|
import tarfile |
|
import os |
|
import datasets |
|
|
|
_URLS = { |
|
"neumarco": "https://huggingface.co/datasets/neuclir/neumarco/resolve/main/data/neumarco.tar.gz" |
|
} |
|
|
|
class Neumarco(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
features=datasets.Features({ |
|
"doc_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
}), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
paths = dl_manager.download(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=lang, |
|
gen_kwargs={ |
|
"filepath": paths['neumarco'], |
|
"tarpath": f'eng-{lang}/msmarco.collection.20210731-scale21-sockeye2-tm1.tsv' |
|
}) |
|
for lang in ['fas', 'rus', 'zho'] |
|
] |
|
|
|
def _generate_examples(self, filepath, tarpath): |
|
with tarfile.open(filepath, 'r|gz') as tarf: |
|
for fileinfo in tarf: |
|
if fileinfo.name != tarpath: |
|
continue |
|
with tarf.extractfile(fileinfo) as f: |
|
for key, line in enumerate(f): |
|
doc_id, text = line.decode('utf8').rstrip('\n').split('\t') |
|
yield key, {'doc_id': doc_id, 'text': text} |
|
break |
|
|