nachiiiket commited on
Commit
348a19a
·
1 Parent(s): 04a596a

Upload 14 files

Browse files
Files changed (15) hide show
  1. .gitattributes +1 -0
  2. .gitignore +263 -0
  3. AutoFis YOLOv7.ipynb +1 -0
  4. LICENSE.md +674 -0
  5. README.md +279 -3
  6. detect.py +196 -0
  7. export.py +205 -0
  8. hubconf.py +97 -0
  9. requirements.txt +39 -0
  10. test.py +353 -0
  11. train.py +705 -0
  12. train_aux.py +699 -0
  13. yolov7.pt +3 -0
  14. yolov7_training.pt +3 -0
  15. yolov7_training.pt.1 +3 -0
.gitattributes CHANGED
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
54
  *.jpeg filter=lfs diff=lfs merge=lfs -text
55
  *.webp filter=lfs diff=lfs merge=lfs -text
56
+ yolov7_training.pt.1 filter=lfs diff=lfs merge=lfs -text
.gitignore ADDED
@@ -0,0 +1,263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Repo-specific GitIgnore ----------------------------------------------------------------------------------------------
2
+ *.jpg
3
+ *.jpeg
4
+ *.png
5
+ *.bmp
6
+ *.tif
7
+ *.tiff
8
+ *.heic
9
+ *.JPG
10
+ *.JPEG
11
+ *.PNG
12
+ *.BMP
13
+ *.TIF
14
+ *.TIFF
15
+ *.HEIC
16
+ *.mp4
17
+ *.mov
18
+ *.MOV
19
+ *.avi
20
+ *.data
21
+ *.json
22
+ *.cfg
23
+ !setup.cfg
24
+ !cfg/yolov3*.cfg
25
+
26
+ storage.googleapis.com
27
+ runs/*
28
+ data/*
29
+ data/images/*
30
+ !data/*.yaml
31
+ !data/hyps
32
+ !data/scripts
33
+ !data/images
34
+ !data/images/zidane.jpg
35
+ !data/images/bus.jpg
36
+ !data/*.sh
37
+
38
+ results*.csv
39
+
40
+ # Datasets -------------------------------------------------------------------------------------------------------------
41
+ coco/
42
+ coco128/
43
+ VOC/
44
+
45
+ coco2017labels-segments.zip
46
+ test2017.zip
47
+ train2017.zip
48
+ val2017.zip
49
+
50
+ # MATLAB GitIgnore -----------------------------------------------------------------------------------------------------
51
+ *.m~
52
+ *.mat
53
+ !targets*.mat
54
+
55
+ # Neural Network weights -----------------------------------------------------------------------------------------------
56
+ *.weights
57
+ *.pt
58
+ *.pb
59
+ *.onnx
60
+ *.engine
61
+ *.mlmodel
62
+ *.torchscript
63
+ *.tflite
64
+ *.h5
65
+ *_saved_model/
66
+ *_web_model/
67
+ *_openvino_model/
68
+ darknet53.conv.74
69
+ yolov3-tiny.conv.15
70
+ *.ptl
71
+ *.trt
72
+
73
+ # GitHub Python GitIgnore ----------------------------------------------------------------------------------------------
74
+ # Byte-compiled / optimized / DLL files
75
+ __pycache__/
76
+ *.py[cod]
77
+ *$py.class
78
+
79
+ # C extensions
80
+ *.so
81
+
82
+ # Distribution / packaging
83
+ .Python
84
+ env/
85
+ build/
86
+ develop-eggs/
87
+ dist/
88
+ downloads/
89
+ eggs/
90
+ .eggs/
91
+ lib/
92
+ lib64/
93
+ parts/
94
+ sdist/
95
+ var/
96
+ wheels/
97
+ *.egg-info/
98
+ /wandb/
99
+ .installed.cfg
100
+ *.egg
101
+
102
+
103
+ # PyInstaller
104
+ # Usually these files are written by a python script from a template
105
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
106
+ *.manifest
107
+ *.spec
108
+
109
+ # Installer logs
110
+ pip-log.txt
111
+ pip-delete-this-directory.txt
112
+
113
+ # Unit test / coverage reports
114
+ htmlcov/
115
+ .tox/
116
+ .coverage
117
+ .coverage.*
118
+ .cache
119
+ nosetests.xml
120
+ coverage.xml
121
+ *.cover
122
+ .hypothesis/
123
+
124
+ # Translations
125
+ *.mo
126
+ *.pot
127
+
128
+ # Django stuff:
129
+ *.log
130
+ local_settings.py
131
+
132
+ # Flask stuff:
133
+ instance/
134
+ .webassets-cache
135
+
136
+ # Scrapy stuff:
137
+ .scrapy
138
+
139
+ # Sphinx documentation
140
+ docs/_build/
141
+
142
+ # PyBuilder
143
+ target/
144
+
145
+ # Jupyter Notebook
146
+ .ipynb_checkpoints
147
+
148
+ # pyenv
149
+ .python-version
150
+
151
+ # celery beat schedule file
152
+ celerybeat-schedule
153
+
154
+ # SageMath parsed files
155
+ *.sage.py
156
+
157
+ # dotenv
158
+ .env
159
+
160
+ # virtualenv
161
+ .venv*
162
+ venv*/
163
+ ENV*/
164
+
165
+ # Spyder project settings
166
+ .spyderproject
167
+ .spyproject
168
+
169
+ # Rope project settings
170
+ .ropeproject
171
+
172
+ # mkdocs documentation
173
+ /site
174
+
175
+ # mypy
176
+ .mypy_cache/
177
+
178
+
179
+ # https://github.com/github/gitignore/blob/master/Global/macOS.gitignore -----------------------------------------------
180
+
181
+ # General
182
+ .DS_Store
183
+ .AppleDouble
184
+ .LSOverride
185
+
186
+ # Icon must end with two \r
187
+ Icon
188
+ Icon?
189
+
190
+ # Thumbnails
191
+ ._*
192
+
193
+ # Files that might appear in the root of a volume
194
+ .DocumentRevisions-V100
195
+ .fseventsd
196
+ .Spotlight-V100
197
+ .TemporaryItems
198
+ .Trashes
199
+ .VolumeIcon.icns
200
+ .com.apple.timemachine.donotpresent
201
+
202
+ # Directories potentially created on remote AFP share
203
+ .AppleDB
204
+ .AppleDesktop
205
+ Network Trash Folder
206
+ Temporary Items
207
+ .apdisk
208
+
209
+
210
+ # https://github.com/github/gitignore/blob/master/Global/JetBrains.gitignore
211
+ # Covers JetBrains IDEs: IntelliJ, RubyMine, PhpStorm, AppCode, PyCharm, CLion, Android Studio and WebStorm
212
+ # Reference: https://intellij-support.jetbrains.com/hc/en-us/articles/206544839
213
+
214
+ # User-specific stuff:
215
+ .idea/*
216
+ .idea/**/workspace.xml
217
+ .idea/**/tasks.xml
218
+ .idea/dictionaries
219
+ .html # Bokeh Plots
220
+ .pg # TensorFlow Frozen Graphs
221
+ .avi # videos
222
+
223
+ # Sensitive or high-churn files:
224
+ .idea/**/dataSources/
225
+ .idea/**/dataSources.ids
226
+ .idea/**/dataSources.local.xml
227
+ .idea/**/sqlDataSources.xml
228
+ .idea/**/dynamic.xml
229
+ .idea/**/uiDesigner.xml
230
+
231
+ # Gradle:
232
+ .idea/**/gradle.xml
233
+ .idea/**/libraries
234
+
235
+ # CMake
236
+ cmake-build-debug/
237
+ cmake-build-release/
238
+
239
+ # Mongo Explorer plugin:
240
+ .idea/**/mongoSettings.xml
241
+
242
+ ## File-based project format:
243
+ *.iws
244
+
245
+ ## Plugin-specific files:
246
+
247
+ # IntelliJ
248
+ out/
249
+
250
+ # mpeltonen/sbt-idea plugin
251
+ .idea_modules/
252
+
253
+ # JIRA plugin
254
+ atlassian-ide-plugin.xml
255
+
256
+ # Cursive Clojure plugin
257
+ .idea/replstate.xml
258
+
259
+ # Crashlytics plugin (for Android Studio and IntelliJ)
260
+ com_crashlytics_export_strings.xml
261
+ crashlytics.properties
262
+ crashlytics-build.properties
263
+ fabric.properties
AutoFis YOLOv7.ipynb ADDED
@@ -0,0 +1 @@
 
 
1
+ {"cells":[{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":3966,"status":"ok","timestamp":1683282908185,"user":{"displayName":"Deshpande Ms. Gauri Harish --","userId":"01361348429335733319"},"user_tz":-330},"id":"-E7HJfGWXpsX","outputId":"ce101e7c-0879-4b3a-d9ea-4dc3822178fe"},"outputs":[{"output_type":"stream","name":"stdout","text":["Drive already mounted at /content/drive; to attempt to forcibly remount, call drive.mount(\"/content/drive\", force_remount=True).\n"]}],"source":["from google.colab import drive\n","drive.mount('/content/drive')"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":633,"status":"ok","timestamp":1683282914065,"user":{"displayName":"Deshpande Ms. Gauri Harish --","userId":"01361348429335733319"},"user_tz":-330},"id":"JGJspIl90XhV","outputId":"c1b677b7-1b61-40d3-cc2b-67e12fb9bc37"},"outputs":[{"output_type":"stream","name":"stdout","text":["Fri May 5 10:35:14 2023 \n","+-----------------------------------------------------------------------------+\n","| NVIDIA-SMI 525.85.12 Driver Version: 525.85.12 CUDA Version: 12.0 |\n","|-------------------------------+----------------------+----------------------+\n","| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |\n","| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |\n","| | | MIG M. |\n","|===============================+======================+======================|\n","| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |\n","| N/A 40C P8 9W / 70W | 0MiB / 15360MiB | 0% Default |\n","| | | N/A |\n","+-------------------------------+----------------------+----------------------+\n"," \n","+-----------------------------------------------------------------------------+\n","| Processes: |\n","| GPU GI CI PID Type Process name GPU Memory |\n","| ID ID Usage |\n","|=============================================================================|\n","| No running processes found |\n","+-----------------------------------------------------------------------------+\n"]}],"source":["!nvidia-smi"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":5954,"status":"ok","timestamp":1683282924369,"user":{"displayName":"Deshpande Ms. Gauri Harish --","userId":"01361348429335733319"},"user_tz":-330},"id":"nD-uPyQ_2jiN","outputId":"c8e09005-ce9a-464d-bfda-acffbb8bb9b6"},"outputs":[{"output_type":"stream","name":"stdout","text":["Cloning into 'yolov7'...\n","remote: Enumerating objects: 579, done.\u001b[K\n","remote: Total 579 (delta 0), reused 0 (delta 0), pack-reused 579\u001b[K\n","Receiving objects: 100% (579/579), 38.53 MiB | 32.39 MiB/s, done.\n","Resolving deltas: 100% (281/281), done.\n","/content/yolov7\n","Branch 'fix/problems_associated_with_the_latest_versions_of_pytorch_and_numpy' set up to track remote branch 'fix/problems_associated_with_the_latest_versions_of_pytorch_and_numpy' from 'origin'.\n","Switched to a new branch 'fix/problems_associated_with_the_latest_versions_of_pytorch_and_numpy'\n","Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n","Requirement already satisfied: matplotlib>=3.2.2 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 4)) (3.7.1)\n","Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 5)) (1.22.4)\n","Requirement already satisfied: opencv-python>=4.1.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 6)) (4.7.0.72)\n","Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 7)) (8.4.0)\n","Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 8)) (6.0)\n","Requirement already satisfied: requests>=2.23.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 9)) (2.27.1)\n","Requirement already satisfied: scipy>=1.4.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 10)) (1.10.1)\n","Requirement already satisfied: torch!=1.12.0,>=1.7.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 11)) (2.0.0+cu118)\n","Requirement already satisfied: torchvision!=0.13.0,>=0.8.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 12)) (0.15.1+cu118)\n","Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 13)) (4.65.0)\n","Requirement already satisfied: protobuf<4.21.3 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 14)) (3.20.3)\n","Requirement already satisfied: tensorboard>=2.4.1 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 17)) (2.12.2)\n","Requirement already satisfied: pandas>=1.1.4 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 21)) (1.5.3)\n","Requirement already satisfied: seaborn>=0.11.0 in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 22)) (0.12.2)\n","Requirement already satisfied: ipython in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 34)) (7.34.0)\n","Requirement already satisfied: psutil in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 35)) (5.9.5)\n","Requirement already satisfied: thop in /usr/local/lib/python3.10/dist-packages (from -r requirements.txt (line 36)) (0.1.1.post2209072238)\n","Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.2.2->-r requirements.txt (line 4)) (1.0.7)\n","Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.2.2->-r requirements.txt (line 4)) (1.4.4)\n","Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.2.2->-r requirements.txt (line 4)) (23.1)\n","Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.2.2->-r requirements.txt (line 4)) (3.0.9)\n","Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.2.2->-r requirements.txt (line 4)) (0.11.0)\n","Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.2.2->-r requirements.txt (line 4)) (4.39.3)\n","Requirement already satisfied: python-dateutil>=2.7 in /usr/local/lib/python3.10/dist-packages (from matplotlib>=3.2.2->-r requirements.txt (line 4)) (2.8.2)\n","Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->-r requirements.txt (line 9)) (2.0.12)\n","Requirement already satisfied: idna<4,>=2.5 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->-r requirements.txt (line 9)) (3.4)\n","Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->-r requirements.txt (line 9)) (1.26.15)\n","Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.10/dist-packages (from requests>=2.23.0->-r requirements.txt (line 9)) (2022.12.7)\n","Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (3.12.0)\n","Requirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (3.1.2)\n","Requirement already satisfied: sympy in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (1.11.1)\n","Requirement already satisfied: triton==2.0.0 in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (2.0.0)\n","Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (4.5.0)\n","Requirement already satisfied: networkx in /usr/local/lib/python3.10/dist-packages (from torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (3.1)\n","Requirement already satisfied: cmake in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (3.25.2)\n","Requirement already satisfied: lit in /usr/local/lib/python3.10/dist-packages (from triton==2.0.0->torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (16.0.2)\n","Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (67.7.2)\n","Requirement already satisfied: google-auth-oauthlib<1.1,>=0.5 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (1.0.0)\n","Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (1.4.0)\n","Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (1.8.1)\n","Requirement already satisfied: wheel>=0.26 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (0.40.0)\n","Requirement already satisfied: grpcio>=1.48.2 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (1.54.0)\n","Requirement already satisfied: tensorboard-data-server<0.8.0,>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (0.7.0)\n","Requirement already satisfied: werkzeug>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (2.3.0)\n","Requirement already satisfied: google-auth<3,>=1.6.3 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (2.17.3)\n","Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.10/dist-packages (from tensorboard>=2.4.1->-r requirements.txt (line 17)) (3.4.3)\n","Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.1.4->-r requirements.txt (line 21)) (2022.7.1)\n","Requirement already satisfied: pexpect>4.3 in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (4.8.0)\n","Requirement already satisfied: jedi>=0.16 in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (0.18.2)\n","Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (5.7.1)\n","Requirement already satisfied: prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (3.0.38)\n","Requirement already satisfied: matplotlib-inline in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (0.1.6)\n","Requirement already satisfied: decorator in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (4.4.2)\n","Requirement already satisfied: pickleshare in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (0.7.5)\n","Requirement already satisfied: pygments in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (2.14.0)\n","Requirement already satisfied: backcall in /usr/local/lib/python3.10/dist-packages (from ipython->-r requirements.txt (line 34)) (0.2.0)\n","Requirement already satisfied: cachetools<6.0,>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r requirements.txt (line 17)) (5.3.0)\n","Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r requirements.txt (line 17)) (0.3.0)\n","Requirement already satisfied: rsa<5,>=3.1.4 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r requirements.txt (line 17)) (4.9)\n","Requirement already satisfied: six>=1.9.0 in /usr/local/lib/python3.10/dist-packages (from google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r requirements.txt (line 17)) (1.16.0)\n","Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.10/dist-packages (from google-auth-oauthlib<1.1,>=0.5->tensorboard>=2.4.1->-r requirements.txt (line 17)) (1.3.1)\n","Requirement already satisfied: parso<0.9.0,>=0.8.0 in /usr/local/lib/python3.10/dist-packages (from jedi>=0.16->ipython->-r requirements.txt (line 34)) (0.8.3)\n","Requirement already satisfied: ptyprocess>=0.5 in /usr/local/lib/python3.10/dist-packages (from pexpect>4.3->ipython->-r requirements.txt (line 34)) (0.7.0)\n","Requirement already satisfied: wcwidth in /usr/local/lib/python3.10/dist-packages (from prompt-toolkit!=3.0.0,!=3.0.1,<3.1.0,>=2.0.0->ipython->-r requirements.txt (line 34)) (0.2.6)\n","Requirement already satisfied: MarkupSafe>=2.1.1 in /usr/local/lib/python3.10/dist-packages (from werkzeug>=1.0.1->tensorboard>=2.4.1->-r requirements.txt (line 17)) (2.1.2)\n","Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.10/dist-packages (from sympy->torch!