Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
natural-language-inference
Languages:
Indonesian
Size:
10K - 100K
License:
muhammadravi251001
commited on
Delete tydiqaid-nli.py
Browse files- tydiqaid-nli.py +0 -109
tydiqaid-nli.py
DELETED
@@ -1,109 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""TODO: Add a description here."""
|
16 |
-
|
17 |
-
|
18 |
-
import json
|
19 |
-
import csv
|
20 |
-
import datasets
|
21 |
-
|
22 |
-
|
23 |
-
# TODO: Add BibTeX citation
|
24 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
25 |
-
_CITATION = """\
|
26 |
-
"""
|
27 |
-
|
28 |
-
# TODO: Add description of the dataset here
|
29 |
-
# You can copy an official description
|
30 |
-
_DESCRIPTION = """\
|
31 |
-
The TyDIQAID-NLI dataset is derived from the TyDIQAID question answering dataset, utilizing named entity recognition (NER), chunking tags, Regex, and embedding similarity techniques to determine its contradiction sets.
|
32 |
-
Collected through this process, the dataset comprises various columns beyond premise, hypothesis, and label, including properties aligned with NER and chunking tags.
|
33 |
-
This dataset is designed to facilitate Natural Language Inference (NLI) tasks and contains information extracted from diverse sources to provide comprehensive coverage.
|
34 |
-
Each data instance encapsulates premise, hypothesis, label, and additional properties pertinent to NLI evaluation.
|
35 |
-
"""
|
36 |
-
|
37 |
-
# TODO: Add a link to an official homepage for the dataset here
|
38 |
-
_HOMEPAGE = "https://huggingface.co/datasets/muhammadravi251001/tydiqaid-nli"
|
39 |
-
|
40 |
-
# TODO: Add the licence for the dataset here if you can find it
|
41 |
-
_LICENSE = """
|
42 |
-
"""
|
43 |
-
|
44 |
-
_TRAIN_DOWNLOAD_URL = "https://huggingface.co/datasets/muhammadravi251001/tydiqaid-nli/resolve/main/tydi-qa-id_nli_train_df.csv?download=true"
|
45 |
-
_VALID_DOWNLOAD_URL = "https://huggingface.co/datasets/muhammadravi251001/tydiqaid-nli/raw/main/tydi-qa-id_nli_val_df.csv"
|
46 |
-
_TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/muhammadravi251001/tydiqaid-nli/raw/main/tydi-qa-id_nli_test_df.csv"
|
47 |
-
|
48 |
-
class TyDIQAIDNLIConfig(datasets.BuilderConfig):
|
49 |
-
"""BuilderConfig for TyDIQAID-NLI Config"""
|
50 |
-
|
51 |
-
def __init__(self, **kwargs):
|
52 |
-
"""BuilderConfig for TyDIQAID-NLI Config.
|
53 |
-
Args:
|
54 |
-
**kwargs: keyword arguments forwarded to super.
|
55 |
-
"""
|
56 |
-
super(TyDIQAIDNLIConfig, self).__init__(**kwargs)
|
57 |
-
|
58 |
-
class TyDIQAIDNLI(datasets.GeneratorBasedBuilder):
|
59 |
-
"""TyDIQAID-NLI dataset -- Syntethic NLI dataset derived from QA dataset
|
60 |
-
utilizing named entity recognition (NER), chunking tags, Regex, and embedding similarity
|
61 |
-
techniques to determine its contradiction sets"""
|
62 |
-
|
63 |
-
BUILDER_CONFIGS = [
|
64 |
-
TyDIQAIDNLIConfig(
|
65 |
-
name="tydiqaid-nli",
|
66 |
-
version=datasets.Version("1.1.0"),
|
67 |
-
description="TyDIQAID-NLI: Syntethic NLI dataset derived from QA dataset utilizing named entity recognition (NER), chunking tags, Regex, and embedding similarity techniques to determine its contradiction sets",
|
68 |
-
),
|
69 |
-
]
|
70 |
-
|
71 |
-
def _info(self):
|
72 |
-
|
73 |
-
return datasets.DatasetInfo(
|
74 |
-
description=_DESCRIPTION,
|
75 |
-
features=datasets.Features(
|
76 |
-
{
|
77 |
-
"premise": datasets.Value("string"),
|
78 |
-
"hypothesis": datasets.Value("string"),
|
79 |
-
"label": datasets.ClassLabel(names=["entailment", "neutral", "contradiction"]),
|
80 |
-
}
|
81 |
-
),
|
82 |
-
supervised_keys=None,
|
83 |
-
homepage=_HOMEPAGE,
|
84 |
-
license=_LICENSE,
|
85 |
-
citation=_CITATION,
|
86 |
-
)
|
87 |
-
|
88 |
-
def _split_generators(self, dl_manager):
|
89 |
-
"""Returns SplitGenerators."""
|
90 |
-
train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
|
91 |
-
valid_path = dl_manager.download_and_extract(_VALID_DOWNLOAD_URL)
|
92 |
-
test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
|
93 |
-
|
94 |
-
return [
|
95 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
|
96 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": valid_path}),
|
97 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
|
98 |
-
]
|
99 |
-
|
100 |
-
def _generate_examples(self, filepath):
|
101 |
-
"""Yields examples."""
|
102 |
-
with open(filepath, encoding="utf-8") as csv_file:
|
103 |
-
csv_reader = csv.DictReader(csv_file)
|
104 |
-
for id_, row in enumerate(csv_reader):
|
105 |
-
yield id_, {
|
106 |
-
"premise": row["premise"],
|
107 |
-
"hypothesis": row["hypothesis"],
|
108 |
-
"label": row["label"]
|
109 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|