|
|
|
def __init__(self, lang, additional_langs=None, **kwargs): |
|
""" |
|
Args: |
|
lang: string, language for the input text |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(XFUNConfig, self).__init__(**kwargs) |
|
self.lang = lang |
|
self.additional_langs = additional_langs |
|
|
|
|
|
class XFUN(datasets.GeneratorBasedBuilder): |
|
"""XFUN dataset.""" |
|
|
|
BUILDER_CONFIGS = [XFUNConfig(name=f"xfun.{lang}", lang=lang) for lang in _LANG] |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-base") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"input_ids": datasets.Sequence(datasets.Value("int64")), |
|
"bbox": datasets.Sequence(datasets.Sequence(datasets.Value("int64"))), |
|
"labels": datasets.Sequence( |
|
datasets.ClassLabel( |
|
names=["O", "B-QUESTION", "B-ANSWER", "B-HEADER", "I-ANSWER", "I-QUESTION", "I-HEADER"] |
|
) |
|
), |
|
"image": datasets.Array3D(shape=(3, 224, 224), dtype="uint8"), |
|
"original_image": datasets.features.Image(), |
|
"entities": datasets.Sequence( |
|
{ |
|
"start": datasets.Value("int64"), |
|
"end": datasets.Value("int64"), |
|
"label": datasets.ClassLabel(names=["HEADER", "QUESTION", "ANSWER"]), |
|
} |
|
), |
|
"relations": datasets.Sequence( |
|
{ |
|
"head": datasets.Value("int64"), |
|
"tail": datasets.Value("int64"), |
|
"start_index": datasets.Value("int64"), |
|
"end_index": datasets.Value("int64"), |
|
} |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": [f"{_URL}{self.config.lang}.train.json", f"{_URL}{self.config.lang}.train.zip"], |
|
"val": [f"{_URL}{self.config.lang}.val.json", f"{_URL}{self.config.lang}.val.zip"], |
|
|
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
train_files_for_many_langs = [downloaded_files["train"]] |
|
val_files_for_many_langs = [downloaded_files["val"]] |
|
|
|
if self.config.additional_langs: |
|
additional_langs = self.config.additional_langs.split("+") |
|
if "all" in additional_langs: |
|
additional_langs = [lang for lang in _LANG if lang != self.config.lang] |
|
for lang in additional_langs: |
|
urls_to_download = {"train": [f"{_URL}{lang}.train.json", f"{_URL}{lang}.train.zip"]} |
|
additional_downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
train_files_for_many_langs.append(additional_downloaded_files["train"]) |
|
|
|
logger.info(f"Training on {self.config.lang} with additional langs({self.config.additional_langs})") |
|
logger.info(f"Evaluating on {self.config.lang}") |
|
logger.info(f"Testing on {self.config.lang}") |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepaths": train_files_for_many_langs}), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, gen_kwargs={"filepaths": val_files_for_many_langs} |
|
), |
|
|
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
for filepath in filepaths: |
|
logger.info("Generating examples from = %s", filepath) |
|
with open(filepath[0], "r", encoding="utf-8") as f: |
|
data = json.load(f) |
|
|
|
for doc in data["documents"]: |
|
doc["img"]["fpath"] = os.path.join(filepath[1], doc["img"]["fname"]) |
|
image, size = load_image(doc["img"]["fpath"], size=224) |
|
original_image, _ = load_image(doc["img"]["fpath"]) |
|
document = doc["document"] |
|
tokenized_doc = {"input_ids": [], "bbox": [], "labels": []} |
|
entities = [] |
|
relations = [] |
|
id2label = {} |
|
entity_id_to_index_map = {} |
|
empty_entity = set() |
|
for line in document: |
|
if len(line["text"]) == 0: |
|
empty_entity.add(line["id"]) |
|
continue |
|
id2label[line["id"]] = line["label"] |
|
relations.extend([tuple(sorted(l)) for l in line["linking"]]) |
|
tokenized_inputs = self.tokenizer( |
|
line["text"], |
|
add_special_tokens=False, |
|
return_offsets_mapping=True, |
|
return_attention_mask=False, |
|
) |
|
text_length = 0 |
|