=1.12.0,>=1.7.0->-r requirements.txt (line 11)) (1.3.0)\n","Requirement already satisfied: pyasn1<0.6.0,>=0.4.6 in /usr/local/lib/python3.10/dist-packages (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard>=2.4.1->-r requirements.txt (line 17)) (0.5.0)\n","Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.10/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard>=2.4.1->-r requirements.txt (line 17)) (3.2.2)\n"]}],"source":["!git clone https://github.com/SkalskiP/yolov7.git\n","%cd yolov7\n","!git checkout fix/problems_associated_with_the_latest_versions_of_pytorch_and_numpy\n","!pip install -r requirements.txt"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/","height":1000},"executionInfo":{"elapsed":56170,"status":"ok","timestamp":1682254655284,"user":{"displayName":"Aditya","userId":"02056965916683687180"},"user_tz":-330},"id":"ovKgrVN8ygdW","outputId":"ee244866-5ff7-4038-e070-90f3649cf1b0"},"outputs":[{"name":"stdout","output_type":"stream","text":["Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/\n","Collecting roboflow\n"," Downloading roboflow-1.0.5-py3-none-any.whl (56 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m56.2/56.2 kB\u001b[0m \u001b[31m2.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: opencv-python>=4.1.2 in /usr/local/lib/python3.9/dist-packages (from roboflow) (4.7.0.72)\n","Collecting cycler==0.10.0\n"," Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)\n","Collecting pyparsing==2.4.7\n"," Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.8/67.8 kB\u001b[0m \u001b[31m5.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: chardet==4.0.0 in /usr/local/lib/python3.9/dist-packages (from roboflow) (4.0.0)\n","Collecting idna==2.10\n"," Downloading idna-2.10-py2.py3-none-any.whl (58 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.8/58.8 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hCollecting requests-toolbelt\n"," Downloading requests_toolbelt-0.10.1-py2.py3-none-any.whl (54 kB)\n","\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m54.5/54.5 kB\u001b[0m \u001b[31m6.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n","\u001b[?25hRequirement already satisfied: certifi==2022.12.7 in /usr/local/lib/python3.9/dist-packages (from roboflow) (2022.12.7)\n","Collecting wget\n"," Downloading wget-3.2.zip (10 kB)\n"," Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n","Requirement already satisfied: PyYAML>=5.3.1 in /usr/local/lib/python3.9/dist-packages (from roboflow) (6.0)\n","Requirement already satisfied: requests in /usr/local/lib/python3.9/dist-packages (from roboflow) (2.27.1)\n","Requirement already satisfied: matplotlib in /usr/local/lib/python3.9/dist-packages (from roboflow) (3.7.1)\n","Requirement already satisfied: urllib3>=1.26.6 in /usr/local/lib/python3.9/dist-packages (from roboflow) (1.26.15)\n","Requirement already satisfied: numpy>=1.18.5 in /usr/local/lib/python3.9/dist-packages (from roboflow) (1.22.4)\n","Requirement already satisfied: python-dateutil in /usr/local/lib/python3.9/dist-packages (from roboflow) (2.8.2)\n","Requirement already satisfied: tqdm>=4.41.0 in /usr/local/lib/python3.9/dist-packages (from roboflow) (4.65.0)\n","Requirement already satisfied: Pillow>=7.1.2 in /usr/local/lib/python3.9/dist-packages (from roboflow) (8.4.0)\n","Requirement already satisfied: six in /usr/local/lib/python3.9/dist-packages (from roboflow) (1.16.0)\n","Requirement already satisfied: kiwisolver>=1.3.1 in /usr/local/lib/python3.9/dist-packages (from roboflow) (1.4.4)\n","Collecting python-dotenv\n"," Downloading python_dotenv-1.0.0-py3-none-any.whl (19 kB)\n","Requirement already satisfied: importlib-resources>=3.2.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->roboflow) (5.12.0)\n","Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.9/dist-packages (from matplotlib->roboflow) (1.0.7)\n","Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->roboflow) (4.39.3)\n","Requirement already satisfied: packaging>=20.0 in /usr/local/lib/python3.9/dist-packages (from matplotlib->roboflow) (23.1)\n","Requirement already satisfied: charset-normalizer~=2.0.0 in /usr/local/lib/python3.9/dist-packages (from requests->roboflow) (2.0.12)\n","Requirement already satisfied: zipp>=3.1.0 in /usr/local/lib/python3.9/dist-packages (from importlib-resources>=3.2.0->matplotlib->roboflow) (3.15.0)\n","Building wheels for collected packages: wget\n"," Building wheel for wget (setup.py) ... \u001b[?25l\u001b[?25hdone\n"," Created wheel for wget: filename=wget-3.2-py3-none-any.whl size=9676 sha256=fb7c73dc6b1d2ea0c0d18e8468b05b690d18cc58ab223d50609f6ab21f90c98d\n"," Stored in directory: /root/.cache/pip/wheels/04/5f/3e/46cc37c5d698415694d83f607f833f83f0149e49b3af9d0f38\n","Successfully built wget\n","Installing collected packages: wget, python-dotenv, pyparsing, idna, cycler, requests-toolbelt, roboflow\n"," Attempting uninstall: pyparsing\n"," Found existing installation: pyparsing 3.0.9\n"," Uninstalling pyparsing-3.0.9:\n"," Successfully uninstalled pyparsing-3.0.9\n"," Attempting uninstall: idna\n"," Found existing installation: idna 3.4\n"," Uninstalling idna-3.4:\n"," Successfully uninstalled idna-3.4\n"," Attempting uninstall: cycler\n"," Found existing installation: cycler 0.11.0\n"," Uninstalling cycler-0.11.0:\n"," Successfully uninstalled cycler-0.11.0\n","Successfully installed cycler-0.10.0 idna-2.10 pyparsing-2.4.7 python-dotenv-1.0.0 requests-toolbelt-0.10.1 roboflow-1.0.5 wget-3.2\n"]},{"data":{"application/vnd.colab-display-data+json":{"pip_warning":{"packages":["cycler","pyparsing"]}}},"metadata":{},"output_type":"display_data"},{"name":"stdout","output_type":"stream","text":["loading Roboflow workspace...\n","loading Roboflow project...\n","Downloading Dataset Version Zip in fish-pYTORCH-11 to yolov7pytorch: 100% [181781981 / 181781981] bytes\n"]},{"name":"stderr","output_type":"stream","text":["Extracting Dataset Version Zip to fish-pYTORCH-11 in yolov7pytorch:: 100%|██████████| 5962/5962 [00:02<00:00, 2706.68it/s]\n"]}],"source":["# downloading dataset from roboflow\n","\n","!pip install roboflow\n","\n","from roboflow import Roboflow\n","rf = Roboflow(api_key=\"13lan6RXdL1vpsbFUM8L\")\n","project = rf.workspace(\"daniel-5cnur\").project(\"fish-pytorch\")\n","dataset = project.version(11).download(\"yolov7\")"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"base_uri":"https://localhost:8080/"},"executionInfo":{"elapsed":1038,"status":"ok","timestamp":1683282975269,"user":{"displayName":"Deshpande Ms. Gauri Harish --","userId":"01361348429335733319"},"user_tz":-330},"id":"bUbmy674bhpD","outputId":"9e1557c3-21e4-43a1-e27c-3ed095d9f064"},"outputs":[{"output_type":"stream","name":"stdout","text":["/content/yolov7\n","--2023-05-05 10:36:15-- https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt\n","Resolving github.com (github.com)... 140.82.112.4\n","Connecting to github.com (github.com)|140.82.112.4|:443... connected.\n","HTTP request sent, awaiting response... 302 Found\n","Location: https://objects.githubusercontent.com/github-production-release-asset-2e65be/511187726/13e046d1-f7f0-43ab-910b-480613181b1f?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20230505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230505T103615Z&X-Amz-Expires=300&X-Amz-Signature=12ac614d1959b736702dd3e887956ee0236c76df66d05ee703683debb26358e2&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=511187726&response-content-disposition=attachment%3B%20filename%3Dyolov7_training.pt&response-content-type=application%2Foctet-stream [following]\n","--2023-05-05 10:36:15-- https://objects.githubusercontent.com/github-production-release-asset-2e65be/511187726/13e046d1-f7f0-43ab-910b-480613181b1f?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIWNJYAX4CSVEH53A%2F20230505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20230505T103615Z&X-Amz-Expires=300&X-Amz-Signature=12ac614d1959b736702dd3e887956ee0236c76df66d05ee703683debb26358e2&X-Amz-SignedHeaders=host&actor_id=0&key_id=0&repo_id=511187726&response-content-disposition=attachment%3B%20filename%3Dyolov7_training.pt&response-content-type=application%2Foctet-stream\n","Resolving objects.githubusercontent.com (objects.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n","Connecting to objects.githubusercontent.com (objects.githubusercontent.com)|185.199.108.133|:443... connected.\n","HTTP request sent, awaiting response... 200 OK\n","Length: 75628875 (72M) [application/octet-stream]\n","Saving to: ‘yolov7_training.pt’\n","\n","yolov7_training.pt 100%[===================>] 72.12M 217MB/s in 0.3s \n","\n","2023-05-05 10:36:16 (217 MB/s) - ‘yolov7_training.pt’ saved [75628875/75628875]\n","\n"]}],"source":["%cd /content/yolov7\n","!wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt"]},{"cell_type":"code","execution_count":null,"metadata":{"colab":{"background_save":true,"base_uri":"https://localhost:8080/"},"id":"1iqOPKjr22mL","outputId":"09aa80d1-6f27-4f7e-91ae-c66c41bf7a87"},"outputs":[{"name":"stdout","output_type":"stream","text":["/content/yolov7\n","2023-04-23 12:57:39.851981: I tensorflow/core/platform/cpu_feature_guard.cc:182] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n","To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n","2023-04-23 12:57:40.936247: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n","YOLOR 🚀 b2a7de9 torch 2.0.0+cu118 CUDA:0 (Tesla T4, 15101.8125MB)\n","\n","Namespace(weights='yolov7_training.pt', cfg='', data='/content/yolov7/fish-pYTORCH-11/data.yaml', hyp='data/hyp.scratch.p5.yaml', epochs=75, batch_size=16, img_size=[640, 640], rect=False, resume=False, nosave=False, notest=False, noautoanchor=False, evolve=False, bucket='', cache_images=False, image_weights=False, device='', multi_scale=False, single_cls=False, adam=False, sync_bn=False, local_rank=-1, workers=8, project='runs/train', entity=None, name='exp', exist_ok=False, quad=False, linear_lr=False, label_smoothing=0.0, upload_dataset=False, bbox_interval=-1, save_period=-1, artifact_alias='latest', freeze=[0], v5_metric=False, world_size=1, global_rank=-1, save_dir='runs/train/exp', total_batch_size=16)\n","\u001b[34m\u001b[1mtensorboard: \u001b[0mStart with 'tensorboard --logdir runs/train', view at http://localhost:6006/\n","\u001b[34m\u001b[1mhyperparameters: \u001b[0mlr0=0.01, lrf=0.1, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.3, cls_pw=1.0, obj=0.7, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.2, scale=0.9, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.15, copy_paste=0.0, paste_in=0.15, loss_ota=1\n","\u001b[34m\u001b[1mwandb: \u001b[0mInstall Weights & Biases for YOLOR logging with 'pip install wandb' (recommended)\n","Overriding model.yaml nc=80 with nc=31\n","\n"," from n params module arguments \n"," 0 -1 1 928 models.common.Conv [3, 32, 3, 1] \n"," 1 -1 1 18560 models.common.Conv [32, 64, 3, 2] \n"," 2 -1 1 36992 models.common.Conv [64, 64, 3, 1] \n"," 3 -1 1 73984 models.common.Conv [64, 128, 3, 2] \n"," 4 -1 1 8320 models.common.Conv [128, 64, 1, 1] \n"," 5 -2 1 8320 models.common.Conv [128, 64, 1, 1] \n"," 6 -1 1 36992 models.common.Conv [64, 64, 3, 1] \n"," 7 -1 1 36992 models.common.Conv [64, 64, 3, 1] \n"," 8 -1 1 36992 models.common.Conv [64, 64, 3, 1] \n"," 9 -1 1 36992 models.common.Conv [64, 64, 3, 1] \n"," 10 [-1, -3, -5, -6] 1 0 models.common.Concat [1] \n"," 11 -1 1 66048 models.common.Conv [256, 256, 1, 1] \n"," 12 -1 1 0 models.common.MP [] \n"," 13 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n"," 14 -3 1 33024 models.common.Conv [256, 128, 1, 1] \n"," 15 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n"," 16 [-1, -3] 1 0 models.common.Concat [1] \n"," 17 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n"," 18 -2 1 33024 models.common.Conv [256, 128, 1, 1] \n"," 19 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 20 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 21 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 22 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 23 [-1, -3, -5, -6] 1 0 models.common.Concat [1] \n"," 24 -1 1 263168 models.common.Conv [512, 512, 1, 1] \n"," 25 -1 1 0 models.common.MP [] \n"," 26 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 27 -3 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 28 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n"," 29 [-1, -3] 1 0 models.common.Concat [1] \n"," 30 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 31 -2 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 32 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 33 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 34 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 35 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 36 [-1, -3, -5, -6] 1 0 models.common.Concat [1] \n"," 37 -1 1 1050624 models.common.Conv [1024, 1024, 1, 1] \n"," 38 -1 1 0 models.common.MP [] \n"," 39 -1 1 525312 models.common.Conv [1024, 512, 1, 1] \n"," 40 -3 1 525312 models.common.Conv [1024, 512, 1, 1] \n"," 41 -1 1 2360320 models.common.Conv [512, 512, 3, 2] \n"," 42 [-1, -3] 1 0 models.common.Concat [1] \n"," 43 -1 1 262656 models.common.Conv [1024, 256, 1, 1] \n"," 44 -2 1 262656 models.common.Conv [1024, 256, 1, 1] \n"," 45 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 46 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 47 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 48 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 49 [-1, -3, -5, -6] 1 0 models.common.Concat [1] \n"," 50 -1 1 1050624 models.common.Conv [1024, 1024, 1, 1] \n"," 51 -1 1 7609344 models.common.SPPCSPC [1024, 512, 1] \n"," 52 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 53 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n"," 54 37 1 262656 models.common.Conv [1024, 256, 1, 1] \n"," 55 [-1, -2] 1 0 models.common.Concat [1] \n"," 56 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 57 -2 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 58 -1 1 295168 models.common.Conv [256, 128, 3, 1] \n"," 59 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 60 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 61 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 62[-1, -2, -3, -4, -5, -6] 1 0 models.common.Concat [1] \n"," 63 -1 1 262656 models.common.Conv [1024, 256, 1, 1] \n"," 64 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n"," 65 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest'] \n"," 66 24 1 65792 models.common.Conv [512, 128, 1, 1] \n"," 67 [-1, -2] 1 0 models.common.Concat [1] \n"," 68 -1 1 33024 models.common.Conv [256, 128, 1, 1] \n"," 69 -2 1 33024 models.common.Conv [256, 128, 1, 1] \n"," 70 -1 1 73856 models.common.Conv [128, 64, 3, 1] \n"," 71 -1 1 36992 models.common.Conv [64, 64, 3, 1] \n"," 72 -1 1 36992 models.common.Conv [64, 64, 3, 1] \n"," 73 -1 1 36992 models.common.Conv [64, 64, 3, 1] \n"," 74[-1, -2, -3, -4, -5, -6] 1 0 models.common.Concat [1] \n"," 75 -1 1 65792 models.common.Conv [512, 128, 1, 1] \n"," 76 -1 1 0 models.common.MP [] \n"," 77 -1 1 16640 models.common.Conv [128, 128, 1, 1] \n"," 78 -3 1 16640 models.common.Conv [128, 128, 1, 1] \n"," 79 -1 1 147712 models.common.Conv [128, 128, 3, 2] \n"," 80 [-1, -3, 63] 1 0 models.common.Concat [1] \n"," 81 -1 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 82 -2 1 131584 models.common.Conv [512, 256, 1, 1] \n"," 83 -1 1 295168 models.common.Conv [256, 128, 3, 1] \n"," 84 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 85 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 86 -1 1 147712 models.common.Conv [128, 128, 3, 1] \n"," 87[-1, -2, -3, -4, -5, -6] 1 0 models.common.Concat [1] \n"," 88 -1 1 262656 models.common.Conv [1024, 256, 1, 1] \n"," 89 -1 1 0 models.common.MP [] \n"," 90 -1 1 66048 models.common.Conv [256, 256, 1, 1] \n"," 91 -3 1 66048 models.common.Conv [256, 256, 1, 1] \n"," 92 -1 1 590336 models.common.Conv [256, 256, 3, 2] \n"," 93 [-1, -3, 51] 1 0 models.common.Concat [1] \n"," 94 -1 1 525312 models.common.Conv [1024, 512, 1, 1] \n"," 95 -2 1 525312 models.common.Conv [1024, 512, 1, 1] \n"," 96 -1 1 1180160 models.common.Conv [512, 256, 3, 1] \n"," 97 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 98 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n"," 99 -1 1 590336 models.common.Conv [256, 256, 3, 1] \n","100[-1, -2, -3, -4, -5, -6] 1 0 models.common.Concat [1] \n","101 -1 1 1049600 models.common.Conv [2048, 512, 1, 1] \n","102 75 1 328704 models.common.RepConv [128, 256, 3, 1] \n","103 88 1 1312768 models.common.RepConv [256, 512, 3, 1] \n","104 101 1 5246976 models.common.RepConv [512, 1024, 3, 1] \n","105 [102, 103, 104] 1 195976 models.yolo.IDetect [31, [[12, 16, 19, 36, 40, 28], [36, 75, 76, 55, 72, 146], [142, 110, 192, 243, 459, 401]], [256, 512, 1024]]\n","/usr/local/lib/python3.9/dist-packages/torch/functional.py:504: UserWarning: torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument. (Triggered internally at ../aten/src/ATen/native/TensorShape.cpp:3483.)\n"," return _VF.meshgrid(tensors, **kwargs) # type: ignore[attr-defined]\n","Model Summary: 415 layers, 37358376 parameters, 37358376 gradients, 105.6 GFLOPS\n","\n","Transferred 557/566 items from yolov7_training.pt\n","Scaled weight_decay = 0.0005\n","Optimizer groups: 95 .bias, 95 conv.weight, 98 other\n","\u001b[34m\u001b[1mtrain: \u001b[0mScanning 'fish-pYTORCH-11/train/labels' images and labels... 2003 found, 0 missing, 4 empty, 0 corrupted: 100% 2003/2003 [00:00<00:00, 3551.19it/s]\n","\u001b[34m\u001b[1mtrain: \u001b[0mNew cache created: fish-pYTORCH-11/train/labels.cache\n","\u001b[34m\u001b[1mval: \u001b[0mScanning 'fish-pYTORCH-11/valid/labels' images and labels... 