"""WallFollowing Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = {} DESCRIPTION = "WallFollowing dataset." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/194/wall+following+robot+navigation+data" _URLS = ("https://archive-beta.ics.uci.edu/dataset/194/wall+following+robot+navigation+data") _CITATION = """ @misc{misc_wall-following_robot_navigation_data_194, author = {Freire,Ananda, Veloso,Marcus & Barreto,Guilherme}, title = {{Wall-Following Robot Navigation Data}}, year = {2010}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C57C8W}} } """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/wall_following/raw/main/wall_following.csv" } features_types_per_config = { "wall_following": { "US1": datasets.Value("float64"), "US2": datasets.Value("float64"), "US3": datasets.Value("float64"), "US4": datasets.Value("float64"), "US5": datasets.Value("float64"), "US6": datasets.Value("float64"), "US7": datasets.Value("float64"), "US8": datasets.Value("float64"), "US9": datasets.Value("float64"), "US10": datasets.Value("float64"), "US11": datasets.Value("float64"), "US12": datasets.Value("float64"), "US13": datasets.Value("float64"), "US14": datasets.Value("float64"), "US15": datasets.Value("float64"), "US16": datasets.Value("float64"), "US17": datasets.Value("float64"), "US18": datasets.Value("float64"), "US19": datasets.Value("float64"), "US20": datasets.Value("float64"), "US21": datasets.Value("float64"), "US22": datasets.Value("float64"), "US23": datasets.Value("float64"), "US24": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=4), }, "wall_following_0": { "US1": datasets.Value("float64"), "US2": datasets.Value("float64"), "US3": datasets.Value("float64"), "US4": datasets.Value("float64"), "US5": datasets.Value("float64"), "US6": datasets.Value("float64"), "US7": datasets.Value("float64"), "US8": datasets.Value("float64"), "US9": datasets.Value("float64"), "US10": datasets.Value("float64"), "US11": datasets.Value("float64"), "US12": datasets.Value("float64"), "US13": datasets.Value("float64"), "US14": datasets.Value("float64"), "US15": datasets.Value("float64"), "US16": datasets.Value("float64"), "US17": datasets.Value("float64"), "US18": datasets.Value("float64"), "US19": datasets.Value("float64"), "US20": datasets.Value("float64"), "US21": datasets.Value("float64"), "US22": datasets.Value("float64"), "US23": datasets.Value("float64"), "US24": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2), }, "wall_following_1": { "US1": datasets.Value("float64"), "US2": datasets.Value("float64"), "US3": datasets.Value("float64"), "US4": datasets.Value("float64"), "US5": datasets.Value("float64"), "US6": datasets.Value("float64"), "US7": datasets.Value("float64"), "US8": datasets.Value("float64"), "US9": datasets.Value("float64"), "US10": datasets.Value("float64"), "US11": datasets.Value("float64"), "US12": datasets.Value("float64"), "US13": datasets.Value("float64"), "US14": datasets.Value("float64"), "US15": datasets.Value("float64"), "US16": datasets.Value("float64"), "US17": datasets.Value("float64"), "US18": datasets.Value("float64"), "US19": datasets.Value("float64"), "US20": datasets.Value("float64"), "US21": datasets.Value("float64"), "US22": datasets.Value("float64"), "US23": datasets.Value("float64"), "US24": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2), }, "wall_following_2": { "US1": datasets.Value("float64"), "US2": datasets.Value("float64"), "US3": datasets.Value("float64"), "US4": datasets.Value("float64"), "US5": datasets.Value("float64"), "US6": datasets.Value("float64"), "US7": datasets.Value("float64"), "US8": datasets.Value("float64"), "US9": datasets.Value("float64"), "US10": datasets.Value("float64"), "US11": datasets.Value("float64"), "US12": datasets.Value("float64"), "US13": datasets.Value("float64"), "US14": datasets.Value("float64"), "US15": datasets.Value("float64"), "US16": datasets.Value("float64"), "US17": datasets.Value("float64"), "US18": datasets.Value("float64"), "US19": datasets.Value("float64"), "US20": datasets.Value("float64"), "US21": datasets.Value("float64"), "US22": datasets.Value("float64"), "US23": datasets.Value("float64"), "US24": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2), }, "wall_following_3": { "US1": datasets.Value("float64"), "US2": datasets.Value("float64"), "US3": datasets.Value("float64"), "US4": datasets.Value("float64"), "US5": datasets.Value("float64"), "US6": datasets.Value("float64"), "US7": datasets.Value("float64"), "US8": datasets.Value("float64"), "US9": datasets.Value("float64"), "US10": datasets.Value("float64"), "US11": datasets.Value("float64"), "US12": datasets.Value("float64"), "US13": datasets.Value("float64"), "US14": datasets.Value("float64"), "US15": datasets.Value("float64"), "US16": datasets.Value("float64"), "US17": datasets.Value("float64"), "US18": datasets.Value("float64"), "US19": datasets.Value("float64"), "US20": datasets.Value("float64"), "US21": datasets.Value("float64"), "US22": datasets.Value("float64"), "US23": datasets.Value("float64"), "US24": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2), } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class WallFollowingConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(WallFollowingConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class WallFollowing(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "wall_following" BUILDER_CONFIGS = [ WallFollowingConfig(name="wall_following", description="WallFollowing for multiclass classification."), WallFollowingConfig(name="wall_following_0", description="WallFollowing for binary classification."), WallFollowingConfig(name="wall_following_1", description="WallFollowing for binary classification."), WallFollowingConfig(name="wall_following_2", description="WallFollowing for binary classification."), WallFollowingConfig(name="wall_following_3", description="WallFollowing for binary classification."), ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: if self.config.name == "wall_following_0": data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0) elif self.config.name == "wall_following_1": data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0) elif self.config.name == "wall_following_2": data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0) elif self.config.name == "wall_following_3": data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0) for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")