import os import pandas as pd import numpy as np import datasets class CSVhrrrDataset(datasets.GeneratorBasedBuilder): """ A custom dataset to load CSV and corresponding hrrr files. The CSV files are loaded using pandas and the hrrr files using numpy. """ # Define dataset name and version VERSION = datasets.Version("1.0.0") def _info(self): # Dataset description and features return datasets.DatasetInfo( description="Dataset containing CSV and corresponding hrrr files.", features=datasets.Features({ "csv_data": datasets.Value("string"), # CSV content as a string or specific columns "hrrr_file_path": datasets.Value("string"), # Assuming hrrr files contain float32 data "filename": datasets.Value("string"), # Filename of the CSV file }), supervised_keys=None, homepage="https://huggingface.co/datasets/nasa-impact/WINDSET/tree/main/weather_forecast_discussion", license="MIT", ) def _split_generators(self, dl_manager): """ Define dataset splits for this dataset (train, validation, test). In this case, we just load all the files into a single split. """ # Get the directory paths csv_dir = os.path.join(os.getcwd(), "weather_forecast_discussion/csv_reports") hrrr_dir = os.path.join(os.getcwd(), "weather_forecast_discussion/hrrr") # Check that both directories exist if not os.path.isdir(csv_dir): raise FileNotFoundError(f"CSV directory {csv_dir} not found!") if not os.path.isdir(hrrr_dir): raise FileNotFoundError(f"hrrr directory {hrrr_dir} not found!") # List CSV and hrrr files csv_files = [f for f in os.listdir(csv_dir) if f.endswith('.csv')] hrrr_files = [f for f in os.listdir(hrrr_dir) if f.endswith('.grib2')] # Ensure CSV and hrrr files are paired correctly by date file_pairs = [] for csv_file in csv_files: # Extract the date from the CSV file (assuming format is 'date.csv') date_str = os.path.splitext(csv_file)[0] # Search for matching hrrr files in the hrrr directory matching_hrrr_files = [hrrr for hrrr in hrrr_files if f"hrrr.{date_str}." in hrrr] if len(matching_hrrr_files) == 1: # Ensure exactly one match file_pairs.append((csv_file, matching_hrrr_files[0])) elif len(matching_hrrr_files) == 0: print(f"Warning: No matching hrrr file found for CSV file: {csv_file}") else: print(f"Warning: Multiple matching hrrr files found for CSV file: {csv_file}. Using the first match.") file_pairs.append((csv_file, matching_hrrr_files[0])) # Use the first match if multiple are found # If no valid file pairs were found, raise an error if not file_pairs: raise ValueError("No valid CSV-hrrr file pairs found. Check the directory structure and file names.") # Create a split generator return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "file_pairs": file_pairs, "csv_dir": csv_dir, "hrrr_dir": hrrr_dir, } ) ] def _generate_examples(self, file_pairs, csv_dir, hrrr_dir): """ Yield examples from the CSV and hrrr files. Each example contains data from a CSV file and its corresponding hrrr file. """ example_id = 0 for csv_file, hrrr_file in file_pairs: # Load CSV file using pandas csv_file_path = os.path.join(csv_dir, csv_file) csv_data = pd.read_csv(csv_file_path) # Load corresponding hrrr file using numpy hrrr_file_path = os.path.join(hrrr_dir, hrrr_file) # Yield example with both CSV and hrrr data yield example_id, { "csv_data": csv_data["discussion"].to_string(), # Store content under discussion only "hrrr_file_path": hrrr_file_path, "filename": csv_file, } example_id += 1