760 found, 0 missing, 3 empty, 0 corrupted: 100% 760/760 [00:00<00:00, 1698.14it/s]\n","\u001b[34m\u001b[1mval: \u001b[0mNew cache created: fish-pYTORCH-11/valid/labels.cache\n","\n","\u001b[34m\u001b[1mautoanchor: \u001b[0mAnalyzing anchors... anchors/target = 3.87, Best Possible Recall (BPR) = 0.9967\n","Image sizes 640 train, 640 test\n","Using 2 dataloader workers\n","Logging results to runs/train/exp\n","Starting training for 75 epochs...\n","\n"," Epoch gpu_mem box obj cls total labels img_size\n"," 0/74 1.33G 0.06403 0.01724 0.04493 0.1262 12 640: 100% 126/126 [03:16<00:00, 1.56s/it]\n"," Class Images Labels P R [email protected] [email protected]:.95: 62% 15/24 [00:31<00:18, 2.10s/it]\n","Traceback (most recent call last):\n"," File \"/content/yolov7/train.py\", line 616, in <module>\n"," train(hyp, opt, device, tb_writer)\n"," File \"/content/yolov7/train.py\", line 415, in train\n"," results, maps, times = test.test(data_dict,\n"," File \"/content/yolov7/test.py\", line 115, in test\n"," t0 += time_synchronized() - t\n"," File \"/content/yolov7/utils/torch_utils.py\", line 92, in time_synchronized\n"," torch.cuda.synchronize()\n"," File \"/usr/local/lib/python3.9/dist-packages/torch/cuda/__init__.py\", line 688, in synchronize\n"," return torch._C._cuda_synchronize()\n","KeyboardInterrupt\n","^C\n"]}],"source":["# training\n","%cd /content/yolov7\n","!python train.py --batch 16 --epochs 75 --data {dataset.location}/data.yaml --weights 'yolov7_training.pt' #--device 1"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"N4cfnLtTCIce"},"outputs":[],"source":["# Run evaluation\n","!python detect.py --weights runs/train/exp/weights/best.pt --conf 0.1 --source {dataset.location}/test/images"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"6AGhNOSSHY4_"},"outputs":[],"source":["#display inference on ALL test images\n","\n","import glob\n","from IPython.display import Image, display\n","\n","i = 0\n","limit = 10000 # max images to print\n","for imageName in glob.glob('/content/yolov7/runs/detect/exp/*.jpg'): #assuming JPG\n"," if i < limit:\n"," display(Image(filename=imageName))\n"," print(\"\\n\")\n"," i = i + 1\n"," "]},{"cell_type":"code","execution_count":null,"metadata":{"id":"CMOfi7eLJCT3"},"outputs":[],"source":["# Run evaluation\n","%cd /content/drive/MyDrive/Final Year Project/yolov7\n","!python detect.py --weights /content/drive/MyDrive/Final Year Project/yolov7/runs/train/exp/weights/best.pt --conf 0.1 --source /content/download.jpg"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"yVL_NcQP0rj2"},"outputs":[],"source":["import glob\n","from IPython.display import Image, display\n","\n","imageName=glob.glob('/content/yolov7/runs/detect/exp2/download.jpg')\n","display(imageName)"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"nIcxUmAh1QL0"},"outputs":[],"source":["import cv2\n","from google.colab.patches import cv2_imshow\n"," \n","# path\n","path = r'/content/yolov7/runs/detect/exp2/download.jpg'\n"," \n","# Reading an image in default mode\n","image = cv2.imread(path)\n"," \n","# Window name in which image is displayed\n","window_name = 'image'\n"," \n","# Using cv2.imshow() method\n","# Displaying the image\n","cv2_imshow(image)\n"," \n","# # waits for user to press any key\n","# # (this is necessary to avoid Python kernel form crashing)\n","# cv2.waitKey(0)\n"," \n","# # closing all open windows\n","# cv2.destroyAllWindows()"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"GZKSh7cC2vDM"},"outputs":[],"source":["!zip -r /content/file.zip /content/yolov7"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"Bg3cuMlk24AX","colab":{"base_uri":"https://localhost:8080/","height":304},"executionInfo":{"status":"error","timestamp":1682255431007,"user_tz":-330,"elapsed":395,"user":{"displayName":"Aditya","userId":"02056965916683687180"}},"outputId":"e30ff86c-4169-417e-ee35-0e48f41d72c8"},"outputs":[{"output_type":"error","ename":"FileNotFoundError","evalue":"ignored","traceback":["\u001b[0;31m---------------------------------------------------------------------------\u001b[0m","\u001b[0;31mFileNotFoundError\u001b[0m Traceback (most recent call last)","\u001b[0;32m<ipython-input-3-94b2842221ca>\u001b[0m in \u001b[0;36m<cell line: 2>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgoogle\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolab\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mfiles\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mfiles\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdownload\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"/content/file.zip\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m","\u001b[0;32m/usr/local/lib/python3.9/dist-packages/google/colab/files.py\u001b[0m in \u001b[0;36mdownload\u001b[0;34m(filename)\u001b[0m\n\u001b[1;32m 220\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0m_os\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexists\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 221\u001b[0m \u001b[0mmsg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m'Cannot find file: {}'\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mformat\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfilename\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 222\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mFileNotFoundError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmsg\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;31m# pylint: disable=undefined-variable\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 223\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 224\u001b[0m \u001b[0mcomm_manager\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0m_IPython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mkernel\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcomm_manager\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n","\u001b[0;31mFileNotFoundError\u001b[0m: Cannot find file: /content/file.zip"]}],"source":["from google.colab import files\n","files.download(\"/content/file.zip\")"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"wWOok8abrCsL"},"outputs":[],"source":["#zip to download weights and results locally\n","\n","!zip -r export.zip runs/detect\n","!zip -r export.zip runs/train/exp/weights/best.pt\n","!zip export.zip runs/train/exp/*"]},{"cell_type":"code","execution_count":null,"metadata":{"id":"SN2eCDXJ5xdm"},"outputs":[],"source":["files.download(\"export.zip\")"]}],"metadata":{"accelerator":"GPU","colab":{"provenance":[]},"kernelspec":{"display_name":"Python 3","name":"python3"}},"nbformat":4,"nbformat_minor":0}
LICENSE.md ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,3 +1,279 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Official YOLOv7
2
+
3
+ Implementation of paper - [YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
4
+
5
+ [![PWC](https://img.shields.io/endpoint.svg?url=https://paperswithcode.com/badge/yolov7-trainable-bag-of-freebies-sets-new/real-time-object-detection-on-coco)](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=yolov7-trainable-bag-of-freebies-sets-new)
6
+ [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7)
7
+ <a href="https://colab.research.google.com/gist/AlexeyAB/b769f5795e65fdab80086f6cb7940dae/yolov7detection.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
8
+ [![arxiv.org](http://img.shields.io/badge/cs.CV-arXiv%3A2207.02696-B31B1B.svg)](https://arxiv.org/abs/2207.02696)
9
+
10
+ <div align="center">
11
+ <a href="./">
12
+ <img src="./figure/performance.png" width="79%"/>
13
+ </a>
14
+ </div>
15
+
16
+ ## Web Demo
17
+
18
+ - Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces/akhaliq/yolov7) using Gradio. Try out the Web Demo [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/akhaliq/yolov7)
19
+
20
+ ## Performance
21
+
22
+ MS COCO
23
+
24
+ | Model | Test Size | AP<sup>test</sup> | AP<sub>50</sub><sup>test</sup> | AP<sub>75</sub><sup>test</sup> | batch 1 fps | batch 32 average time |
25
+ | :-- | :-: | :-: | :-: | :-: | :-: | :-: |
26
+ | [**YOLOv7**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) | 640 | **51.4%** | **69.7%** | **55.9%** | 161 *fps* | 2.8 *ms* |
27
+ | [**YOLOv7-X**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) | 640 | **53.1%** | **71.2%** | **57.8%** | 114 *fps* | 4.3 *ms* |
28
+ | | | | | | | |
29
+ | [**YOLOv7-W6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) | 1280 | **54.9%** | **72.6%** | **60.1%** | 84 *fps* | 7.6 *ms* |
30
+ | [**YOLOv7-E6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) | 1280 | **56.0%** | **73.5%** | **61.2%** | 56 *fps* | 12.3 *ms* |
31
+ | [**YOLOv7-D6**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) | 1280 | **56.6%** | **74.0%** | **61.8%** | 44 *fps* | 15.0 *ms* |
32
+ | [**YOLOv7-E6E**](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt) | 1280 | **56.8%** | **74.4%** | **62.1%** | 36 *fps* | 18.7 *ms* |
33
+
34
+ ## Installation
35
+
36
+ Docker environment (recommended)
37
+ <details><summary> <b>Expand</b> </summary>
38
+
39
+ ``` shell
40
+ # create the docker container, you can change the share memory size if you have more.
41
+ nvidia-docker run --name yolov7 -it -v your_coco_path/:/coco/ -v your_code_path/:/yolov7 --shm-size=64g nvcr.io/nvidia/pytorch:21.08-py3
42
+
43
+ # apt install required packages
44
+ apt update
45
+ apt install -y zip htop screen libgl1-mesa-glx
46
+
47
+ # pip install required packages
48
+ pip install seaborn thop
49
+
50
+ # go to code folder
51
+ cd /yolov7
52
+ ```
53
+
54
+ </details>
55
+
56
+ ## Testing
57
+
58
+ [`yolov7.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7.pt) [`yolov7x.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x.pt) [`yolov7-w6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6.pt) [`yolov7-e6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6.pt) [`yolov7-d6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6.pt) [`yolov7-e6e.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e.pt)
59
+
60
+ ``` shell
61
+ python test.py --data data/coco.yaml --img 640 --batch 32 --conf 0.001 --iou 0.65 --device 0 --weights yolov7.pt --name yolov7_640_val
62
+ ```
63
+
64
+ You will get the results:
65
+
66
+ ```
67
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.51206
68
+ Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.69730
69
+ Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.55521
70
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.35247
71
+ Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.55937
72
+ Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.66693
73
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.38453
74
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.63765
75
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.68772
76
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.53766
77
+ Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.73549
78
+ Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.83868
79
+ ```
80
+
81
+ To measure accuracy, download [COCO-annotations for Pycocotools](http://images.cocodataset.org/annotations/annotations_trainval2017.zip) to the `./coco/annotations/instances_val2017.json`
82
+
83
+ ## Training
84
+
85
+ Data preparation
86
+
87
+ ``` shell
88
+ bash scripts/get_coco.sh
89
+ ```
90
+
91
+ * Download MS COCO dataset images ([train](http://images.cocodataset.org/zips/train2017.zip), [val](http://images.cocodataset.org/zips/val2017.zip), [test](http://images.cocodataset.org/zips/test2017.zip)) and [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip). If you have previously used a different version of YOLO, we strongly recommend that you delete `train2017.cache` and `val2017.cache` files, and redownload [labels](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/coco2017labels-segments.zip)
92
+
93
+ Single GPU training
94
+
95
+ ``` shell
96
+ # train p5 models
97
+ python train.py --workers 8 --device 0 --batch-size 32 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
98
+
99
+ # train p6 models
100
+ python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
101
+ ```
102
+
103
+ Multiple GPU training
104
+
105
+ ``` shell
106
+ # train p5 models
107
+ python -m torch.distributed.launch --nproc_per_node 4 --master_port 9527 train.py --workers 8 --device 0,1,2,3 --sync-bn --batch-size 128 --data data/coco.yaml --img 640 640 --cfg cfg/training/yolov7.yaml --weights '' --name yolov7 --hyp data/hyp.scratch.p5.yaml
108
+
109
+ # train p6 models
110
+ python -m torch.distributed.launch --nproc_per_node 8 --master_port 9527 train_aux.py --workers 8 --device 0,1,2,3,4,5,6,7 --sync-bn --batch-size 128 --data data/coco.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights '' --name yolov7-w6 --hyp data/hyp.scratch.p6.yaml
111
+ ```
112
+
113
+ ## Transfer learning
114
+
115
+ [`yolov7_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7_training.pt) [`yolov7x_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7x_training.pt) [`yolov7-w6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6_training.pt) [`yolov7-e6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6_training.pt) [`yolov7-d6_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-d6_training.pt) [`yolov7-e6e_training.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-e6e_training.pt)
116
+
117
+ Single GPU finetuning for custom dataset
118
+
119
+ ``` shell
120
+ # finetune p5 models
121
+ python train.py --workers 8 --device 0 --batch-size 32 --data data/custom.yaml --img 640 640 --cfg cfg/training/yolov7-custom.yaml --weights 'yolov7_training.pt' --name yolov7-custom --hyp data/hyp.scratch.custom.yaml
122
+
123
+ # finetune p6 models
124
+ python train_aux.py --workers 8 --device 0 --batch-size 16 --data data/custom.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6-custom.yaml --weights 'yolov7-w6_training.pt' --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml
125
+ ```
126
+
127
+ ## Re-parameterization
128
+
129
+ See [reparameterization.ipynb](tools/reparameterization.ipynb)
130
+
131
+ ## Inference
132
+
133
+ On video:
134
+ ``` shell
135
+ python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source yourvideo.mp4
136
+ ```
137
+
138
+ On image:
139
+ ``` shell
140
+ python detect.py --weights yolov7.pt --conf 0.25 --img-size 640 --source inference/images/horses.jpg
141
+ ```
142
+
143
+ <div align="center">
144
+ <a href="./">
145
+ <img src="./figure/horses_prediction.jpg" width="59%"/>
146
+ </a>
147
+ </div>
148
+
149
+
150
+ ## Export
151
+
152
+ **Pytorch to CoreML (and inference on MacOS/iOS)** <a href="https://colab.research.google.com/github/WongKinYiu/yolov7/blob/main/tools/YOLOv7CoreML.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
153
+
154
+ **Pytorch to ONNX with NMS (and inference)** <a href="https://colab.research.google.com/github/WongKinYiu/yolov7/blob/main/tools/YOLOv7onnx.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
155
+ ```shell
156
+ python export.py --weights yolov7-tiny.pt --grid --end2end --simplify \
157
+ --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640 --max-wh 640
158
+ ```
159
+
160
+ **Pytorch to TensorRT with NMS (and inference)** <a href="https://colab.research.google.com/github/WongKinYiu/yolov7/blob/main/tools/YOLOv7trt.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a>
161
+
162
+ ```shell
163
+ wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
164
+ python export.py --weights ./yolov7-tiny.pt --grid --end2end --simplify --topk-all 100 --iou-thres 0.65 --conf-thres 0.35 --img-size 640 640
165
+ git clone https://github.com/Linaom1214/tensorrt-python.git
166
+ python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16
167
+ ```
168
+
169
+ **Pytorch to TensorRT another way** <a href="https://colab.research.google.com/gist/AlexeyAB/fcb47ae544cf284eb24d8ad8e880d45c/yolov7trtlinaom.ipynb"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"></a> <details><summary> <b>Expand</b> </summary>
170
+
171
+
172
+ ```shell
173
+ wget https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-tiny.pt
174
+ python export.py --weights yolov7-tiny.pt --grid --include-nms
175
+ git clone https://github.com/Linaom1214/tensorrt-python.git
176
+ python ./tensorrt-python/export.py -o yolov7-tiny.onnx -e yolov7-tiny-nms.trt -p fp16
177
+
178
+ # Or use trtexec to convert ONNX to TensorRT engine
179
+ /usr/src/tensorrt/bin/trtexec --onnx=yolov7-tiny.onnx --saveEngine=yolov7-tiny-nms.trt --fp16
180
+ ```
181
+
182
+ </details>
183
+
184
+ Tested with: Python 3.7.13, Pytorch 1.12.0+cu113
185
+
186
+ ## Pose estimation
187
+
188
+ [`code`](https://github.com/WongKinYiu/yolov7/tree/pose) [`yolov7-w6-pose.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-w6-pose.pt)
189
+
190
+ See [keypoint.ipynb](https://github.com/WongKinYiu/yolov7/blob/main/tools/keypoint.ipynb).
191
+
192
+ <div align="center">
193
+ <a href="./">
194
+ <img src="./figure/pose.png" width="39%"/>
195
+ </a>
196
+ </div>
197
+
198
+
199
+ ## Instance segmentation
200
+
201
+ [`code`](https://github.com/WongKinYiu/yolov7/tree/mask) [`yolov7-mask.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-mask.pt)
202
+
203
+ See [instance.ipynb](https://github.com/WongKinYiu/yolov7/blob/main/tools/instance.ipynb).