ocr_length = 0 |
|
bbox = [] |
|
for token_id, offset in zip(tokenized_inputs["input_ids"], tokenized_inputs["offset_mapping"]): |
|
if token_id == 6: |
|
bbox.append(None) |
|
continue |
|
text_length += offset[1] - offset[0] |
|
tmp_box = [] |
|
while ocr_length < text_length: |
|
ocr_word = line["words"].pop(0) |
|
ocr_length += len( |
|
self.tokenizer._tokenizer.normalizer.normalize_str(ocr_word["text"].strip()) |
|
) |
|
tmp_box.append(simplify_bbox(ocr_word["box"])) |
|
if len(tmp_box) == 0: |
|
tmp_box = last_box |
|
bbox.append(normalize_bbox(merge_bbox(tmp_box), size)) |
|
last_box = tmp_box |
|
bbox = [ |
|
[bbox[i + 1][0], bbox[i + 1][1], bbox[i + 1][0], bbox[i + 1][1]] if b is None else b |
|
for i, b in enumerate(bbox) |
|
] |
|
if line["label"] == "other": |
|
label = ["O"] * len(bbox) |
|
else: |
|
label = [f"I-{line['label'].upper()}"] * len(bbox) |
|
label[0] = f"B-{line['label'].upper()}" |
|
tokenized_inputs.update({"bbox": bbox, "labels": label}) |
|
if label[0] != "O": |
|
entity_id_to_index_map[line["id"]] = len(entities) |
|
entities.append( |
|
{ |
|
"start": len(tokenized_doc["input_ids"]), |
|
"end": len(tokenized_doc["input_ids"]) + len(tokenized_inputs["input_ids"]), |
|
"label": line["label"].upper(), |
|
} |
|
) |
|
for i in tokenized_doc: |
|
tokenized_doc[i] = tokenized_doc[i] + tokenized_inputs[i] |
|
relations = list(set(relations)) |
|
relations = [rel for rel in relations if rel[0] not in empty_entity and rel[1] not in empty_entity] |
|
kvrelations = [] |
|
for rel in relations: |
|
pair = [id2label[rel[0]], id2label[rel[1]]] |
|
if pair == ["question", "answer"]: |
|
kvrelations.append( |
|
{"head": entity_id_to_index_map[rel[0]], "tail": entity_id_to_index_map[rel[1]]} |
|
) |
|
elif pair == ["answer", "question"]: |
|
kvrelations.append( |
|
{"head": entity_id_to_index_map[rel[1]], "tail": entity_id_to_index_map[rel[0]]} |
|
) |
|
else: |
|
continue |
|
|
|
def get_relation_span(rel): |
|
bound = [] |
|
for entity_index in [rel["head"], rel["tail"]]: |
|
bound.append(entities[entity_index]["start"]) |
|
bound.append(entities[entity_index]["end"]) |
|
return min(bound), max(bound) |
|
|
|
relations = sorted( |
|
[ |
|
{ |
|
"head": rel["head"], |
|
"tail": rel["tail"], |
|
"start_index": get_relation_span(rel)[0], |
|
"end_index": get_relation_span(rel)[1], |
|
} |
|
for rel in kvrelations |
|
], |
|
key=lambda x: x["head"], |
|
) |
|
chunk_size = 512 |
|
for chunk_id, index in enumerate(range(0, len(tokenized_doc["input_ids"]), chunk_size)): |
|
item = {} |
|
for k in tokenized_doc: |
|
item[k] = tokenized_doc[k][index : index + chunk_size] |
|
entities_in_this_span = [] |
|
global_to_local_map = {} |
|
for entity_id, entity in enumerate(entities): |
|
if ( |
|
index <= entity["start"] < index + chunk_size |
|
and index <= entity["end"] < index + chunk_size |
|
): |
|
entity["start"] = entity["start"] - index |
|
entity["end"] = entity["end"] - index |
|
global_to_local_map[entity_id] = len(entities_in_this_span) |
|
entities_in_this_span.append(entity) |
|
relations_in_this_span = [] |
|
for relation in relations: |
|
if ( |
|
index <= relation["start_index"] < index + chunk_size |
|
and index <= relation["end_index"] < index + chunk_size |
|
): |
|
relations_in_this_span.append( |
|
{ |
|
"head": global_to_local_map[relation["head"]], |
|
"tail": global_to_local_map[relation["tail"]], |
|
"start_index": relation["start_index"] - index, |
|
"end_index": relation["end_index"] - index, |
|
} |
|
) |
|
item.update( |
|
{ |
|
"id": f"{doc['id']}_{chunk_id}", |
|
"image": image, |
|
"original_image": original_image, |
|
"entities": entities_in_this_span, |
|
"relations": relations_in_this_span, |
|
} |
|
) |
|
yield f"{doc['id']}_{chunk_id}", item |