file for loading data with HF datasets load_dataset() module
Browse files
long_term_precipitation_forecast/dataset.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import datasets
|
3 |
+
|
4 |
+
class LongTermPrecipitationDataset(datasets.GeneratorBasedBuilder):
|
5 |
+
VERSION = datasets.Version("1.0.0")
|
6 |
+
|
7 |
+
def _info(self):
|
8 |
+
"""
|
9 |
+
Defines the dataset metadata and feature structure.
|
10 |
+
"""
|
11 |
+
return datasets.DatasetInfo(
|
12 |
+
description="Dataset containing .nc files per year for variables.",
|
13 |
+
features=datasets.Features({
|
14 |
+
"file_path": datasets.Value("string"), # Store file paths
|
15 |
+
"year": datasets.Value("string"), # Track year
|
16 |
+
"subfolder": datasets.Value("string") # Track subfolder (sf1, sf2)
|
17 |
+
}),
|
18 |
+
supervised_keys=None, # Update if supervised task is defined
|
19 |
+
homepage="https://huggingface.co/datasets/nasa-impact/WINDSET/tree/main/long_term_precipitation_forecast",
|
20 |
+
license="MIT",
|
21 |
+
)
|
22 |
+
|
23 |
+
def _split_generators(self, dl_manager):
|
24 |
+
"""
|
25 |
+
Define the dataset splits for train, validation, and test.
|
26 |
+
"""
|
27 |
+
# Define the directory containing the dataset
|
28 |
+
data_dir = os.path.join(os.getcwd(), "long_term_precipitation_forecast")
|
29 |
+
|
30 |
+
# Get the directories for each split
|
31 |
+
train_dir = os.path.join(data_dir, "training_data")
|
32 |
+
validation_dir = os.path.join(data_dir, "validation_data")
|
33 |
+
test_dir = os.path.join(data_dir, "test_data")
|
34 |
+
|
35 |
+
return [
|
36 |
+
datasets.SplitGenerator(
|
37 |
+
name=datasets.Split.TRAIN,
|
38 |
+
gen_kwargs={"split_dir": train_dir},
|
39 |
+
),
|
40 |
+
datasets.SplitGenerator(
|
41 |
+
name=datasets.Split.VALIDATION,
|
42 |
+
gen_kwargs={"split_dir": validation_dir},
|
43 |
+
),
|
44 |
+
datasets.SplitGenerator(
|
45 |
+
name=datasets.Split.TEST,
|
46 |
+
gen_kwargs={"split_dir": test_dir},
|
47 |
+
),
|
48 |
+
]
|
49 |
+
|
50 |
+
def _get_subfolders(self, base_dir):
|
51 |
+
"""
|
52 |
+
Get all subfolders from the base directory.
|
53 |
+
"""
|
54 |
+
return [os.path.join(base_dir, subfolder) for subfolder in os.listdir(base_dir) if os.path.isdir(os.path.join(base_dir, subfolder))]
|
55 |
+
|
56 |
+
def _get_year_folders(self, subfolder_dir):
|
57 |
+
"""
|
58 |
+
Get all year folders inside a subfolder.
|
59 |
+
"""
|
60 |
+
return [os.path.join(subfolder_dir, year_folder) for year_folder in os.listdir(subfolder_dir) if os.path.isdir(os.path.join(subfolder_dir, year_folder))]
|
61 |
+
|
62 |
+
def _generate_data_from_files(self, data_dir):
|
63 |
+
"""
|
64 |
+
Generate file paths for each subfolder, year, and daily file.
|
65 |
+
"""
|
66 |
+
example_id = 0
|
67 |
+
|
68 |
+
# Loop through subfolders
|
69 |
+
for subfolder in os.listdir(data_dir):
|
70 |
+
subfolder_path = os.path.join(data_dir, subfolder)
|
71 |
+
|
72 |
+
if os.path.isdir(subfolder_path):
|
73 |
+
# Loop through year folders inside the subfolder
|
74 |
+
for year_folder in os.listdir(subfolder_path):
|
75 |
+
year_folder_path = os.path.join(subfolder_path, year_folder)
|
76 |
+
|
77 |
+
if os.path.isdir(year_folder_path):
|
78 |
+
# Loop through daily files inside the year folder
|
79 |
+
for daily_file in os.listdir(year_folder_path):
|
80 |
+
daily_file_path = os.path.join(year_folder_path, daily_file)
|
81 |
+
|
82 |
+
if daily_file.endswith(".nc"): # Only select NetCDF files
|
83 |
+
# Yield file information for each data point
|
84 |
+
yield example_id, {
|
85 |
+
"file_path": daily_file_path,
|
86 |
+
"year": year_folder,
|
87 |
+
"subfolder": subfolder,
|
88 |
+
}
|
89 |
+
example_id += 1
|
90 |
+
else:
|
91 |
+
raise FileNotFoundError(f"{daily_file_path} not found")
|
92 |
+
|
93 |
+
def _generate_examples(self, split_dir):
|
94 |
+
"""
|
95 |
+
Generates examples for the dataset from the split directory.
|
96 |
+
"""
|
97 |
+
# Call the data generator to get the file paths
|
98 |
+
for example_id, example in self._generate_data_from_files(split_dir):
|
99 |
+
yield example_id, example
|