|
from __future__ import absolute_import, division, print_function |
|
import datasets |
|
_URL = "data/" |
|
_URLs = { |
|
"train": _URL + "train.tsv", |
|
"valid": _URL + "valid.tsv", |
|
"test": _URL + "test.tsv", |
|
} |
|
|
|
|
|
class KlueTC(datasets.GeneratorBasedBuilder): |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description="KLUE Topic Classification", |
|
features=datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=['์ ์น', '์ธ๊ณ', 'IT๊ณผํ', '์คํฌ์ธ ', '์ฌํ', '๊ฒฝ์ ', '์ํ๋ฌธํ']), |
|
} |
|
), |
|
supervised_keys=None, |
|
license="", |
|
homepage="", |
|
citation="", |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["train"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["valid"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": downloaded_files["test"], |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, "r", encoding='UTF-8') as f: |
|
for idx, line in enumerate(f): |
|
text, label = line.split("\\t") |
|
yield idx, {"text": text.strip(), "label": label.strip()} |
|
|