204
+
205
+ <div align="center">
206
+ <a href="./">
207
+ <img src="./figure/mask.png" width="59%"/>
208
+ </a>
209
+ </div>
210
+
211
+ ## Instance segmentation
212
+
213
+ [`code`](https://github.com/WongKinYiu/yolov7/tree/u7/seg) [`yolov7-seg.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-seg.pt)
214
+
215
+ YOLOv7 for instance segmentation (YOLOR + YOLOv5 + YOLACT)
216
+
217
+ | Model | Test Size | AP<sup>box</sup> | AP<sub>50</sub><sup>box</sup> | AP<sub>75</sub><sup>box</sup> | AP<sup>mask</sup> | AP<sub>50</sub><sup>mask</sup> | AP<sub>75</sub><sup>mask</sup> |
218
+ | :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
219
+ | **YOLOv7-seg** | 640 | **51.4%** | **69.4%** | **55.8%** | **41.5%** | **65.5%** | **43.7%** |
220
+
221
+ ## Anchor free detection head
222
+
223
+ [`code`](https://github.com/WongKinYiu/yolov7/tree/u6) [`yolov7-u6.pt`](https://github.com/WongKinYiu/yolov7/releases/download/v0.1/yolov7-u6.pt)
224
+
225
+ YOLOv7 with decoupled TAL head (YOLOR + YOLOv5 + YOLOv6)
226
+
227
+ | Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> |
228
+ | :-- | :-: | :-: | :-: | :-: |
229
+ | **YOLOv7-u6** | 640 | **52.6%** | **69.7%** | **57.3%** |
230
+
231
+
232
+ ## Citation
233
+
234
+ ```
235
+ @article{wang2022yolov7,
236
+ title={{YOLOv7}: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
237
+ author={Wang, Chien-Yao and Bochkovskiy, Alexey and Liao, Hong-Yuan Mark},
238
+ journal={arXiv preprint arXiv:2207.02696},
239
+ year={2022}
240
+ }
241
+ ```
242
+
243
+
244
+ ## Teaser
245
+
246
+ Yolov7-semantic & YOLOv7-panoptic & YOLOv7-caption
247
+
248
+ <div align="center">
249
+ <a href="./">
250
+ <img src="./figure/tennis.jpg" width="24%"/>
251
+ </a>
252
+ <a href="./">
253
+ <img src="./figure/tennis_semantic.jpg" width="24%"/>
254
+ </a>
255
+ <a href="./">
256
+ <img src="./figure/tennis_panoptic.png" width="24%"/>
257
+ </a>
258
+ <a href="./">
259
+ <img src="./figure/tennis_caption.png" width="24%"/>
260
+ </a>
261
+ </div>
262
+
263
+
264
+ ## Acknowledgements
265
+
266
+ <details><summary> <b>Expand</b> </summary>
267
+
268
+ * [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet)
269
+ * [https://github.com/WongKinYiu/yolor](https://github.com/WongKinYiu/yolor)
270
+ * [https://github.com/WongKinYiu/PyTorch_YOLOv4](https://github.com/WongKinYiu/PyTorch_YOLOv4)
271
+ * [https://github.com/WongKinYiu/ScaledYOLOv4](https://github.com/WongKinYiu/ScaledYOLOv4)
272
+ * [https://github.com/Megvii-BaseDetection/YOLOX](https://github.com/Megvii-BaseDetection/YOLOX)
273
+ * [https://github.com/ultralytics/yolov3](https://github.com/ultralytics/yolov3)
274
+ * [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5)
275
+ * [https://github.com/DingXiaoH/RepVGG](https://github.com/DingXiaoH/RepVGG)
276
+ * [https://github.com/JUGGHM/OREPA_CVPR2022](https://github.com/JUGGHM/OREPA_CVPR2022)
277
+ * [https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose](https://github.com/TexasInstruments/edgeai-yolov5/tree/yolo-pose)
278
+
279
+ </details>
detect.py ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import time
3
+ from pathlib import Path
4
+
5
+ import cv2
6
+ import torch
7
+ import torch.backends.cudnn as cudnn
8
+ from numpy import random
9
+
10
+ from models.experimental import attempt_load
11
+ from utils.datasets import LoadStreams, LoadImages
12
+ from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, apply_classifier, \
13
+ scale_coords, xyxy2xywh, strip_optimizer, set_logging, increment_path
14
+ from utils.plots import plot_one_box
15
+ from utils.torch_utils import select_device, load_classifier, time_synchronized, TracedModel
16
+
17
+
18
+ def detect(save_img=False):
19
+ source, weights, view_img, save_txt, imgsz, trace = opt.source, opt.weights, opt.view_img, opt.save_txt, opt.img_size, not opt.no_trace
20
+ save_img = not opt.nosave and not source.endswith('.txt') # save inference images
21
+ webcam = source.isnumeric() or source.endswith('.txt') or source.lower().startswith(
22
+ ('rtsp://', 'rtmp://', 'http://', 'https://'))
23
+
24
+ # Directories
25
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
26
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
27
+
28
+ # Initialize
29
+ set_logging()
30
+ device = select_device(opt.device)
31
+ half = device.type != 'cpu' # half precision only supported on CUDA
32
+
33
+ # Load model
34
+ model = attempt_load(weights, map_location=device) # load FP32 model
35
+ stride = int(model.stride.max()) # model stride
36
+ imgsz = check_img_size(imgsz, s=stride) # check img_size
37
+
38
+ if trace:
39
+ model = TracedModel(model, device, opt.img_size)
40
+
41
+ if half:
42
+ model.half() # to FP16
43
+
44
+ # Second-stage classifier
45
+ classify = False
46
+ if classify:
47
+ modelc = load_classifier(name='resnet101', n=2) # initialize
48
+ modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']).to(device).eval()
49
+
50
+ # Set Dataloader
51
+ vid_path, vid_writer = None, None
52
+ if webcam:
53
+ view_img = check_imshow()
54
+ cudnn.benchmark = True # set True to speed up constant image size inference
55
+ dataset = LoadStreams(source, img_size=imgsz, stride=stride)
56
+ else:
57
+ dataset = LoadImages(source, img_size=imgsz, stride=stride)
58
+
59
+ # Get names and colors
60
+ names = model.module.names if hasattr(model, 'module') else model.names
61
+ colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
62
+
63
+ # Run inference
64
+ if device.type != 'cpu':
65
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
66
+ old_img_w = old_img_h = imgsz
67
+ old_img_b = 1
68
+
69
+ t0 = time.time()
70
+ for path, img, im0s, vid_cap in dataset:
71
+ img = torch.from_numpy(img).to(device)
72
+ img = img.half() if half else img.float() # uint8 to fp16/32
73
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
74
+ if img.ndimension() == 3:
75
+ img = img.unsqueeze(0)
76
+
77
+ # Warmup
78
+ if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
79
+ old_img_b = img.shape[0]
80
+ old_img_h = img.shape[2]
81
+ old_img_w = img.shape[3]
82
+ for i in range(3):
83
+ model(img, augment=opt.augment)[0]
84
+
85
+ # Inference
86
+ t1 = time_synchronized()
87
+ with torch.no_grad(): # Calculating gradients would cause a GPU memory leak
88
+ pred = model(img, augment=opt.augment)[0]
89
+ t2 = time_synchronized()
90
+
91
+ # Apply NMS
92
+ pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes, agnostic=opt.agnostic_nms)
93
+ t3 = time_synchronized()
94
+
95
+ # Apply Classifier
96
+ if classify:
97
+ pred = apply_classifier(pred, modelc, img, im0s)
98
+
99
+ # Process detections
100
+ for i, det in enumerate(pred): # detections per image
101
+ if webcam: # batch_size >= 1
102
+ p, s, im0, frame = path[i], '%g: ' % i, im0s[i].copy(), dataset.count
103
+ else:
104
+ p, s, im0, frame = path, '', im0s, getattr(dataset, 'frame', 0)
105
+
106
+ p = Path(p) # to Path
107
+ save_path = str(save_dir / p.name) # img.jpg
108
+ txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # img.txt
109
+ gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
110
+ if len(det):
111
+ # Rescale boxes from img_size to im0 size
112
+ det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
113
+
114
+ # Print results
115
+ for c in det[:, -1].unique():
116
+ n = (det[:, -1] == c).sum() # detections per class
117
+ s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
118
+
119
+ # Write results
120
+ for *xyxy, conf, cls in reversed(det):
121
+ if save_txt: # Write to file
122
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
123
+ line = (cls, *xywh, conf) if opt.save_conf else (cls, *xywh) # label format
124
+ with open(txt_path + '.txt', 'a') as f:
125
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
126
+
127
+ if save_img or view_img: # Add bbox to image
128
+ label = f'{names[int(cls)]} {conf:.2f}'
129
+ plot_one_box(xyxy, im0, label=label, color=colors[int(cls)], line_thickness=1)
130
+
131
+ # Print time (inference + NMS)
132
+ print(f'{s}Done. ({(1E3 * (t2 - t1)):.1f}ms) Inference, ({(1E3 * (t3 - t2)):.1f}ms) NMS')
133
+
134
+ # Stream results
135
+ if view_img:
136
+ cv2.imshow(str(p), im0)
137
+ cv2.waitKey(1) # 1 millisecond
138
+
139
+ # Save results (image with detections)
140
+ if save_img:
141
+ if dataset.mode == 'image':
142
+ cv2.imwrite(save_path, im0)
143
+ print(f" The image with the result is saved in: {save_path}")
144
+ else: # 'video' or 'stream'
145
+ if vid_path != save_path: # new video
146
+ vid_path = save_path
147
+ if isinstance(vid_writer, cv2.VideoWriter):
148
+ vid_writer.release() # release previous video writer
149
+ if vid_cap: # video
150
+ fps = vid_cap.get(cv2.CAP_PROP_FPS)
151
+ w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
152
+ h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
153
+ else: # stream
154
+ fps, w, h = 30, im0.shape[1], im0.shape[0]
155
+ save_path += '.mp4'
156
+ vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
157
+ vid_writer.write(im0)
158
+
159
+ if save_txt or save_img:
160
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
161
+ #print(f"Results saved to {save_dir}{s}")
162
+
163
+ print(f'Done. ({time.time() - t0:.3f}s)')
164
+
165
+
166
+ if __name__ == '__main__':
167
+ parser = argparse.ArgumentParser()
168
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
169
+ parser.add_argument('--source', type=str, default='inference/images', help='source') # file/folder, 0 for webcam
170
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
171
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
172
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
173
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
174
+ parser.add_argument('--view-img', action='store_true', help='display results')
175
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
176
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
177
+ parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
178
+ parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
179
+ parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
180
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
181
+ parser.add_argument('--update', action='store_true', help='update all models')
182
+ parser.add_argument('--project', default='runs/detect', help='save results to project/name')
183
+ parser.add_argument('--name', default='exp', help='save results to project/name')
184
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
185
+ parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
186
+ opt = parser.parse_args()
187
+ print(opt)
188
+ #check_requirements(exclude=('pycocotools', 'thop'))
189
+
190
+ with torch.no_grad():
191
+ if opt.update: # update all models (to fix SourceChangeWarning)
192
+ for opt.weights in ['yolov7.pt']:
193
+ detect()
194
+ strip_optimizer(opt.weights)
195
+ else:
196
+ detect()
export.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import sys
3
+ import time
4
+ import warnings
5
+
6
+ sys.path.append('./') # to run '$ python *.py' files in subdirectories
7
+
8
+ import torch
9
+ import torch.nn as nn
10
+ from torch.utils.mobile_optimizer import optimize_for_mobile
11
+
12
+ import models
13
+ from models.experimental import attempt_load, End2End
14
+ from utils.activations import Hardswish, SiLU
15
+ from utils.general import set_logging, check_img_size
16
+ from utils.torch_utils import select_device
17
+ from utils.add_nms import RegisterNMS
18
+
19
+ if __name__ == '__main__':
20
+ parser = argparse.ArgumentParser()
21
+ parser.add_argument('--weights', type=str, default='./yolor-csp-c.pt', help='weights path')
22
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width
23
+ parser.add_argument('--batch-size', type=int, default=1, help='batch size')
24
+ parser.add_argument('--dynamic', action='store_true', help='dynamic ONNX axes')
25
+ parser.add_argument('--dynamic-batch', action='store_true', help='dynamic batch onnx for tensorrt and onnx-runtime')
26
+ parser.add_argument('--grid', action='store_true', help='export Detect() layer grid')
27
+ parser.add_argument('--end2end', action='store_true', help='export end2end onnx')
28
+ parser.add_argument('--max-wh', type=int, default=None, help='None for tensorrt nms, int value for onnx-runtime nms')
29
+ parser.add_argument('--topk-all', type=int, default=100, help='topk objects for every images')
30
+ parser.add_argument('--iou-thres', type=float, default=0.45, help='iou threshold for NMS')
31
+ parser.add_argument('--conf-thres', type=float, default=0.25, help='conf threshold for NMS')
32
+ parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
33
+ parser.add_argument('--simplify', action='store_true', help='simplify onnx model')
34
+ parser.add_argument('--include-nms', action='store_true', help='export end2end onnx')
35
+ parser.add_argument('--fp16', action='store_true', help='CoreML FP16 half-precision export')
36
+ parser.add_argument('--int8', action='store_true', help='CoreML INT8 quantization')
37
+ opt = parser.parse_args()
38
+ opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand
39
+ opt.dynamic = opt.dynamic and not opt.end2end
40
+ opt.dynamic = False if opt.dynamic_batch else opt.dynamic
41
+ print(opt)
42
+ set_logging()
43
+ t = time.time()
44
+
45
+ # Load PyTorch model
46
+ device = select_device(opt.device)
47
+ model = attempt_load(opt.weights, map_location=device) # load FP32 model
48
+ labels = model.names
49
+
50
+ # Checks
51
+ gs = int(max(model.stride)) # grid size (max stride)
52
+ opt.img_size = [check_img_size(x, gs) for x in opt.img_size] # verify img_size are gs-multiples
53
+
54
+ # Input
55
+ img = torch.zeros(opt.batch_size, 3, *opt.img_size).to(device) # image size(1,3,320,192) iDetection
56
+
57
+ # Update model
58
+ for k, m in model.named_modules():
59
+ m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatibility
60
+ if isinstance(m, models.common.Conv): # assign export-friendly activations
61
+ if isinstance(m.act, nn.Hardswish):
62
+ m.act = Hardswish()
63
+ elif isinstance(m.act, nn.SiLU):
64
+ m.act = SiLU()
65
+ # elif isinstance(m, models.yolo.Detect):
66
+ # m.forward = m.forward_export # assign forward (optional)
67
+ model.model[-1].export = not opt.grid # set Detect() layer grid export
68
+ y = model(img) # dry run
69
+ if opt.include_nms:
70
+ model.model[-1].include_nms = True
71
+ y = None
72
+
73
+ # TorchScript export
74
+ try:
75
+ print('\nStarting TorchScript export with torch %s...' % torch.__version__)
76
+ f = opt.weights.replace('.pt', '.torchscript.pt') # filename
77
+ ts = torch.jit.trace(model, img, strict=False)
78
+ ts.save(f)
79
+ print('TorchScript export success, saved as %s' % f)
80
+ except Exception as e:
81
+ print('TorchScript export failure: %s' % e)
82
+
83
+ # CoreML export
84
+ try:
85
+ import coremltools as ct
86
+
87
+ print('\nStarting CoreML export with coremltools %s...' % ct.__version__)
88
+ # convert model from torchscript and apply pixel scaling as per detect.py
89
+ ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=img.shape, scale=1 / 255.0, bias=[0, 0, 0])])
90
+ bits, mode = (8, 'kmeans_lut') if opt.int8 else (16, 'linear') if opt.fp16 else (32, None)
91
+ if bits < 32:
92
+ if sys.platform.lower() == 'darwin': # quantization only supported on macOS
93
+ with warnings.catch_warnings():
94
+ warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
95
+ ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
96
+ else:
97
+ print('quantization only supported on macOS, skipping...')
98
+
99
+ f = opt.weights.replace('.pt', '.mlmodel') # filename
100
+ ct_model.save(f)
101
+ print('CoreML export success, saved as %s' % f)
102
+ except Exception as e:
103
+ print('CoreML export failure: %s' % e)
104
+
105
+ # TorchScript-Lite export
106
+ try:
107
+ print('\nStarting TorchScript-Lite export with torch %s...' % torch.__version__)
108
+ f = opt.weights.replace('.pt', '.torchscript.ptl') # filename
109
+ tsl = torch.jit.trace(model, img, strict=False)
110
+ tsl = optimize_for_mobile(tsl)
111
+ tsl._save_for_lite_interpreter(f)
112
+ print('TorchScript-Lite export success, saved as %s' % f)
113
+ except Exception as e:
114
+ print('TorchScript-Lite export failure: %s' % e)
115
+
116
+ # ONNX export
117
+ try:
118
+ import onnx
119
+
120
+ print('\nStarting ONNX export with onnx %s...' % onnx.__version__)
121
+ f = opt.weights.replace('.pt', '.onnx') # filename
122
+ model.eval()
123
+ output_names = ['classes', 'boxes'] if y is None else ['output']
124
+ dynamic_axes = None
125
+ if opt.dynamic:
126
+ dynamic_axes = {'images': {0: 'batch', 2: 'height', 3: 'width'}, # size(1,3,640,640)
127
+ 'output': {0: 'batch', 2: 'y', 3: 'x'}}
128
+ if opt.dynamic_batch:
129
+ opt.batch_size = 'batch'
130
+ dynamic_axes = {
131
+ 'images': {
132
+ 0: 'batch',
133
+ }, }
134
+ if opt.end2end and opt.max_wh is None:
135
+ output_axes = {
136
+ 'num_dets': {0: 'batch'},
137
+ 'det_boxes': {0: 'batch'},
138
+ 'det_scores': {0: 'batch'},
139
+ 'det_classes': {0: 'batch'},
140
+ }
141
+ else:
142
+ output_axes = {
143
+ 'output': {0: 'batch'},
144
+ }
145
+ dynamic_axes.update(output_axes)
146
+ if opt.grid:
147
+ if opt.end2end:
148
+ print('\nStarting export end2end onnx model for %s...' % 'TensorRT' if opt.max_wh is None else 'onnxruntime')
149
+ model = End2End(model,opt.topk_all,opt.iou_thres,opt.conf_thres,opt.max_wh,device,len(labels))
150
+ if opt.end2end and opt.max_wh is None:
151
+ output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
152
+ shapes = [opt.batch_size, 1, opt.batch_size, opt.topk_all, 4,
153
+ opt.batch_size, opt.topk_all, opt.batch_size, opt.topk_all]
154
+ else:
155
+ output_names = ['output']
156
+ else:
157
+ model.model[-1].concat = True
158
+
159
+ torch.onnx.export(model, img, f, verbose=False, opset_version=12, input_names=['images'],
160
+ output_names=output_names,
161
+ dynamic_axes=dynamic_axes)
162
+
163
+ # Checks
164
+ onnx_model = onnx.load(f) # load onnx model
165
+ onnx.checker.check_model(onnx_model) # check onnx model
166
+
167
+ if opt.end2end and opt.max_wh is None:
168
+ for i in onnx_model.graph.output:
169
+ for j in i.type.tensor_type.shape.dim:
170
+ j.dim_param = str(shapes.pop(0))
171
+
172
+ # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
173
+
174
+ # # Metadata
175
+ # d = {'stride': int(max(model.stride))}
176
+ # for k, v in d.items():
177
+ # meta = onnx_model.metadata_props.add()
178
+ # meta.key, meta.value = k, str(v)
179
+ # onnx.save(onnx_model, f)
180
+
181
+ if opt.simplify:
182
+ try:
183
+ import onnxsim
184
+
185
+ print('\nStarting to simplify ONNX...')
186
+ onnx_model, check = onnxsim.simplify(onnx_model)
187
+ assert check, 'assert check failed'
188
+ except Exception as e:
189
+ print(f'Simplifier failure: {e}')
190
+
191
+ # print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
192
+ onnx.save(onnx_model,f)
193
+ print('ONNX export success, saved as %s' % f)
194
+
195
+ if opt.include_nms:
196
+ print('Registering NMS plugin for ONNX...')
197
+ mo = RegisterNMS(f)
198
+ mo.register_nms()
199
+ mo.save(f)
200
+
201
+ except Exception as e:
202
+ print('ONNX export failure: %s' % e)
203
+
204
+ # Finish
205
+ print('\nExport complete (%.2fs). Visualize with https://github.com/lutzroeder/netron.' % (time.time() - t))
hubconf.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """PyTorch Hub models
2
+
3
+ Usage:
4
+ import torch
5
+ model = torch.hub.load('repo', 'model')
6
+ """
7
+
8
+ from pathlib import Path
9
+
10
+ import torch
11
+
12
+ from models.yolo import Model
13
+ from utils.general import check_requirements, set_logging
14
+ from utils.google_utils import attempt_download
15
+ from utils.torch_utils import select_device
16
+
17
+ dependencies = ['torch', 'yaml']
18
+ check_requirements(Path(__file__).parent / 'requirements.txt', exclude=('pycocotools', 'thop'))
19
+ set_logging()
20
+
21
+
22
+ def create(name, pretrained, channels, classes, autoshape):
23
+ """Creates a specified model
24
+
25
+ Arguments:
26
+ name (str): name of model, i.e. 'yolov7'
27
+ pretrained (bool): load pretrained weights into the model
28
+ channels (int): number of input channels
29
+ classes (int): number of model classes
30
+
31
+ Returns:
32
+ pytorch model
33
+ """
34
+ try:
35
+ cfg = list((Path(__file__).parent / 'cfg').rglob(f'{name}.yaml'))[0] # model.yaml path
36
+ model = Model(cfg, channels, classes)
37
+ if pretrained:
38
+ fname = f'{name}.pt' # checkpoint filename
39
+ attempt_download(fname) # download if not found locally
40
+ ckpt = torch.load(fname, map_location=torch.device('cpu')) # load
41
+ msd = model.state_dict() # model state_dict
42
+ csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
43
+ csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter
44
+ model.load_state_dict(csd, strict=False) # load
45
+ if len(ckpt['model'].names) == classes:
46
+ model.names = ckpt['model'].names # set class names attribute
47
+ if autoshape:
48
+ model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
49
+ device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
50
+ return model.to(device)
51
+
52
+ except Exception as e:
53
+ s = 'Cache maybe be out of date, try force_reload=True.'
54
+ raise Exception(s) from e
55
+
56
+
57
+ def custom(path_or_model='path/to/model.pt', autoshape=True):
58
+ """custom mode
59
+
60
+ Arguments (3 options):
61
+ path_or_model (str): 'path/to/model.pt'
62
+ path_or_model (dict): torch.load('path/to/model.pt')
63
+ path_or_model (nn.Module): torch.load('path/to/model.pt')['model']
64
+
65
+ Returns:
66
+ pytorch model
67
+ """
68
+ model = torch.load(path_or_model, map_location=torch.device('cpu')) if isinstance(path_or_model, str) else path_or_model # load checkpoint
69
+ if isinstance(model, dict):
70
+ model = model['ema' if model.get('ema') else 'model'] # load model
71
+
72
+ hub_model = Model(model.yaml).to(next(model.parameters()).device) # create
73
+ hub_model.load_state_dict(model.float().state_dict()) # load state_dict
74
+ hub_model.names = model.names # class names
75
+ if autoshape:
76
+ hub_model = hub_model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS
77
+ device = select_device('0' if torch.cuda.is_available() else 'cpu') # default to GPU if available
78
+ return hub_model.to(device)
79
+
80
+
81
+ def yolov7(pretrained=True, channels=3, classes=80, autoshape=True):
82
+ return create('yolov7', pretrained, channels, classes, autoshape)
83
+
84
+
85
+ if __name__ == '__main__':
86
+ model = custom(path_or_model='yolov7.pt') # custom example
87
+ # model = create(name='yolov7', pretrained=True, channels=3, classes=80, autoshape=True) # pretrained example
88
+
89
+ # Verify inference
90
+ import numpy as np
91
+ from PIL import Image
92
+
93
+ imgs = [np.zeros((640, 480, 3))]
94
+
95
+ results = model(imgs) # batched inference
96
+ results.print()
97
+ results.save()
requirements.txt ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Usage: pip install -r requirements.txt
2
+
3
+ # Base ----------------------------------------
4
+ matplotlib>=3.2.2
5
+ numpy>=1.18.5
6
+ opencv-python>=4.1.1
7
+ Pillow>=7.1.2
8
+ PyYAML>=5.3.1
9
+ requests>=2.23.0
10
+ scipy>=1.4.1
11
+ torch>=1.7.0,!=1.12.0
12
+ torchvision>=0.8.1,!=0.13.0
13
+ tqdm>=4.41.0
14
+ protobuf<4.21.3
15
+
16
+ # Logging -------------------------------------
17
+ tensorboard>=2.4.1
18
+ # wandb
19
+
20
+ # Plotting ------------------------------------
21
+ pandas>=1.1.4
22
+ seaborn>=0.11.0
23
+
24
+ # Export --------------------------------------
25
+ # coremltools>=4.1 # CoreML export
26
+ # onnx>=1.9.0 # ONNX export
27
+ # onnx-simplifier>=0.3.6 # ONNX simplifier
28
+ # scikit-learn==0.19.2 # CoreML quantization
29
+ # tensorflow>=2.4.1 # TFLite export
30
+ # tensorflowjs>=3.9.0 # TF.js export
31
+ # openvino-dev # OpenVINO export
32
+
33
+ # Extras --------------------------------------
34
+ ipython # interactive notebook
35
+ psutil # system utilization
36
+ thop # FLOPs computation
37
+ # albumentations>=1.0.3
38
+ # pycocotools>=2.0 # COCO mAP
39
+ # roboflow
test.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import json
3
+ import os
4
+ from pathlib import Path
5
+ from threading import Thread
6
+
7
+ import numpy as np
8
+ import torch
9
+ import yaml
10
+ from tqdm import tqdm
11
+
12
+ from models.experimental import attempt_load
13
+ from utils.datasets import create_dataloader
14
+ from utils.general import coco80_to_coco91_class, check_dataset, check_file, check_img_size, check_requirements, \
15
+ box_iou, non_max_suppression, scale_coords, xyxy2xywh, xywh2xyxy, set_logging, increment_path, colorstr
16
+ from utils.metrics import ap_per_class, ConfusionMatrix
17
+ from utils.plots import plot_images, output_to_target, plot_study_txt
18
+ from utils.torch_utils import select_device, time_synchronized, TracedModel
19
+
20
+
21
+ def test(data,
22
+ weights=None,
23
+ batch_size=32,
24
+ imgsz=640,
25
+ conf_thres=0.001,
26
+ iou_thres=0.6, # for NMS
27
+ save_json=False,
28
+ single_cls=False,
29
+ augment=False,
30
+ verbose=False,
31
+ model=None,
32
+ dataloader=None,
33
+ save_dir=Path(''), # for saving images
34
+ save_txt=False, # for auto-labelling
35
+ save_hybrid=False, # for hybrid auto-labelling
36
+ save_conf=False, # save auto-label confidences
37
+ plots=True,
38
+ wandb_logger=None,
39
+ compute_loss=None,
40
+ half_precision=True,
41
+ trace=False,
42
+ is_coco=False,
43
+ v5_metric=False):
44
+ # Initialize/load model and set device
45
+ training = model is not None
46
+ if training: # called by train.py
47
+ device = next(model.parameters()).device # get model device
48
+
49
+ else: # called directly
50
+ set_logging()
51
+ device = select_device(opt.device, batch_size=batch_size)
52
+
53
+ # Directories
54
+ save_dir = Path(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok)) # increment run
55
+ (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
56
+
57
+ # Load model
58
+ model = attempt_load(weights, map_location=device) # load FP32 model
59
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
60
+ imgsz = check_img_size(imgsz, s=gs) # check img_size
61
+
62
+ if trace:
63
+ model = TracedModel(model, device, imgsz)
64
+
65
+ # Half
66
+ half = device.type != 'cpu' and half_precision # half precision only supported on CUDA
67
+ if half:
68
+ model.half()
69
+
70
+ # Configure
71
+ model.eval()
72
+ if isinstance(data, str):
73
+ is_coco = data.endswith('coco.yaml')
74
+ with open(data) as f:
75
+ data = yaml.load(f, Loader=yaml.SafeLoader)
76
+ check_dataset(data) # check
77
+ nc = 1 if single_cls else int(data['nc']) # number of classes
78
+ iouv = torch.linspace(0.5, 0.95, 10).to(device) # iou vector for [email protected]:0.95
79
+ niou = iouv.numel()
80
+
81
+ # Logging
82
+ log_imgs = 0
83
+ if wandb_logger and wandb_logger.wandb:
84
+ log_imgs = min(wandb_logger.log_imgs, 100)
85
+ # Dataloader
86
+ if not training:
87
+ if device.type != 'cpu':
88
+ model(torch.zeros(1, 3, imgsz, imgsz).to(device).type_as(next(model.parameters()))) # run once
89
+ task = opt.task if opt.task in ('train', 'val', 'test') else 'val' # path to train/val/test images
90
+ dataloader = create_dataloader(data[task], imgsz, batch_size, gs, opt, pad=0.5, rect=True,
91
+ prefix=colorstr(f'{task}: '))[0]
92
+
93
+ if v5_metric:
94
+ print("Testing with YOLOv5 AP metric...")
95
+
96
+ seen = 0
97
+ confusion_matrix = ConfusionMatrix(nc=nc)
98
+ names = {k: v for k, v in enumerate(model.names if hasattr(model, 'names') else model.module.names)}
99
+ coco91class = coco80_to_coco91_class()
100
+ s = ('%20s' + '%12s' * 6) % ('Class', 'Images', 'Labels', 'P', 'R', '[email protected]', '[email protected]:.95')
101
+ p, r, f1, mp, mr, map50, map, t0, t1 = 0., 0., 0., 0., 0., 0., 0., 0., 0.
102
+ loss = torch.zeros(3, device=device)
103
+ jdict, stats, ap, ap_class, wandb_images = [], [], [], [], []
104
+ for batch_i, (img, targets, paths, shapes) in enumerate(tqdm(dataloader, desc=s)):
105
+ img = img.to(device, non_blocking=True)
106
+ img = img.half() if half else img.float() # uint8 to fp16/32
107
+ img /= 255.0 # 0 - 255 to 0.0 - 1.0
108
+ targets = targets.to(device)
109
+ nb, _, height, width = img.shape # batch size, channels, height, width
110
+
111
+ with torch.no_grad():
112
+ # Run model
113
+ t = time_synchronized()
114
+ out, train_out = model(img, augment=augment) # inference and training outputs
115
+ t0 += time_synchronized() - t
116
+
117
+ # Compute loss
118
+ if compute_loss:
119
+ loss += compute_loss([x.float() for x in train_out], targets)[1][:3] # box, obj, cls
120
+
121
+ # Run NMS
122
+ targets[:, 2:] *= torch.Tensor([width, height, width, height]).to(device) # to pixels
123
+ lb = [targets[targets[:, 0] == i, 1:] for i in range(nb)] if save_hybrid else [] # for autolabelling
124
+ t = time_synchronized()
125
+ out = non_max_suppression(out, conf_thres=conf_thres, iou_thres=iou_thres, labels=lb, multi_label=True)
126
+ t1 += time_synchronized() - t
127
+
128
+ # Statistics per image
129
+ for si, pred in enumerate(out):
130
+ labels = targets[targets[:, 0] == si, 1:]
131
+ nl = len(labels)
132
+ tcls = labels[:, 0].tolist() if nl else [] # target class
133
+ path = Path(paths[si])
134
+ seen += 1
135
+
136
+ if len(pred) == 0:
137
+ if nl:
138
+ stats.append((torch.zeros(0, niou, dtype=torch.bool), torch.Tensor(), torch.Tensor(), tcls))
139
+ continue
140
+
141
+ # Predictions
142
+ predn = pred.clone()
143
+ scale_coords(img[si].shape[1:], predn[:, :4], shapes[si][0], shapes[si][1]) # native-space pred
144
+
145
+ # Append to text file
146
+ if save_txt:
147
+ gn = torch.tensor(shapes[si][0])[[1, 0, 1, 0]] # normalization gain whwh
148
+ for *xyxy, conf, cls in predn.tolist():
149
+ xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
150
+ line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
151
+ with open(save_dir / 'labels' / (path.stem + '.txt'), 'a') as f:
152
+ f.write(('%g ' * len(line)).rstrip() % line + '\n')
153
+
154
+ # W&B logging - Media Panel Plots
155
+ if len(wandb_images) < log_imgs and wandb_logger.current_epoch > 0: # Check for test operation
156
+ if wandb_logger.current_epoch % wandb_logger.bbox_interval == 0:
157
+ box_data = [{"position": {"minX": xyxy[0], "minY": xyxy[1], "maxX": xyxy[2], "maxY": xyxy[3]},
158
+ "class_id": int(cls),
159
+ "box_caption": "%s %.3f" % (names[cls], conf),
160
+ "scores": {"class_score": conf},
161
+ "domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
162
+ boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
163
+ wandb_images.append(wandb_logger.wandb.Image(img[si], boxes=boxes, caption=path.name))
164
+ wandb_logger.log_training_progress(predn, path, names) if wandb_logger and wandb_logger.wandb_run else None
165
+
166
+ # Append to pycocotools JSON dictionary
167
+ if save_json:
168
+ # [{"image_id": 42, "category_id": 18, "bbox": [258.15, 41.29, 348.26, 243.78], "score": 0.236}, ...
169
+ image_id = int(path.stem) if path.stem.isnumeric() else path.stem
170
+ box = xyxy2xywh(predn[:, :4]) # xywh
171
+ box[:, :2] -= box[:, 2:] / 2 # xy center to top-left corner
172
+ for p, b in zip(pred.tolist(), box.tolist()):
173
+ jdict.append({'image_id': image_id,
174
+ 'category_id': coco91class[int(p[5])] if is_coco else int(p[5]),
175
+ 'bbox': [round(x, 3) for x in b],
176
+ 'score': round(p[4], 5)})
177
+
178
+ # Assign all predictions as incorrect
179
+ correct = torch.zeros(pred.shape[0], niou, dtype=torch.bool, device=device)
180
+ if nl:
181
+ detected = [] # target indices
182
+ tcls_tensor = labels[:, 0]
183
+
184
+ # target boxes
185
+ tbox = xywh2xyxy(labels[:, 1:5])
186
+ scale_coords(img[si].shape[1:], tbox, shapes[si][0], shapes[si][1]) # native-space labels
187
+ if plots:
188
+ confusion_matrix.process_batch(predn, torch.cat((labels[:, 0:1], tbox), 1))
189
+
190
+ # Per target class
191
+ for cls in torch.unique(tcls_tensor):
192
+ ti = (cls == tcls_tensor).nonzero(as_tuple=False).view(-1) # prediction indices
193
+ pi = (cls == pred[:, 5]).nonzero(as_tuple=False).view(-1) # target indices
194
+
195
+ # Search for detections
196
+ if pi.shape[0]:
197
+ # Prediction to target ious
198
+ ious, i = box_iou(predn[pi, :4], tbox[ti]).max(1) # best ious, indices
199
+
200
+ # Append detections
201
+ detected_set = set()
202
+ for j in (ious > iouv[0]).nonzero(as_tuple=False):
203
+ d = ti[i[j]] # detected target
204
+ if d.item() not in detected_set:
205
+ detected_set.add(d.item())
206
+ detected.append(d)
207
+ correct[pi[j]] = ious[j] > iouv # iou_thres is 1xn
208
+ if len(detected) == nl: # all targets already located in image
209
+ break
210
+
211
+ # Append statistics (correct, conf, pcls, tcls)
212
+ stats.append((correct.cpu(), pred[:, 4].cpu(), pred[:, 5].cpu(), tcls))
213
+
214
+ # Plot images
215
+ if plots and batch_i < 3:
216
+ f = save_dir / f'test_batch{batch_i}_labels.jpg' # labels
217
+ Thread(target=plot_images, args=(img, targets, paths, f, names), daemon=True).start()
218
+ f = save_dir / f'test_batch{batch_i}_pred.jpg' # predictions
219
+ Thread(target=plot_images, args=(img, output_to_target(out), paths, f, names), daemon=True).start()
220
+
221
+ # Compute statistics
222
+ stats = [np.concatenate(x, 0) for x in zip(*stats)] # to numpy
223
+ if len(stats) and stats[0].any():
224
+ p, r, ap, f1, ap_class = ap_per_class(*stats, plot=plots, v5_metric=v5_metric, save_dir=save_dir, names=names)
225
+ ap50, ap = ap[:, 0], ap.mean(1) # [email protected], [email protected]:0.95
226
+ mp, mr, map50, map = p.mean(), r.mean(), ap50.mean(), ap.mean()
227
+ nt = np.bincount(stats[3].astype(np.int64), minlength=nc) # number of targets per class
228
+ else:
229
+ nt = torch.zeros(1)
230
+
231
+ # Print results
232
+ pf = '%20s' + '%12i' * 2 + '%12.3g' * 4 # print format
233
+ print(pf % ('all', seen, nt.sum(), mp, mr, map50, map))
234
+
235
+ # Print results per class
236
+ if (verbose or (nc < 50 and not training)) and nc > 1 and len(stats):
237
+ for i, c in enumerate(ap_class):
238
+ print(pf % (names[c], seen, nt[c], p[i], r[i], ap50[i], ap[i]))
239
+
240
+ # Print speeds
241
+ t = tuple(x / seen * 1E3 for x in (t0, t1, t0 + t1)) + (imgsz, imgsz, batch_size) # tuple
242
+ if not training:
243
+ print('Speed: %.1f/%.1f/%.1f ms inference/NMS/total per %gx%g image at batch-size %g' % t)
244
+
245
+ # Plots
246
+ if plots:
247
+ confusion_matrix.plot(save_dir=save_dir, names=list(names.values()))
248
+ if wandb_logger and wandb_logger.wandb:
249
+ val_batches = [wandb_logger.wandb.Image(str(f), caption=f.name) for f in sorted(save_dir.glob('test*.jpg'))]
250
+ wandb_logger.log({"Validation": val_batches})
251
+ if wandb_images:
252
+ wandb_logger.log({"Bounding Box Debugger/Images": wandb_images})
253
+
254
+ # Save JSON
255
+ if save_json and len(jdict):
256
+ w = Path(weights[0] if isinstance(weights, list) else weights).stem if weights is not None else '' # weights
257
+ anno_json = './coco/annotations/instances_val2017.json' # annotations json
258
+ pred_json = str(save_dir / f"{w}_predictions.json") # predictions json
259
+ print('\nEvaluating pycocotools mAP... saving %s...' % pred_json)
260
+ with open(pred_json, 'w') as f:
261
+ json.dump(jdict, f)
262
+
263
+ try: # https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocoEvalDemo.ipynb
264
+ from pycocotools.coco import COCO
265
+ from pycocotools.cocoeval import COCOeval
266
+
267
+ anno = COCO(anno_json) # init annotations api
268
+ pred = anno.loadRes(pred_json) # init predictions api
269
+ eval = COCOeval(anno, pred, 'bbox')
270
+ if is_coco:
271
+ eval.params.imgIds = [int(Path(x).stem) for x in dataloader.dataset.img_files] # image IDs to evaluate
272
+ eval.evaluate()
273
+ eval.accumulate()
274
+ eval.summarize()
275
+ map, map50 = eval.stats[:2] # update results ([email protected]:0.95, [email protected])
276
+ except Exception as e:
277
+ print(f'pycocotools unable to run: {e}')
278
+
279
+ # Return results
280
+ model.float() # for training
281
+ if not training:
282
+ s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
283
+ print(f"Results saved to {save_dir}{s}")
284
+ maps = np.zeros(nc) + map
285
+ for i, c in enumerate(ap_class):
286
+ maps[c] = ap[i]
287
+ return (mp, mr, map50, map, *(loss.cpu() / len(dataloader)).tolist()), maps, t
288
+
289
+
290
+ if __name__ == '__main__':
291
+ parser = argparse.ArgumentParser(prog='test.py')
292
+ parser.add_argument('--weights', nargs='+', type=str, default='yolov7.pt', help='model.pt path(s)')
293
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='*.data path')
294
+ parser.add_argument('--batch-size', type=int, default=32, help='size of each image batch')
295
+ parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
296
+ parser.add_argument('--conf-thres', type=float, default=0.001, help='object confidence threshold')
297
+ parser.add_argument('--iou-thres', type=float, default=0.65, help='IOU threshold for NMS')
298
+ parser.add_argument('--task', default='val', help='train, val, test, speed or study')
299
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
300
+ parser.add_argument('--single-cls', action='store_true', help='treat as single-class dataset')
301
+ parser.add_argument('--augment', action='store_true', help='augmented inference')
302
+ parser.add_argument('--verbose', action='store_true', help='report mAP by class')
303
+ parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
304
+ parser.add_argument('--save-hybrid', action='store_true', help='save label+prediction hybrid results to *.txt')
305
+ parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
306
+ parser.add_argument('--save-json', action='store_true', help='save a cocoapi-compatible JSON results file')
307
+ parser.add_argument('--project', default='runs/test', help='save to project/name')
308
+ parser.add_argument('--name', default='exp', help='save to project/name')
309
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
310
+ parser.add_argument('--no-trace', action='store_true', help='don`t trace model')
311
+ parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation')
312
+ opt = parser.parse_args()
313
+ opt.save_json |= opt.data.endswith('coco.yaml')
314
+ opt.data = check_file(opt.data) # check file
315
+ print(opt)
316
+ #check_requirements()
317
+
318
+ if opt.task in ('train', 'val', 'test'): # run normally
319
+ test(opt.data,
320
+ opt.weights,
321
+ opt.batch_size,
322
+ opt.img_size,
323
+ opt.conf_thres,
324
+ opt.iou_thres,
325
+ opt.save_json,
326
+ opt.single_cls,
327
+ opt.augment,
328
+ opt.verbose,
329
+ save_txt=opt.save_txt | opt.save_hybrid,
330
+ save_hybrid=opt.save_hybrid,
331
+ save_conf=opt.save_conf,
332
+ trace=not opt.no_trace,
333
+ v5_metric=opt.v5_metric
334
+ )
335
+
336
+ elif opt.task == 'speed': # speed benchmarks
337
+ for w in opt.weights:
338
+ test(opt.data, w, opt.batch_size, opt.img_size, 0.25, 0.45, save_json=False, plots=False, v5_metric=opt.v5_metric)
339
+
340
+ elif opt.task == 'study': # run over a range of settings and save/plot
341
+ # python test.py --task study --data coco.yaml --iou 0.65 --weights yolov7.pt
342
+ x = list(range(256, 1536 + 128, 128)) # x axis (image sizes)
343
+ for w in opt.weights:
344
+ f = f'study_{Path(opt.data).stem}_{Path(w).stem}.txt' # filename to save to
345
+ y = [] # y axis
346
+ for i in x: # img-size
347
+ print(f'\nRunning {f} point {i}...')
