# Official YOLOv7 Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696) [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/yolov7-trainable-bag-of-freebies-sets-new/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=yolov7-trainable-bag-of-freebies-sets-new) [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7) Open In Colab [![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2207.02696-B31B1B.svg)](https://arxiv.org/abs/2207.02696)
## Web Demo - Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces/akhaliq/yolov7) using Gradio. Try out the Web Demo [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7) ## Performance MS COCO | Model | Test Size | APtest | AP50test | AP75test | batch 1 fps | batch 32 average time | | :-- | :-: | :-: | :-: | :-: | :-: | :-: | | [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* | | [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* | | | | | | | | | | [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* | | [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* | | [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* | | [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* | ## Installation Docker environment (recommended)
Expand ``` shell # create the docker container, you can change the share memory size if you have more. nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3 # apt install required packages apt update apt install -y zip htop screen libgl1-mesa-glx # pip install required packages pip install seaborn thop # go to code folder cd /yolov7 ```
## Testing [`yolov7.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) [`yolov7x.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) [`yolov7-w6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) [`yolov7-e6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) [`yolov7-d6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) [`yolov7-e6e.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) ``` shell python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val ``` You will get the results: ``` Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868 ``` To measure accuracy, download [COCO-annotations for Pycocotools](http://images.cocodataset.org/annotations/annotations_trainval2017.zip) to the `./coco/annotations/instances_val2017.json` ## Training Data preparation ``` shell bash scripts/get_coco.sh ``` * Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip) Single GPU training ``` shell # train p5 models python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml # train p6 models python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml ``` Multiple GPU training ``` shell # train p5 models python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml # train p6 models python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml ``` ## Transfer learning [`yolov7_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt) [`yolov7x_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x_training.pt) [`yolov7-w6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6_training.pt) [`yolov7-e6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6_training.pt) [`yolov7-d6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6_training.pt) [`yolov7-e6e_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e_training.pt) Single GPU finetuning for custom dataset ``` shell # finetune p5 models python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml # finetune p6 models python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml ``` ## Re-parameterization See [reparameterization.ipynb](tools/reparameterization.ipynb) ## Inference On video: ``` shell python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source yourvideo.mp4 ``` On image: ``` shell python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg ```
## Export **Pytorch to CoreML (and inference on MacOS/iOS)** Open In Colab **Pytorch to ONNX with NMS (and inference)** Open In Colab ```shell python export.py --weights yolov7-tiny.pt --grid --end2end --simplify \ --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640 ``` **Pytorch to TensorRT with NMS (and inference)** Open In Colab ```shell wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt python export.py --weights ./yolov7-tiny.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 git clone https://github.com/Linaom1214/tensorrt-python.git python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16 ``` **Pytorch to TensorRT another way** Open In Colab
Expand ```shell wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt python export.py --weights yolov7-tiny.pt --grid --include-nms git clone https://github.com/Linaom1214/tensorrt-python.git python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16 # Or use trtexec to convert ONNX to TensorRT engine /usr/src/tensorrt/bin/trtexec --onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt --fp16 ```
Tested with: Python 3.7.13, Pytorch 1.12.0+cu113 ## Pose estimation [`code`](https://github.com/WongKinYiu/yolov7/tree/pose) [`yolov7-w6-pose.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6-pose.pt) See [keypoint.ipynb](https://github.com/WongKinYiu/yolov7/blob/main/tools/keypoint.ipynb).
## Instance segmentation [`code`](https://github.com/WongKinYiu/yolov7/tree/mask) [`yolov7-mask.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-mask.pt) See [instance.ipynb](https://github.com/WongKinYiu/yolov7/blob/main/tools/instance.ipynb).
## Instance segmentation [`code`](https://github.com/WongKinYiu/yolov7/tree/u7/seg) [`yolov7-seg.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-seg.pt) YOLOv7 for instance segmentation (YOLOR + YOLOv5 + YOLACT) | Model | Test Size | APbox | AP50box | AP75box | APmask | AP50mask | AP75mask | | :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: | | **YOLOv7-seg** | 640 | **51.4%** | **69.4%** | **55.8%** | **41.5%** | **65.5%** | **43.7%** | ## Anchor free detection head [`code`](https://github.com/WongKinYiu/yolov7/tree/u6) [`yolov7-u6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-u6.pt) YOLOv7 with decoupled TAL head (YOLOR + YOLOv5 + YOLOv6) | Model | Test Size | APval | AP50val | AP75val | | :-- | :-: | :-: | :-: | :-: | | **YOLOv7-u6** | 640 | **52.6%** | **69.7%** | **57.3%** | ## Citation ``` @article{wang2022yolov7, title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors}, author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark}, journal={arXiv preprint arXiv:2207.02696}, year={2022} } ``` ## Teaser Yolov7-semantic & YOLOv7-panoptic & YOLOv7-caption
## Acknowledgements
Expand * [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet) * [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor) * [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4) * [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4) * [https://github.com/Megvii-BaseDetection/YOLOX](https://github.com/Megvii-BaseDetection/YOLOX) * [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3) * [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5) * [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG) * [https://github.com/JUGGHM/OREPA_CVPR2022](https://github.com/JUGGHM/OREPA_CVPR2022) * [https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose](https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose)