Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Sub-tasks:
natural-language-inference
Languages:
Indonesian
Size:
10K - 100K
License:
File size: 6,159 Bytes
e1f6d6d a8204f9 6239bd9 a8204f9 6239bd9 a8204f9 6239bd9 a8204f9 6239bd9 e1f6d6d a8204f9 6239bd9 a8204f9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
---
annotations_creators:
- machine-generated
- manual-partial-validation
language_creators:
- expert-generated
language:
- id
license: unknown
multilinguality:
- monolingual
size_categories:
- 1K<n<10K
source_datasets:
- TyDI-QA-ID
task_categories:
- text-classification
task_ids:
- natural-language-inference
pretty_name: TyDI-QA-ID-NLI
dataset_info:
features:
- name: premise
dtype: string
- name: hypothesis
dtype: string
- name: label
dtype:
class_label:
names:
'0': entailment
'1': neutral
'2': contradiction
config_name: tydiqaid-nli
splits:
- name: train
num_bytes: 3207000
num_examples: 9694
- name: validation
num_bytes: 373750
num_examples: 1130
- name: test
num_bytes: 565625
num_examples: 1170
download_size: 4146375
dataset_size: 11994
---
# Dataset Card for TyDI-QA-ID-NLI
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [Hugging Face](https://huggingface.co/datasets/muhammadravi251001/tydiqaid-nli)
- **Point of Contact:** [Hugging Face](https://huggingface.co/datasets/muhammadravi251001/tydiqaid-nli)
- **Experiment:** [Github](https://github.com/muhammadravi251001/multilingual-qas-with-nli)
### Dataset Summary
The TyDI-QA-ID-NLI dataset is derived from the TyDI-QA-ID question answering dataset, utilizing named entity recognition (NER), chunking tags, Regex, and embedding similarity techniques to determine its contradiction sets.
Collected through this process, the dataset comprises various columns beyond premise, hypothesis, and label, including properties aligned with NER and chunking tags.
This dataset is designed to facilitate Natural Language Inference (NLI) tasks and contains information extracted from diverse sources to provide comprehensive coverage.
Each data instance encapsulates premise, hypothesis, label, and additional properties pertinent to NLI evaluation.
### Supported Tasks and Leaderboards
- Natural Language Inference for Indonesian
### Languages
Indonesian
## Dataset Structure
### Data Instances
An example of `test` looks as follows.
```
{
"premise": "Manuls sering kali terlihat di padang rumput stepa Asia Tengah wilayah Mongolia, Cina dan Dataran Tinggi Tibet, di mana rekor elevasi 5.050 m (16.570 kaki) dilaporkan.[5] Mereka secara luas tersebar di daerah dataran tinggi dan lekukan Intermountain serta padang rumput pegunungan di Kyrgyzstan dan Kazakhstan.[6] Di Rusia, mereka muncul sesekali di Transkaukasus dan daerah Transbaikal, di sepanjang perbatasan dengan utara-timur Kazakhstan, dan di sepanjang perbatasan dengan Mongolia dan Cina di Altai, Tyva Buryatia, dan Chita republik. Pada musim semi 1997, trek yang ditemukan di Timur Sayan pada ketinggian 2.470 m (8.100 kaki) dalam 4,5cm (1,8 in) lapisan salju yang tebal. Trek ini dianggap fakta pertama yang dapat dibuktikan mendiami daerah manuls. Analisis DNA dari kotoran individu ini menegaskan kehadiran spesies.[7] Populasi di barat daya, yaitu wilayah Laut Kaspia, Afghanistan dan Pakistan, berkurang, terisolasi dan jarang [8][9]. Pada tahun 2008, seekor individu terekam kamera di Iran Khojir National Park untuk pertama kalinya [10].,Dimanakah Kucing Pallas pertama kali ditemukan ?",
"hypothesis": ",Dimanakah Kucing Pallas pertama kali ditemukan ? 2008",
"label": 0
}
```
### Data Fields
The data fields are:
- `premise`: a `string` feature
- `hypothesis`: a `string` feature
- `label`: a classification label, with possible values including `entailment` (0), `neutral` (1), `contradiction` (2).
### Data Splits #TODO
The data is split across `train`, `valid`, and `test`.
| split | # examples |
|----------|-------:|
|train| 9694|
|valid| 1130|
|test| 1170|
## Dataset Creation
### Curation Rationale
Indonesian NLP is considered under-resourced. We need NLI dataset to fine-tuning the NLI model to utilizing them for QA models in order to improving the performance of the QA's.
### Source Data
#### Initial Data Collection and Normalization
We collect the data from the prominent QA dataset in Indonesian. The annotation fully by the original dataset's researcher.
#### Who are the source language producers?
This synthetic data was produced by machine, but the original data was produced by human.
### Personal and Sensitive Information
There might be some personal information coming from Wikipedia and news, especially the information of famous/important people.
## Considerations for Using the Data
### Discussion of Biases
The QA dataset (so the NLI-derived from them) is created using premise sentences taken from Wikipedia and news. These data sources may contain some bias.
### Other Known Limitations
No other known limitations
## Additional Information
### Dataset Curators
This dataset is the result of the collaborative work of Indonesian researchers from the University of Indonesia, Mohamed bin Zayed University of Artificial Intelligence, and the Korea Advanced Institute of Science & Technology.
### Licensing Information
The license is Unknown. Please contact authors for any information on the dataset. |