348
+ r, _, t = test(opt.data, w, opt.batch_size, i, opt.conf_thres, opt.iou_thres, opt.save_json,
349
+ plots=False, v5_metric=opt.v5_metric)
350
+ y.append(r + t) # results and times
351
+ np.savetxt(f, y, fmt='%10.4g') # save
352
+ os.system('zip -r study.zip study_*.txt')
353
+ plot_study_txt(x=x) # plot
train.py ADDED
@@ -0,0 +1,705 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import math
4
+ import os
5
+ import random
6
+ import time
7
+ from copy import deepcopy
8
+ from pathlib import Path
9
+ from threading import Thread
10
+
11
+ import numpy as np
12
+ import torch.distributed as dist
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+ import torch.optim as optim
16
+ import torch.optim.lr_scheduler as lr_scheduler
17
+ import torch.utils.data
18
+ import yaml
19
+ from torch.cuda import amp
20
+ from torch.nn.parallel import DistributedDataParallel as DDP
21
+ from torch.utils.tensorboard import SummaryWriter
22
+ from tqdm import tqdm
23
+
24
+ import test # import test.py to get mAP after each epoch
25
+ from models.experimental import attempt_load
26
+ from models.yolo import Model
27
+ from utils.autoanchor import check_anchors
28
+ from utils.datasets import create_dataloader
29
+ from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
30
+ fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
31
+ check_requirements, print_mutation, set_logging, one_cycle, colorstr
32
+ from utils.google_utils import attempt_download
33
+ from utils.loss import ComputeLoss, ComputeLossOTA
34
+ from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
35
+ from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
36
+ from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
37
+
38
+ logger = logging.getLogger(__name__)
39
+
40
+
41
+ def train(hyp, opt, device, tb_writer=None):
42
+ logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
43
+ save_dir, epochs, batch_size, total_batch_size, weights, rank, freeze = \
44
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank, opt.freeze
45
+
46
+ # Directories
47
+ wdir = save_dir / 'weights'
48
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
49
+ last = wdir / 'last.pt'
50
+ best = wdir / 'best.pt'
51
+ results_file = save_dir / 'results.txt'
52
+
53
+ # Save run settings
54
+ with open(save_dir / 'hyp.yaml', 'w') as f:
55
+ yaml.dump(hyp, f, sort_keys=False)
56
+ with open(save_dir / 'opt.yaml', 'w') as f:
57
+ yaml.dump(vars(opt), f, sort_keys=False)
58
+
59
+ # Configure
60
+ plots = not opt.evolve # create plots
61
+ cuda = device.type != 'cpu'
62
+ init_seeds(2 + rank)
63
+ with open(opt.data) as f:
64
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
65
+ is_coco = opt.data.endswith('coco.yaml')
66
+
67
+ # Logging- Doing this before checking the dataset. Might update data_dict
68
+ loggers = {'wandb': None} # loggers dict
69
+ if rank in [-1, 0]:
70
+ opt.hyp = hyp # add hyperparameters
71
+ run_id = torch.load(weights, map_location=device).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
72
+ wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
73
+ loggers['wandb'] = wandb_logger.wandb
74
+ data_dict = wandb_logger.data_dict
75
+ if wandb_logger.wandb:
76
+ weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
77
+
78
+ nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
79
+ names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
80
+ assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
81
+
82
+ # Model
83
+ pretrained = weights.endswith('.pt')
84
+ if pretrained:
85
+ with torch_distributed_zero_first(rank):
86
+ attempt_download(weights) # download if not found locally
87
+ ckpt = torch.load(weights, map_location=device) # load checkpoint
88
+ model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
89
+ exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
90
+ state_dict = ckpt['model'].float().state_dict() # to FP32
91
+ state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
92
+ model.load_state_dict(state_dict, strict=False) # load
93
+ logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
94
+ else:
95
+ model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
96
+ with torch_distributed_zero_first(rank):
97
+ check_dataset(data_dict) # check
98
+ train_path = data_dict['train']
99
+ test_path = data_dict['val']
100
+
101
+ # Freeze
102
+ freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))] # parameter names to freeze (full or partial)
103
+ for k, v in model.named_parameters():
104
+ v.requires_grad = True # train all layers
105
+ if any(x in k for x in freeze):
106
+ print('freezing %s' % k)
107
+ v.requires_grad = False
108
+
109
+ # Optimizer
110
+ nbs = 64 # nominal batch size
111
+ accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
112
+ hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
113
+ logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
114
+
115
+ pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
116
+ for k, v in model.named_modules():
117
+ if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
118
+ pg2.append(v.bias) # biases
119
+ if isinstance(v, nn.BatchNorm2d):
120
+ pg0.append(v.weight) # no decay
121
+ elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
122
+ pg1.append(v.weight) # apply decay
123
+ if hasattr(v, 'im'):
124
+ if hasattr(v.im, 'implicit'):
125
+ pg0.append(v.im.implicit)
126
+ else:
127
+ for iv in v.im:
128
+ pg0.append(iv.implicit)
129
+ if hasattr(v, 'imc'):
130
+ if hasattr(v.imc, 'implicit'):
131
+ pg0.append(v.imc.implicit)
132
+ else:
133
+ for iv in v.imc:
134
+ pg0.append(iv.implicit)
135
+ if hasattr(v, 'imb'):
136
+ if hasattr(v.imb, 'implicit'):
137
+ pg0.append(v.imb.implicit)
138
+ else:
139
+ for iv in v.imb:
140
+ pg0.append(iv.implicit)
141
+ if hasattr(v, 'imo'):
142
+ if hasattr(v.imo, 'implicit'):
143
+ pg0.append(v.imo.implicit)
144
+ else:
145
+ for iv in v.imo:
146
+ pg0.append(iv.implicit)
147
+ if hasattr(v, 'ia'):
148
+ if hasattr(v.ia, 'implicit'):
149
+ pg0.append(v.ia.implicit)
150
+ else:
151
+ for iv in v.ia:
152
+ pg0.append(iv.implicit)
153
+ if hasattr(v, 'attn'):
154
+ if hasattr(v.attn, 'logit_scale'):
155
+ pg0.append(v.attn.logit_scale)
156
+ if hasattr(v.attn, 'q_bias'):
157
+ pg0.append(v.attn.q_bias)
158
+ if hasattr(v.attn, 'v_bias'):
159
+ pg0.append(v.attn.v_bias)
160
+ if hasattr(v.attn, 'relative_position_bias_table'):
161
+ pg0.append(v.attn.relative_position_bias_table)
162
+ if hasattr(v, 'rbr_dense'):
163
+ if hasattr(v.rbr_dense, 'weight_rbr_origin'):
164
+ pg0.append(v.rbr_dense.weight_rbr_origin)
165
+ if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'):
166
+ pg0.append(v.rbr_dense.weight_rbr_avg_conv)
167
+ if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):
168
+ pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
169
+ if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'):
170
+ pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
171
+ if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):
172
+ pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
173
+ if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):
174
+ pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
175
+ if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):
176
+ pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
177
+ if hasattr(v.rbr_dense, 'vector'):
178
+ pg0.append(v.rbr_dense.vector)
179
+
180
+ if opt.adam:
181
+ optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
182
+ else:
183
+ optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
184
+
185
+ optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
186
+ optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
187
+ logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
188
+ del pg0, pg1, pg2
189
+
190
+ # Scheduler https://arxiv.org/pdf/1812.01187.pdf
191
+ # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
192
+ if opt.linear_lr:
193
+ lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
194
+ else:
195
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
196
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
197
+ # plot_lr_scheduler(optimizer, scheduler, epochs)
198
+
199
+ # EMA
200
+ ema = ModelEMA(model) if rank in [-1, 0] else None
201
+
202
+ # Resume
203
+ start_epoch, best_fitness = 0, 0.0
204
+ if pretrained:
205
+ # Optimizer
206
+ if ckpt['optimizer'] is not None:
207
+ optimizer.load_state_dict(ckpt['optimizer'])
208
+ best_fitness = ckpt['best_fitness']
209
+
210
+ # EMA
211
+ if ema and ckpt.get('ema'):
212
+ ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
213
+ ema.updates = ckpt['updates']
214
+
215
+ # Results
216
+ if ckpt.get('training_results') is not None:
217
+ results_file.write_text(ckpt['training_results']) # write results.txt
218
+
219
+ # Epochs
220
+ start_epoch = ckpt['epoch'] + 1
221
+ if opt.resume:
222
+ assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
223
+ if epochs < start_epoch:
224
+ logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
225
+ (weights, ckpt['epoch'], epochs))
226
+ epochs += ckpt['epoch'] # finetune additional epochs
227
+
228
+ del ckpt, state_dict
229
+
230
+ # Image sizes
231
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
232
+ nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
233
+ imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
234
+
235
+ # DP mode
236
+ if cuda and rank == -1 and torch.cuda.device_count() > 1:
237
+ model = torch.nn.DataParallel(model)
238
+
239
+ # SyncBatchNorm
240
+ if opt.sync_bn and cuda and rank != -1:
241
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
242
+ logger.info('Using SyncBatchNorm()')
243
+
244
+ # Trainloader
245
+ dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
246
+ hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
247
+ world_size=opt.world_size, workers=opt.workers,
248
+ image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
249
+ mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
250
+ nb = len(dataloader) # number of batches
251
+ assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
252
+
253
+ # Process 0
254
+ if rank in [-1, 0]:
255
+ testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
256
+ hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
257
+ world_size=opt.world_size, workers=opt.workers,
258
+ pad=0.5, prefix=colorstr('val: '))[0]
259
+
260
+ if not opt.resume:
261
+ labels = np.concatenate(dataset.labels, 0)
262
+ c = torch.tensor(labels[:, 0]) # classes
263
+ # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
264
+ # model._initialize_biases(cf.to(device))
265
+ if plots:
266
+ #plot_labels(labels, names, save_dir, loggers)
267
+ if tb_writer:
268
+ tb_writer.add_histogram('classes', c, 0)
269
+
270
+ # Anchors
271
+ if not opt.noautoanchor:
272
+ check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
273
+ model.half().float() # pre-reduce anchor precision
274
+
275
+ # DDP mode
276
+ if cuda and rank != -1:
277
+ model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
278
+ # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
279
+ find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
280
+
281
+ # Model parameters
282
+ hyp['box'] *= 3. / nl # scale to layers
283
+ hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
284
+ hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
285
+ hyp['label_smoothing'] = opt.label_smoothing
286
+ model.nc = nc # attach number of classes to model
287
+ model.hyp = hyp # attach hyperparameters to model
288
+ model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
289
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
290
+ model.names = names
291
+
292
+ # Start training
293
+ t0 = time.time()
294
+ nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
295
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
296
+ maps = np.zeros(nc) # mAP per class
297
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls)
298
+ scheduler.last_epoch = start_epoch - 1 # do not move
299
+ scaler = amp.GradScaler(enabled=cuda)
300
+ compute_loss_ota = ComputeLossOTA(model) # init loss class
301
+ compute_loss = ComputeLoss(model) # init loss class
302
+ logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
303
+ f'Using {dataloader.num_workers} dataloader workers\n'
304
+ f'Logging results to {save_dir}\n'
305
+ f'Starting training for {epochs} epochs...')
306
+ torch.save(model, wdir / 'init.pt')
307
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
308
+ model.train()
309
+
310
+ # Update image weights (optional)
311
+ if opt.image_weights:
312
+ # Generate indices
313
+ if rank in [-1, 0]:
314
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
315
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
316
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
317
+ # Broadcast if DDP
318
+ if rank != -1:
319
+ indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
320
+ dist.broadcast(indices, 0)
321
+ if rank != 0:
322
+ dataset.indices = indices.cpu().numpy()
323
+
324
+ # Update mosaic border
325
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
326
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
327
+
328
+ mloss = torch.zeros(4, device=device) # mean losses
329
+ if rank != -1:
330
+ dataloader.sampler.set_epoch(epoch)
331
+ pbar = enumerate(dataloader)
332
+ logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
333
+ if rank in [-1, 0]:
334
+ pbar = tqdm(pbar, total=nb) # progress bar
335
+ optimizer.zero_grad()
336
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
337
+ ni = i + nb * epoch # number integrated batches (since train start)
338
+ imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
339
+
340
+ # Warmup
341
+ if ni <= nw:
342
+ xi = [0, nw] # x interp
343
+ # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
344
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
345
+ for j, x in enumerate(optimizer.param_groups):
346
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
347
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
348
+ if 'momentum' in x:
349
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
350
+
351
+ # Multi-scale
352
+ if opt.multi_scale:
353
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
354
+ sf = sz / max(imgs.shape[2:]) # scale factor
355
+ if sf != 1:
356
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
357
+ imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
358
+
359
+ # Forward
360
+ with amp.autocast(enabled=cuda):
361
+ pred = model(imgs) # forward
362
+ if 'loss_ota' not in hyp or hyp['loss_ota'] == 1:
363
+ loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
364
+ else:
365
+ loss, loss_items = compute_loss(pred, targets.to(device)) # loss scaled by batch_size
366
+ if rank != -1:
367
+ loss *= opt.world_size # gradient averaged between devices in DDP mode
368
+ if opt.quad:
369
+ loss *= 4.
370
+
371
+ # Backward
372
+ scaler.scale(loss).backward()
373
+
374
+ # Optimize
375
+ if ni % accumulate == 0:
376
+ scaler.step(optimizer) # optimizer.step
377
+ scaler.update()
378
+ optimizer.zero_grad()
379
+ if ema:
380
+ ema.update(model)
381
+
382
+ # Print
383
+ if rank in [-1, 0]:
384
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
385
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
386
+ s = ('%10s' * 2 + '%10.4g' * 6) % (
387
+ '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
388
+ pbar.set_description(s)
389
+
390
+ # Plot
391
+ if plots and ni < 10:
392
+ f = save_dir / f'train_batch{ni}.jpg' # filename
393
+ Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
394
+ # if tb_writer:
395
+ # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
396
+ # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
397
+ elif plots and ni == 10 and wandb_logger.wandb:
398
+ wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
399
+ save_dir.glob('train*.jpg') if x.exists()]})
400
+
401
+ # end batch ------------------------------------------------------------------------------------------------
402
+ # end epoch ----------------------------------------------------------------------------------------------------
403
+
404
+ # Scheduler
405
+ lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
406
+ scheduler.step()
407
+
408
+ # DDP process 0 or single-GPU
409
+ if rank in [-1, 0]:
410
+ # mAP
411
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
412
+ final_epoch = epoch + 1 == epochs
413
+ if not opt.notest or final_epoch: # Calculate mAP
414
+ wandb_logger.current_epoch = epoch + 1
415
+ results, maps, times = test.test(data_dict,
416
+ batch_size=batch_size * 2,
417
+ imgsz=imgsz_test,
418
+ model=ema.ema,
419
+ single_cls=opt.single_cls,
420
+ dataloader=testloader,
421
+ save_dir=save_dir,
422
+ verbose=nc < 50 and final_epoch,
423
+ plots=plots and final_epoch,
424
+ wandb_logger=wandb_logger,
425
+ compute_loss=compute_loss,
426
+ is_coco=is_coco,
427
+ v5_metric=opt.v5_metric)
428
+
429
+ # Write
430
+ with open(results_file, 'a') as f:
431
+ f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
432
+ if len(opt.name) and opt.bucket:
433
+ os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
434
+
435
+ # Log
436
+ tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
437
+ 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
438
+ 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
439
+ 'x/lr0', 'x/lr1', 'x/lr2'] # params
440
+ for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
441
+ if tb_writer:
442
+ tb_writer.add_scalar(tag, x, epoch) # tensorboard
443
+ if wandb_logger.wandb:
444
+ wandb_logger.log({tag: x}) # W&B
445
+
446
+ # Update best mAP
447
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]]
448
+ if fi > best_fitness:
449
+ best_fitness = fi
450
+ wandb_logger.end_epoch(best_result=best_fitness == fi)
451
+
452
+ # Save model
453
+ if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
454
+ ckpt = {'epoch': epoch,
455
+ 'best_fitness': best_fitness,
456
+ 'training_results': results_file.read_text(),
457
+ 'model': deepcopy(model.module if is_parallel(model) else model).half(),
458
+ 'ema': deepcopy(ema.ema).half(),
459
+ 'updates': ema.updates,
460
+ 'optimizer': optimizer.state_dict(),
461
+ 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
462
+
463
+ # Save last, best and delete
464
+ torch.save(ckpt, last)
465
+ if best_fitness == fi:
466
+ torch.save(ckpt, best)
467
+ if (best_fitness == fi) and (epoch >= 200):
468
+ torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
469
+ if epoch == 0:
470
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
471
+ elif ((epoch+1) % 25) == 0:
472
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
473
+ elif epoch >= (epochs-5):
474
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
475
+ if wandb_logger.wandb:
476
+ if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
477
+ wandb_logger.log_model(
478
+ last.parent, opt, epoch, fi, best_model=best_fitness == fi)
479
+ del ckpt
480
+
481
+ # end epoch ----------------------------------------------------------------------------------------------------
482
+ # end training
483
+ if rank in [-1, 0]:
484
+ # Plots
485
+ if plots:
486
+ plot_results(save_dir=save_dir) # save as results.png
487
+ if wandb_logger.wandb:
488
+ files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
489
+ wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
490
+ if (save_dir / f).exists()]})
491
+ # Test best.pt
492
+ logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
493
+ if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
494
+ for m in (last, best) if best.exists() else (last): # speed, mAP tests
495
+ results, _, _ = test.test(opt.data,
496
+ batch_size=batch_size * 2,
497
+ imgsz=imgsz_test,
498
+ conf_thres=0.001,
499
+ iou_thres=0.7,
500
+ model=attempt_load(m, device).half(),
501
+ single_cls=opt.single_cls,
502
+ dataloader=testloader,
503
+ save_dir=save_dir,
504
+ save_json=True,
505
+ plots=False,
506
+ is_coco=is_coco,
507
+ v5_metric=opt.v5_metric)
508
+
509
+ # Strip optimizers
510
+ final = best if best.exists() else last # final model
511
+ for f in last, best:
512
+ if f.exists():
513
+ strip_optimizer(f) # strip optimizers
514
+ if opt.bucket:
515
+ os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
516
+ if wandb_logger.wandb and not opt.evolve: # Log the stripped model
517
+ wandb_logger.wandb.log_artifact(str(final), type='model',
518
+ name='run_' + wandb_logger.wandb_run.id + '_model',
519
+ aliases=['last', 'best', 'stripped'])
520
+ wandb_logger.finish_run()
521
+ else:
522
+ dist.destroy_process_group()
523
+ torch.cuda.empty_cache()
524
+ return results
525
+
526
+
527
+ if __name__ == '__main__':
528
+ parser = argparse.ArgumentParser()
529
+ parser.add_argument('--weights', type=str, default='yolo7.pt', help='initial weights path')
530
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
531
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
532
+ parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
533
+ parser.add_argument('--epochs', type=int, default=300)
534
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
535
