# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the 'License'); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an 'AS IS' BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 import json import datasets _CITATION = ''' @article{lawrie2023overview, title={Overview of the TREC 2022 NeuCLIR track}, author={Lawrie, Dawn and MacAvaney, Sean and Mayfield, James and McNamee, Paul and Oard, Douglas W and Soldaini, Luca and Yang, Eugene}, journal={arXiv preprint arXiv:2304.12367}, year={2023} } ''' _LANGUAGES = [ 'rus', 'fas', 'zho', ] _DESCRIPTION = 'dataset load script for NeuCLIR 2022' _DATASET_URLS = { lang: { 'test': f'https://huggingface.co/datasets/MTEB/neuclir-2022/resolve/main/neuclir-{lang}/queries.jsonl.gz', } for lang in _LANGUAGES } _DATASET_CORPUS_URLS = { f'corpus-{lang}': { 'corpus': f'https://huggingface.co/datasets/MTEB/neuclir-2022/resolve/main/neuclir-{lang}/corpus.jsonl.gz' } for lang in _LANGUAGES } class MLDR(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [datasets.BuilderConfig( version=datasets.Version('1.0.0'), name=lang, description=f'MLDR dataset in language {lang}.' ) for lang in _LANGUAGES ] + [ datasets.BuilderConfig( version=datasets.Version('1.0.0'), name=f'corpus-{lang}', description=f'corpus of MLDR dataset in language {lang}.' ) for lang in _LANGUAGES ] def _info(self): name = self.config.name if name.startswith('corpus-'): features = datasets.Features({ '_id': datasets.Value('string'), 'text': datasets.Value('string'), }) else: features = datasets.Features({ '_id': datasets.Value('string'), 'query': datasets.Value('string'), }) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations supervised_keys=None, # Homepage of the dataset for documentation homepage='https://github.com/FlagOpen/FlagEmbedding', # License for the dataset if available license='mit', # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): name = self.config.name if name.startswith('corpus-'): downloaded_files = dl_manager.download_and_extract(_DATASET_CORPUS_URLS[name]) splits = [ datasets.SplitGenerator( name='corpus', gen_kwargs={ 'filepath': downloaded_files['corpus'], }, ), ] else: downloaded_files = dl_manager.download_and_extract(_DATASET_URLS[name]) splits = [ datasets.SplitGenerator( name='test', gen_kwargs={ 'filepath': downloaded_files['test'], }, ), ] return splits def _generate_examples(self, filepath): name = self.config.name if name.startswith('corpus-'): with open(filepath, encoding='utf-8') as f: for line in f: data = json.loads(line) yield data['docid'], data else: with open(filepath, encoding="utf-8") as f: for line in f: data = json.loads(line) qid = data['query_id'] yield qid, data