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
536
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
537
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
538
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
539
+ parser.add_argument('--notest', action='store_true', help='only test final epoch')
540
+ parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
541
+ parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
542
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
543
+ parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
544
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
545
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
546
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
547
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
548
+ parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
549
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
550
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
551
+ parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
552
+ parser.add_argument('--project', default='runs/train', help='save to project/name')
553
+ parser.add_argument('--entity', default=None, help='W&B entity')
554
+ parser.add_argument('--name', default='exp', help='save to project/name')
555
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
556
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
557
+ parser.add_argument('--linear-lr', action='store_true', help='linear LR')
558
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
559
+ parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
560
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
561
+ parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
562
+ parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
563
+ parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone of yolov7=50, first3=0 1 2')
564
+ parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation')
565
+ opt = parser.parse_args()
566
+
567
+ # Set DDP variables
568
+ opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
569
+ opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
570
+ set_logging(opt.global_rank)
571
+ #if opt.global_rank in [-1, 0]:
572
+ # check_git_status()
573
+ # check_requirements()
574
+
575
+ # Resume
576
+ wandb_run = check_wandb_resume(opt)
577
+ if opt.resume and not wandb_run: # resume an interrupted run
578
+ ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
579
+ assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
580
+ apriori = opt.global_rank, opt.local_rank
581
+ with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
582
+ opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
583
+ opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
584
+ logger.info('Resuming training from %s' % ckpt)
585
+ else:
586
+ # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
587
+ opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
588
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
589
+ opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
590
+ opt.name = 'evolve' if opt.evolve else opt.name
591
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
592
+
593
+ # DDP mode
594
+ opt.total_batch_size = opt.batch_size
595
+ device = select_device(opt.device, batch_size=opt.batch_size)
596
+ if opt.local_rank != -1:
597
+ assert torch.cuda.device_count() > opt.local_rank
598
+ torch.cuda.set_device(opt.local_rank)
599
+ device = torch.device('cuda', opt.local_rank)
600
+ dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
601
+ assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
602
+ opt.batch_size = opt.total_batch_size // opt.world_size
603
+
604
+ # Hyperparameters
605
+ with open(opt.hyp) as f:
606
+ hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
607
+
608
+ # Train
609
+ logger.info(opt)
610
+ if not opt.evolve:
611
+ tb_writer = None # init loggers
612
+ if opt.global_rank in [-1, 0]:
613
+ prefix = colorstr('tensorboard: ')
614
+ logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
615
+ tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
616
+ train(hyp, opt, device, tb_writer)
617
+
618
+ # Evolve hyperparameters (optional)
619
+ else:
620
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
621
+ meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
622
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
623
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
624
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
625
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
626
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
627
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
628
+ 'box': (1, 0.02, 0.2), # box loss gain
629
+ 'cls': (1, 0.2, 4.0), # cls loss gain
630
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
631
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
632
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
633
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
634
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
635
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
636
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
637
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
638
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
639
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
640
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
641
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
642
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
643
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
644
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
645
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
646
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
647
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
648
+ 'mixup': (1, 0.0, 1.0), # image mixup (probability)
649
+ 'copy_paste': (1, 0.0, 1.0), # segment copy-paste (probability)
650
+ 'paste_in': (1, 0.0, 1.0)} # segment copy-paste (probability)
651
+
652
+ with open(opt.hyp, errors='ignore') as f:
653
+ hyp = yaml.safe_load(f) # load hyps dict
654
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
655
+ hyp['anchors'] = 3
656
+
657
+ assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
658
+ opt.notest, opt.nosave = True, True # only test/save final epoch
659
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
660
+ yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
661
+ if opt.bucket:
662
+ os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
663
+
664
+ for _ in range(300): # generations to evolve
665
+ if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
666
+ # Select parent(s)
667
+ parent = 'single' # parent selection method: 'single' or 'weighted'
668
+ x = np.loadtxt('evolve.txt', ndmin=2)
669
+ n = min(5, len(x)) # number of previous results to consider
670
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
671
+ w = fitness(x) - fitness(x).min() # weights
672
+ if parent == 'single' or len(x) == 1:
673
+ # x = x[random.randint(0, n - 1)] # random selection
674
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
675
+ elif parent == 'weighted':
676
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
677
+
678
+ # Mutate
679
+ mp, s = 0.8, 0.2 # mutation probability, sigma
680
+ npr = np.random
681
+ npr.seed(int(time.time()))
682
+ g = np.array([x[0] for x in meta.values()]) # gains 0-1
683
+ ng = len(meta)
684
+ v = np.ones(ng)
685
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
686
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
687
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
688
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
689
+
690
+ # Constrain to limits
691
+ for k, v in meta.items():
692
+ hyp[k] = max(hyp[k], v[1]) # lower limit
693
+ hyp[k] = min(hyp[k], v[2]) # upper limit
694
+ hyp[k] = round(hyp[k], 5) # significant digits
695
+
696
+ # Train mutation
697
+ results = train(hyp.copy(), opt, device)
698
+
699
+ # Write mutation results
700
+ print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
701
+
702
+ # Plot results
703
+ plot_evolution(yaml_file)
704
+ print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
705
+ f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
train_aux.py ADDED
@@ -0,0 +1,699 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import argparse
2
+ import logging
3
+ import math
4
+ import os
5
+ import random
6
+ import time
7
+ from copy import deepcopy
8
+ from pathlib import Path
9
+ from threading import Thread
10
+
11
+ import numpy as np
12
+ import torch.distributed as dist
13
+ import torch.nn as nn
14
+ import torch.nn.functional as F
15
+ import torch.optim as optim
16
+ import torch.optim.lr_scheduler as lr_scheduler
17
+ import torch.utils.data
18
+ import yaml
19
+ from torch.cuda import amp
20
+ from torch.nn.parallel import DistributedDataParallel as DDP
21
+ from torch.utils.tensorboard import SummaryWriter
22
+ from tqdm import tqdm
23
+
24
+ import test # import test.py to get mAP after each epoch
25
+ from models.experimental import attempt_load
26
+ from models.yolo import Model
27
+ from utils.autoanchor import check_anchors
28
+ from utils.datasets import create_dataloader
29
+ from utils.general import labels_to_class_weights, increment_path, labels_to_image_weights, init_seeds, \
30
+ fitness, strip_optimizer, get_latest_run, check_dataset, check_file, check_git_status, check_img_size, \
31
+ check_requirements, print_mutation, set_logging, one_cycle, colorstr
32
+ from utils.google_utils import attempt_download
33
+ from utils.loss import ComputeLoss, ComputeLossAuxOTA
34
+ from utils.plots import plot_images, plot_labels, plot_results, plot_evolution
35
+ from utils.torch_utils import ModelEMA, select_device, intersect_dicts, torch_distributed_zero_first, is_parallel
36
+ from utils.wandb_logging.wandb_utils import WandbLogger, check_wandb_resume
37
+
38
+ logger = logging.getLogger(__name__)
39
+
40
+
41
+ def train(hyp, opt, device, tb_writer=None):
42
+ logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
43
+ save_dir, epochs, batch_size, total_batch_size, weights, rank = \
44
+ Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank
45
+
46
+ # Directories
47
+ wdir = save_dir / 'weights'
48
+ wdir.mkdir(parents=True, exist_ok=True) # make dir
49
+ last = wdir / 'last.pt'
50
+ best = wdir / 'best.pt'
51
+ results_file = save_dir / 'results.txt'
52
+
53
+ # Save run settings
54
+ with open(save_dir / 'hyp.yaml', 'w') as f:
55
+ yaml.dump(hyp, f, sort_keys=False)
56
+ with open(save_dir / 'opt.yaml', 'w') as f:
57
+ yaml.dump(vars(opt), f, sort_keys=False)
58
+
59
+ # Configure
60
+ plots = not opt.evolve # create plots
61
+ cuda = device.type != 'cpu'
62
+ init_seeds(2 + rank)
63
+ with open(opt.data) as f:
64
+ data_dict = yaml.load(f, Loader=yaml.SafeLoader) # data dict
65
+ is_coco = opt.data.endswith('coco.yaml')
66
+
67
+ # Logging- Doing this before checking the dataset. Might update data_dict
68
+ loggers = {'wandb': None} # loggers dict
69
+ if rank in [-1, 0]:
70
+ opt.hyp = hyp # add hyperparameters
71
+ run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
72
+ wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
73
+ loggers['wandb'] = wandb_logger.wandb
74
+ data_dict = wandb_logger.data_dict
75
+ if wandb_logger.wandb:
76
+ weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp # WandbLogger might update weights, epochs if resuming
77
+
78
+ nc = 1 if opt.single_cls else int(data_dict['nc']) # number of classes
79
+ names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names'] # class names
80
+ assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data) # check
81
+
82
+ # Model
83
+ pretrained = weights.endswith('.pt')
84
+ if pretrained:
85
+ with torch_distributed_zero_first(rank):
86
+ attempt_download(weights) # download if not found locally
87
+ ckpt = torch.load(weights, map_location=device) # load checkpoint
88
+ model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
89
+ exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else [] # exclude keys
90
+ state_dict = ckpt['model'].float().state_dict() # to FP32
91
+ state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude) # intersect
92
+ model.load_state_dict(state_dict, strict=False) # load
93
+ logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights)) # report
94
+ else:
95
+ model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device) # create
96
+ with torch_distributed_zero_first(rank):
97
+ check_dataset(data_dict) # check
98
+ train_path = data_dict['train']
99
+ test_path = data_dict['val']
100
+
101
+ # Freeze
102
+ freeze = [] # parameter names to freeze (full or partial)
103
+ for k, v in model.named_parameters():
104
+ v.requires_grad = True # train all layers
105
+ if any(x in k for x in freeze):
106
+ print('freezing %s' % k)
107
+ v.requires_grad = False
108
+
109
+ # Optimizer
110
+ nbs = 64 # nominal batch size
111
+ accumulate = max(round(nbs / total_batch_size), 1) # accumulate loss before optimizing
112
+ hyp['weight_decay'] *= total_batch_size * accumulate / nbs # scale weight_decay
113
+ logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")
114
+
115
+ pg0, pg1, pg2 = [], [], [] # optimizer parameter groups
116
+ for k, v in model.named_modules():
117
+ if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
118
+ pg2.append(v.bias) # biases
119
+ if isinstance(v, nn.BatchNorm2d):
120
+ pg0.append(v.weight) # no decay
121
+ elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
122
+ pg1.append(v.weight) # apply decay
123
+ if hasattr(v, 'im'):
124
+ if hasattr(v.im, 'implicit'):
125
+ pg0.append(v.im.implicit)
126
+ else:
127
+ for iv in v.im:
128
+ pg0.append(iv.implicit)
129
+ if hasattr(v, 'imc'):
130
+ if hasattr(v.imc, 'implicit'):
131
+ pg0.append(v.imc.implicit)
132
+ else:
133
+ for iv in v.imc:
134
+ pg0.append(iv.implicit)
135
+ if hasattr(v, 'imb'):
136
+ if hasattr(v.imb, 'implicit'):
137
+ pg0.append(v.imb.implicit)
138
+ else:
139
+ for iv in v.imb:
140
+ pg0.append(iv.implicit)
141
+ if hasattr(v, 'imo'):
142
+ if hasattr(v.imo, 'implicit'):
143
+ pg0.append(v.imo.implicit)
144
+ else:
145
+ for iv in v.imo:
146
+ pg0.append(iv.implicit)
147
+ if hasattr(v, 'ia'):
148
+ if hasattr(v.ia, 'implicit'):
149
+ pg0.append(v.ia.implicit)
150
+ else:
151
+ for iv in v.ia:
152
+ pg0.append(iv.implicit)
153
+ if hasattr(v, 'attn'):
154
+ if hasattr(v.attn, 'logit_scale'):
155
+ pg0.append(v.attn.logit_scale)
156
+ if hasattr(v.attn, 'q_bias'):
157
+ pg0.append(v.attn.q_bias)
158
+ if hasattr(v.attn, 'v_bias'):
159
+ pg0.append(v.attn.v_bias)
160
+ if hasattr(v.attn, 'relative_position_bias_table'):
161
+ pg0.append(v.attn.relative_position_bias_table)
162
+ if hasattr(v, 'rbr_dense'):
163
+ if hasattr(v.rbr_dense, 'weight_rbr_origin'):
164
+ pg0.append(v.rbr_dense.weight_rbr_origin)
165
+ if hasattr(v.rbr_dense, 'weight_rbr_avg_conv'):
166
+ pg0.append(v.rbr_dense.weight_rbr_avg_conv)
167
+ if hasattr(v.rbr_dense, 'weight_rbr_pfir_conv'):
168
+ pg0.append(v.rbr_dense.weight_rbr_pfir_conv)
169
+ if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_idconv1'):
170
+ pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_idconv1)
171
+ if hasattr(v.rbr_dense, 'weight_rbr_1x1_kxk_conv2'):
172
+ pg0.append(v.rbr_dense.weight_rbr_1x1_kxk_conv2)
173
+ if hasattr(v.rbr_dense, 'weight_rbr_gconv_dw'):
174
+ pg0.append(v.rbr_dense.weight_rbr_gconv_dw)
175
+ if hasattr(v.rbr_dense, 'weight_rbr_gconv_pw'):
176
+ pg0.append(v.rbr_dense.weight_rbr_gconv_pw)
177
+ if hasattr(v.rbr_dense, 'vector'):
178
+ pg0.append(v.rbr_dense.vector)
179
+
180
+ if opt.adam:
181
+ optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999)) # adjust beta1 to momentum
182
+ else:
183
+ optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)
184
+
185
+ optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']}) # add pg1 with weight_decay
186
+ optimizer.add_param_group({'params': pg2}) # add pg2 (biases)
187
+ logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
188
+ del pg0, pg1, pg2
189
+
190
+ # Scheduler https://arxiv.org/pdf/1812.01187.pdf
191
+ # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
192
+ if opt.linear_lr:
193
+ lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf'] # linear
194
+ else:
195
+ lf = one_cycle(1, hyp['lrf'], epochs) # cosine 1->hyp['lrf']
196
+ scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
197
+ # plot_lr_scheduler(optimizer, scheduler, epochs)
198
+
199
+ # EMA
200
+ ema = ModelEMA(model) if rank in [-1, 0] else None
201
+
202
+ # Resume
203
+ start_epoch, best_fitness = 0, 0.0
204
+ if pretrained:
205
+ # Optimizer
206
+ if ckpt['optimizer'] is not None:
207
+ optimizer.load_state_dict(ckpt['optimizer'])
208
+ best_fitness = ckpt['best_fitness']
209
+
210
+ # EMA
211
+ if ema and ckpt.get('ema'):
212
+ ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
213
+ ema.updates = ckpt['updates']
214
+
215
+ # Results
216
+ if ckpt.get('training_results') is not None:
217
+ results_file.write_text(ckpt['training_results']) # write results.txt
218
+
219
+ # Epochs
220
+ start_epoch = ckpt['epoch'] + 1
221
+ if opt.resume:
222
+ assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
223
+ if epochs < start_epoch:
224
+ logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
225
+ (weights, ckpt['epoch'], epochs))
226
+ epochs += ckpt['epoch'] # finetune additional epochs
227
+
228
+ del ckpt, state_dict
229
+
230
+ # Image sizes
231
+ gs = max(int(model.stride.max()), 32) # grid size (max stride)
232
+ nl = model.model[-1].nl # number of detection layers (used for scaling hyp['obj'])
233
+ imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size] # verify imgsz are gs-multiples
234
+
235
+ # DP mode
236
+ if cuda and rank == -1 and torch.cuda.device_count() > 1:
237
+ model = torch.nn.DataParallel(model)
238
+
239
+ # SyncBatchNorm
240
+ if opt.sync_bn and cuda and rank != -1:
241
+ model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
242
+ logger.info('Using SyncBatchNorm()')
243
+
244
+ # Trainloader
245
+ dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
246
+ hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
247
+ world_size=opt.world_size, workers=opt.workers,
248
+ image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
249
+ mlc = np.concatenate(dataset.labels, 0)[:, 0].max() # max label class
250
+ nb = len(dataloader) # number of batches
251
+ assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)
252
+
253
+ # Process 0
254
+ if rank in [-1, 0]:
255
+ testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt, # testloader
256
+ hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
257
+ world_size=opt.world_size, workers=opt.workers,
258
+ pad=0.5, prefix=colorstr('val: '))[0]
259
+
260
+ if not opt.resume:
261
+ labels = np.concatenate(dataset.labels, 0)
262
+ c = torch.tensor(labels[:, 0]) # classes
263
+ # cf = torch.bincount(c.long(), minlength=nc) + 1. # frequency
264
+ # model._initialize_biases(cf.to(device))
265
+ if plots:
266
+ #plot_labels(labels, names, save_dir, loggers)
267
+ if tb_writer:
268
+ tb_writer.add_histogram('classes', c, 0)
269
+
270
+ # Anchors
271
+ if not opt.noautoanchor:
272
+ check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
273
+ model.half().float() # pre-reduce anchor precision
274
+
275
+ # DDP mode
276
+ if cuda and rank != -1:
277
+ model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank,
278
+ # nn.MultiheadAttention incompatibility with DDP https://github.com/pytorch/pytorch/issues/26698
279
+ find_unused_parameters=any(isinstance(layer, nn.MultiheadAttention) for layer in model.modules()))
280
+
281
+ # Model parameters
282
+ hyp['box'] *= 3. / nl # scale to layers
283
+ hyp['cls'] *= nc / 80. * 3. / nl # scale to classes and layers
284
+ hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl # scale to image size and layers
285
+ hyp['label_smoothing'] = opt.label_smoothing
286
+ model.nc = nc # attach number of classes to model
287
+ model.hyp = hyp # attach hyperparameters to model
288
+ model.gr = 1.0 # iou loss ratio (obj_loss = 1.0 or iou)
289
+ model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc # attach class weights
290
+ model.names = names
291
+
292
+ # Start training
293
+ t0 = time.time()
294
+ nw = max(round(hyp['warmup_epochs'] * nb), 1000) # number of warmup iterations, max(3 epochs, 1k iterations)
295
+ # nw = min(nw, (epochs - start_epoch) / 2 * nb) # limit warmup to < 1/2 of training
296
+ maps = np.zeros(nc) # mAP per class
297
+ results = (0, 0, 0, 0, 0, 0, 0) # P, R, [email protected], [email protected], val_loss(box, obj, cls)
298
+ scheduler.last_epoch = start_epoch - 1 # do not move
299
+ scaler = amp.GradScaler(enabled=cuda)
300
+ compute_loss_ota = ComputeLossAuxOTA(model) # init loss class
301
+ compute_loss = ComputeLoss(model) # init loss class
302
+ logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
303
+ f'Using {dataloader.num_workers} dataloader workers\n'
304
+ f'Logging results to {save_dir}\n'
305
+ f'Starting training for {epochs} epochs...')
306
+ torch.save(model, wdir / 'init.pt')
307
+ for epoch in range(start_epoch, epochs): # epoch ------------------------------------------------------------------
308
+ model.train()
309
+
310
+ # Update image weights (optional)
311
+ if opt.image_weights:
312
+ # Generate indices
313
+ if rank in [-1, 0]:
314
+ cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc # class weights
315
+ iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw) # image weights
316
+ dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n) # rand weighted idx
317
+ # Broadcast if DDP
318
+ if rank != -1:
319
+ indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
320
+ dist.broadcast(indices, 0)
321
+ if rank != 0:
322
+ dataset.indices = indices.cpu().numpy()
323
+
324
+ # Update mosaic border
325
+ # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
326
+ # dataset.mosaic_border = [b - imgsz, -b] # height, width borders
327
+
328
+ mloss = torch.zeros(4, device=device) # mean losses
329
+ if rank != -1:
330
+ dataloader.sampler.set_epoch(epoch)
331
+ pbar = enumerate(dataloader)
332
+ logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
333
+ if rank in [-1, 0]:
334
+ pbar = tqdm(pbar, total=nb) # progress bar
335
+ optimizer.zero_grad()
336
+ for i, (imgs, targets, paths, _) in pbar: # batch -------------------------------------------------------------
337
+ ni = i + nb * epoch # number integrated batches (since train start)
338
+ imgs = imgs.to(device, non_blocking=True).float() / 255.0 # uint8 to float32, 0-255 to 0.0-1.0
339
+
340
+ # Warmup
341
+ if ni <= nw:
342
+ xi = [0, nw] # x interp
343
+ # model.gr = np.interp(ni, xi, [0.0, 1.0]) # iou loss ratio (obj_loss = 1.0 or iou)
344
+ accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
345
+ for j, x in enumerate(optimizer.param_groups):
346
+ # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
347
+ x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
348
+ if 'momentum' in x:
349
+ x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])
350
+
351
+ # Multi-scale
352
+ if opt.multi_scale:
353
+ sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs # size
354
+ sf = sz / max(imgs.shape[2:]) # scale factor
355
+ if sf != 1:
356
+ ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]] # new shape (stretched to gs-multiple)
357
+ imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)
358
+
359
+ # Forward
360
+ with amp.autocast(enabled=cuda):
361
+ pred = model(imgs) # forward
362
+ loss, loss_items = compute_loss_ota(pred, targets.to(device), imgs) # loss scaled by batch_size
363
+ if rank != -1:
364
+ loss *= opt.world_size # gradient averaged between devices in DDP mode
365
+ if opt.quad:
366
+ loss *= 4.
367
+
368
+ # Backward
369
+ scaler.scale(loss).backward()
370
+
371
+ # Optimize
372
+ if ni % accumulate == 0:
373
+ scaler.step(optimizer) # optimizer.step
374
+ scaler.update()
375
+ optimizer.zero_grad()
376
+ if ema:
377
+ ema.update(model)
378
+
379
+ # Print
380
+ if rank in [-1, 0]:
381
+ mloss = (mloss * i + loss_items) / (i + 1) # update mean losses
382
+ mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0) # (GB)
383
+ s = ('%10s' * 2 + '%10.4g' * 6) % (
384
+ '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
385
+ pbar.set_description(s)
386
+
387
+ # Plot
388
+ if plots and ni < 10:
389
+ f = save_dir / f'train_batch{ni}.jpg' # filename
390
+ Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
391
+ # if tb_writer:
392
+ # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
393
+ # tb_writer.add_graph(torch.jit.trace(model, imgs, strict=False), []) # add model graph
394
+ elif plots and ni == 10 and wandb_logger.wandb:
395
+ wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
396
+ save_dir.glob('train*.jpg') if x.exists()]})
397
+
398
+ # end batch ------------------------------------------------------------------------------------------------
399
+ # end epoch ----------------------------------------------------------------------------------------------------
400
+
401
+ # Scheduler
402
+ lr = [x['lr'] for x in optimizer.param_groups] # for tensorboard
403
+ scheduler.step()
404
+
405
+ # DDP process 0 or single-GPU
406
+ if rank in [-1, 0]:
407
+ # mAP
408
+ ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
409
+ final_epoch = epoch + 1 == epochs
410
+ if not opt.notest or final_epoch: # Calculate mAP
411
+ wandb_logger.current_epoch = epoch + 1
412
+ results, maps, times = test.test(data_dict,
413
+ batch_size=batch_size * 2,
414
+ imgsz=imgsz_test,
415
+ model=ema.ema,
416
+ single_cls=opt.single_cls,
417
+ dataloader=testloader,
418
+ save_dir=save_dir,
419
+ verbose=nc < 50 and final_epoch,
420
+ plots=plots and final_epoch,
421
+ wandb_logger=wandb_logger,
422
+ compute_loss=compute_loss,
423
+ is_coco=is_coco,
424
+ v5_metric=opt.v5_metric)
425
+
426
+ # Write
427
+ with open(results_file, 'a') as f:
428
+ f.write(s + '%10.4g' * 7 % results + '\n') # append metrics, val_loss
429
+ if len(opt.name) and opt.bucket:
430
+ os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))
431
+
432
+ # Log
433
+ tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss', # train loss
434
+ 'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
435
+ 'val/box_loss', 'val/obj_loss', 'val/cls_loss', # val loss
436
+ 'x/lr0', 'x/lr1', 'x/lr2'] # params
437
+ for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
438
+ if tb_writer:
439
+ tb_writer.add_scalar(tag, x, epoch) # tensorboard
440
+ if wandb_logger.wandb:
441
+ wandb_logger.log({tag: x}) # W&B
442
+
443
+ # Update best mAP
444
+ fi = fitness(np.array(results).reshape(1, -1)) # weighted combination of [P, R, [email protected], [email protected]]
445
+ if fi > best_fitness:
446
+ best_fitness = fi
447
+ wandb_logger.end_epoch(best_result=best_fitness == fi)
448
+
449
+ # Save model
450
+ if (not opt.nosave) or (final_epoch and not opt.evolve): # if save
451
+ ckpt = {'epoch': epoch,
452
+ 'best_fitness': best_fitness,
453
+ 'training_results': results_file.read_text(),
454
+ 'model': deepcopy(model.module if is_parallel(model) else model).half(),
455
+ 'ema': deepcopy(ema.ema).half(),
456
+ 'updates': ema.updates,
457
+ 'optimizer': optimizer.state_dict(),
458
+ 'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}
459
+
460
+ # Save last, best and delete
461
+ torch.save(ckpt, last)
462
+ if best_fitness == fi:
463
+ torch.save(ckpt, best)
464
+ if (best_fitness == fi) and (epoch >= 200):
465
+ torch.save(ckpt, wdir / 'best_{:03d}.pt'.format(epoch))
466
+ if epoch == 0:
467
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
468
+ elif ((epoch+1) % 25) == 0:
469
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
470
+ elif epoch >= (epochs-5):
471
+ torch.save(ckpt, wdir / 'epoch_{:03d}.pt'.format(epoch))
472
+ if wandb_logger.wandb:
473
+ if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
474
+ wandb_logger.log_model(
475
+ last.parent, opt, epoch, fi, best_model=best_fitness == fi)
476
+ del ckpt
477
+
478
+ # end epoch ----------------------------------------------------------------------------------------------------
479
+ # end training
480
+ if rank in [-1, 0]:
481
+ # Plots
482
+ if plots:
483
+ plot_results(save_dir=save_dir) # save as results.png
484
+ if wandb_logger.wandb:
485
+ files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
486
+ wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
487
+ if (save_dir / f).exists()]})
488
+ # Test best.pt
489
+ logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
490
+ if opt.data.endswith('coco.yaml') and nc == 80: # if COCO
491
+ for m in (last, best) if best.exists() else (last): # speed, mAP tests
492
+ results, _, _ = test.test(opt.data,
493
+ batch_size=batch_size * 2,
494
+ imgsz=imgsz_test,
495
+ conf_thres=0.001,
496
+ iou_thres=0.7,
497
+ model=attempt_load(m, device).half(),
498
+ single_cls=opt.single_cls,
499
+ dataloader=testloader,
500
+ save_dir=save_dir,
501
+ save_json=True,
502
+ plots=False,
503
+ is_coco=is_coco,
504
+ v5_metric=opt.v5_metric)
505
+
506
+ # Strip optimizers
507
+ final = best if best.exists() else last # final model
508
+ for f in last, best:
509
+ if f.exists():
510
+ strip_optimizer(f) # strip optimizers
511
+ if opt.bucket:
512
+ os.system(f'gsutil cp {final} gs://{opt.bucket}/weights') # upload
513
+ if wandb_logger.wandb and not opt.evolve: # Log the stripped model
514
+ wandb_logger.wandb.log_artifact(str(final), type='model',
515
+ name='run_' + wandb_logger.wandb_run.id + '_model',
516
+ aliases=['last', 'best', 'stripped'])
517
+ wandb_logger.finish_run()
518
+ else:
519
+ dist.destroy_process_group()
520
+ torch.cuda.empty_cache()
521
+ return results
522
+
523
+
524
+ if __name__ == '__main__':
525
+ parser = argparse.ArgumentParser()
526
+ parser.add_argument('--weights', type=str, default='yolo7.pt', help='initial weights path')
527
+ parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
528
+ parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
529
+ parser.add_argument('--hyp', type=str, default='data/hyp.scratch.p5.yaml', help='hyperparameters path')
530
+ parser.add_argument('--epochs', type=int, default=300)
531
+ parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
532
+ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
533
+ parser.add_argument('--rect', action='store_true', help='rectangular training')
534
+ parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
535
+ parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
536
+ parser.add_argument('--notest', action='store_true', help='only test final epoch')
537
+ parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
538
+ parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
539
+ parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
540
+ parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
541
+ parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
542
+ parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
543
+ parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
544
+ parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
545
+ parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
546
+ parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
547
+ parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
548
+ parser.add_argument('--workers', type=int, default=8, help='maximum number of dataloader workers')
549
+ parser.add_argument('--project', default='runs/train', help='save to project/name')
550
+ parser.add_argument('--entity', default=None, help='W&B entity')
551
+ parser.add_argument('--name', default='exp', help='save to project/name')
552
+ parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
553
+ parser.add_argument('--quad', action='store_true', help='quad dataloader')
554
+ parser.add_argument('--linear-lr', action='store_true', help='linear LR')
555
+ parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
556
+ parser.add_argument('--upload_dataset', action='store_true', help='Upload dataset as W&B artifact table')
557
+ parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval for W&B')
558
+ parser.add_argument('--save_period', type=int, default=-1, help='Log model after every "save_period" epoch')
559
+ parser.add_argument('--artifact_alias', type=str, default="latest", help='version of dataset artifact to be used')
560
+ parser.add_argument('--v5-metric', action='store_true', help='assume maximum recall as 1.0 in AP calculation')
561
+ opt = parser.parse_args()
562
+
563
+ # Set DDP variables
564
+ opt.world_size = int(os.environ['WORLD_SIZE']) if 'WORLD_SIZE' in os.environ else 1
565
+ opt.global_rank = int(os.environ['RANK']) if 'RANK' in os.environ else -1
566
+ set_logging(opt.global_rank)
567
+ #if opt.global_rank in [-1, 0]:
568
+ # check_git_status()
569
+ # check_requirements()
570
+
571
+ # Resume
572
+ wandb_run = check_wandb_resume(opt)
573
+ if opt.resume and not wandb_run: # resume an interrupted run
574
+ ckpt = opt.resume if isinstance(opt.resume, str) else get_latest_run() # specified or most recent path
575
+ assert os.path.isfile(ckpt), 'ERROR: --resume checkpoint does not exist'
576
+ apriori = opt.global_rank, opt.local_rank
577
+ with open(Path(ckpt).parent.parent / 'opt.yaml') as f:
578
+ opt = argparse.Namespace(**yaml.load(f, Loader=yaml.SafeLoader)) # replace
579
+ opt.cfg, opt.weights, opt.resume, opt.batch_size, opt.global_rank, opt.local_rank = '', ckpt, True, opt.total_batch_size, *apriori # reinstate
580
+ logger.info('Resuming training from %s' % ckpt)
581
+ else:
582
+ # opt.hyp = opt.hyp or ('hyp.finetune.yaml' if opt.weights else 'hyp.scratch.yaml')
583
+ opt.data, opt.cfg, opt.hyp = check_file(opt.data), check_file(opt.cfg), check_file(opt.hyp) # check files
584
+ assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
585
+ opt.img_size.extend([opt.img_size[-1]] * (2 - len(opt.img_size))) # extend to 2 sizes (train, test)
586
+ opt.name = 'evolve' if opt.evolve else opt.name
587
+ opt.save_dir = increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok | opt.evolve) # increment run
588
+
589
+ # DDP mode
590
+ opt.total_batch_size = opt.batch_size
591
+ device = select_device(opt.device, batch_size=opt.batch_size)
592
+ if opt.local_rank != -1:
593
+ assert torch.cuda.device_count() > opt.local_rank
594
+ torch.cuda.set_device(opt.local_rank)
595
+ device = torch.device('cuda', opt.local_rank)
596
+ dist.init_process_group(backend='nccl', init_method='env://') # distributed backend
597
+ assert opt.batch_size % opt.world_size == 0, '--batch-size must be multiple of CUDA device count'
598
+ opt.batch_size = opt.total_batch_size // opt.world_size
599
+
600
+ # Hyperparameters
601
+ with open(opt.hyp) as f:
602
+ hyp = yaml.load(f, Loader=yaml.SafeLoader) # load hyps
603
+
604
+ # Train
605
+ logger.info(opt)
606
+ if not opt.evolve:
607
+ tb_writer = None # init loggers
608
+ if opt.global_rank in [-1, 0]:
609
+ prefix = colorstr('tensorboard: ')
610
+ logger.info(f"{prefix}Start with 'tensorboard --logdir {opt.project}', view at http://localhost:6006/")
611
+ tb_writer = SummaryWriter(opt.save_dir) # Tensorboard
612
+ train(hyp, opt, device, tb_writer)
613
+
614
+ # Evolve hyperparameters (optional)
615
+ else:
616
+ # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
617
+ meta = {'lr0': (1, 1e-5, 1e-1), # initial learning rate (SGD=1E-2, Adam=1E-3)
618
+ 'lrf': (1, 0.01, 1.0), # final OneCycleLR learning rate (lr0 * lrf)
619
+ 'momentum': (0.3, 0.6, 0.98), # SGD momentum/Adam beta1
620
+ 'weight_decay': (1, 0.0, 0.001), # optimizer weight decay
621
+ 'warmup_epochs': (1, 0.0, 5.0), # warmup epochs (fractions ok)
622
+ 'warmup_momentum': (1, 0.0, 0.95), # warmup initial momentum
623
+ 'warmup_bias_lr': (1, 0.0, 0.2), # warmup initial bias lr
624
+ 'box': (1, 0.02, 0.2), # box loss gain
625
+ 'cls': (1, 0.2, 4.0), # cls loss gain
626
+ 'cls_pw': (1, 0.5, 2.0), # cls BCELoss positive_weight
627
+ 'obj': (1, 0.2, 4.0), # obj loss gain (scale with pixels)
628
+ 'obj_pw': (1, 0.5, 2.0), # obj BCELoss positive_weight
629
+ 'iou_t': (0, 0.1, 0.7), # IoU training threshold
630
+ 'anchor_t': (1, 2.0, 8.0), # anchor-multiple threshold
631
+ 'anchors': (2, 2.0, 10.0), # anchors per output grid (0 to ignore)
632
+ 'fl_gamma': (0, 0.0, 2.0), # focal loss gamma (efficientDet default gamma=1.5)
633
+ 'hsv_h': (1, 0.0, 0.1), # image HSV-Hue augmentation (fraction)
634
+ 'hsv_s': (1, 0.0, 0.9), # image HSV-Saturation augmentation (fraction)
635
+ 'hsv_v': (1, 0.0, 0.9), # image HSV-Value augmentation (fraction)
636
+ 'degrees': (1, 0.0, 45.0), # image rotation (+/- deg)
637
+ 'translate': (1, 0.0, 0.9), # image translation (+/- fraction)
638
+ 'scale': (1, 0.0, 0.9), # image scale (+/- gain)
639
+ 'shear': (1, 0.0, 10.0), # image shear (+/- deg)
640
+ 'perspective': (0, 0.0, 0.001), # image perspective (+/- fraction), range 0-0.001
641
+ 'flipud': (1, 0.0, 1.0), # image flip up-down (probability)
642
+ 'fliplr': (0, 0.0, 1.0), # image flip left-right (probability)
643
+ 'mosaic': (1, 0.0, 1.0), # image mixup (probability)
644
+ 'mixup': (1, 0.0, 1.0)} # image mixup (probability)
645
+
646
+ with open(opt.hyp, errors='ignore') as f:
647
+ hyp = yaml.safe_load(f) # load hyps dict
648
+ if 'anchors' not in hyp: # anchors commented in hyp.yaml
649
+ hyp['anchors'] = 3
650
+
651
+ assert opt.local_rank == -1, 'DDP mode not implemented for --evolve'
652
+ opt.notest, opt.nosave = True, True # only test/save final epoch
653
+ # ei = [isinstance(x, (int, float)) for x in hyp.values()] # evolvable indices
654
+ yaml_file = Path(opt.save_dir) / 'hyp_evolved.yaml' # save best result here
655
+ if opt.bucket:
656
+ os.system('gsutil cp gs://%s/evolve.txt .' % opt.bucket) # download evolve.txt if exists
657
+
658
+ for _ in range(300): # generations to evolve
659
+ if Path('evolve.txt').exists(): # if evolve.txt exists: select best hyps and mutate
660
+ # Select parent(s)
661
+ parent = 'single' # parent selection method: 'single' or 'weighted'
662
+ x = np.loadtxt('evolve.txt', ndmin=2)
663
+ n = min(5, len(x)) # number of previous results to consider
664
+ x = x[np.argsort(-fitness(x))][:n] # top n mutations
665
+ w = fitness(x) - fitness(x).min() # weights
666
+ if parent == 'single' or len(x) == 1:
667
+ # x = x[random.randint(0, n - 1)] # random selection
668
+ x = x[random.choices(range(n), weights=w)[0]] # weighted selection
669
+ elif parent == 'weighted':
670
+ x = (x * w.reshape(n, 1)).sum(0) / w.sum() # weighted combination
671
+
672
+ # Mutate
673
+ mp, s = 0.8, 0.2 # mutation probability, sigma
674
+ npr = np.random
675
+ npr.seed(int(time.time()))
676
+ g = np.array([x[0] for x in meta.values()]) # gains 0-1
677
+ ng = len(meta)
678
+ v = np.ones(ng)
679
+ while all(v == 1): # mutate until a change occurs (prevent duplicates)
680
+ v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
681
+ for i, k in enumerate(hyp.keys()): # plt.hist(v.ravel(), 300)
682
+ hyp[k] = float(x[i + 7] * v[i]) # mutate
683
+
684
+ # Constrain to limits
685
+ for k, v in meta.items():
686
+ hyp[k] = max(hyp[k], v[1]) # lower limit
687
+ hyp[k] = min(hyp[k], v[2]) # upper limit
688
+ hyp[k] = round(hyp[k], 5) # significant digits
689
+
690
+ # Train mutation
691
+ results = train(hyp.copy(), opt, device)
692
+
693
+ # Write mutation results
694
+ print_mutation(hyp.copy(), results, yaml_file, opt.bucket)
695
+
696
+ # Plot results
697
+ plot_evolution(yaml_file)
698
+ print(f'Hyperparameter evolution complete. Best results saved as: {yaml_file}\n'
699
+ f'Command to train a new model with these hyperparameters: $ python train.py --hyp {yaml_file}')
yolov7.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5128f8885b88f51704ea728a97d55218cdf3e18973badaf22d2c0da7d9e0b094
3
+ size 75586793
yolov7_training.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54c0651ef2d866584f9dcdcbd2a60c9f8fb0ee9e444af3dfd67b8c1e023f75f4
3
+ size 75628875
yolov7_training.pt.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54c0651ef2d866584f9dcdcbd2a60c9f8fb0ee9e444af3dfd67b8c1e023f75f4
3
+ size 75628875