mstz commited on
Commit
b8a8ff6
·
1 Parent(s): a6dcb5f

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +25 -1
  2. wall_following.csv +0 -0
  3. wall_following.py +232 -0
README.md CHANGED
@@ -1,3 +1,27 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - wall_following
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ pretty_name: WallFollowing
10
+ size_categories:
11
+ - 1K<n<5K
12
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
+ - tabular-classification
14
+ configs:
15
+ - wall_following
16
  ---
17
+ # WallFollowing
18
+ The [WallFollowing dataset](https://archive-beta.ics.uci.edu/dataset/194/wall+following+robot+navigation+data) from the [UCI repository](https://archive-beta.ics.uci.edu/).
19
+
20
+ # Configurations and tasks
21
+ | **Configuration** | **Task** | **Description** |
22
+ |-----------------------|---------------------------|-------------------------|
23
+ | wall_following | Multiclass classification.| |
24
+ | wall_following_0 | Binary classification. | Is the instance of class 0? |
25
+ | wall_following_1 | Binary classification. | Is the instance of class 1? |
26
+ | wall_following_2 | Binary classification. | Is the instance of class 2? |
27
+ | wall_following_3 | Binary classification. | Is the instance of class 3? |
wall_following.csv ADDED
The diff for this file is too large to render. See raw diff
 
wall_following.py ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """WallFollowing Dataset"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+
13
+ _ENCODING_DICS = {}
14
+
15
+ DESCRIPTION = "WallFollowing dataset."
16
+ _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/194/wall+following+robot+navigation+data"
17
+ _URLS = ("https://archive-beta.ics.uci.edu/dataset/194/wall+following+robot+navigation+data")
18
+ _CITATION = """
19
+ @misc{misc_wall-following_robot_navigation_data_194,
20
+ author = {Freire,Ananda, Veloso,Marcus & Barreto,Guilherme},
21
+ title = {{Wall-Following Robot Navigation Data}},
22
+ year = {2010},
23
+ howpublished = {UCI Machine Learning Repository},
24
+ note = {{DOI}: \\url{10.24432/C57C8W}}
25
+ }
26
+ """
27
+
28
+ # Dataset info
29
+ urls_per_split = {
30
+ "train": "https://huggingface.co/datasets/mstz/wall_following/raw/main/wall_following.csv"
31
+ }
32
+ features_types_per_config = {
33
+ "wall_following": {
34
+ "US1": datasets.Value("float64"),
35
+ "US2": datasets.Value("float64"),
36
+ "US3": datasets.Value("float64"),
37
+ "US4": datasets.Value("float64"),
38
+ "US5": datasets.Value("float64"),
39
+ "US6": datasets.Value("float64"),
40
+ "US7": datasets.Value("float64"),
41
+ "US8": datasets.Value("float64"),
42
+ "US9": datasets.Value("float64"),
43
+ "US10": datasets.Value("float64"),
44
+ "US11": datasets.Value("float64"),
45
+ "US12": datasets.Value("float64"),
46
+ "US13": datasets.Value("float64"),
47
+ "US14": datasets.Value("float64"),
48
+ "US15": datasets.Value("float64"),
49
+ "US16": datasets.Value("float64"),
50
+ "US17": datasets.Value("float64"),
51
+ "US18": datasets.Value("float64"),
52
+ "US19": datasets.Value("float64"),
53
+ "US20": datasets.Value("float64"),
54
+ "US21": datasets.Value("float64"),
55
+ "US22": datasets.Value("float64"),
56
+ "US23": datasets.Value("float64"),
57
+ "US24": datasets.Value("float64"),
58
+ "class": datasets.ClassLabel(num_classes=4),
59
+ },
60
+ "wall_following_0": {
61
+ "US1": datasets.Value("float64"),
62
+ "US2": datasets.Value("float64"),
63
+ "US3": datasets.Value("float64"),
64
+ "US4": datasets.Value("float64"),
65
+ "US5": datasets.Value("float64"),
66
+ "US6": datasets.Value("float64"),
67
+ "US7": datasets.Value("float64"),
68
+ "US8": datasets.Value("float64"),
69
+ "US9": datasets.Value("float64"),
70
+ "US10": datasets.Value("float64"),
71
+ "US11": datasets.Value("float64"),
72
+ "US12": datasets.Value("float64"),
73
+ "US13": datasets.Value("float64"),
74
+ "US14": datasets.Value("float64"),
75
+ "US15": datasets.Value("float64"),
76
+ "US16": datasets.Value("float64"),
77
+ "US17": datasets.Value("float64"),
78
+ "US18": datasets.Value("float64"),
79
+ "US19": datasets.Value("float64"),
80
+ "US20": datasets.Value("float64"),
81
+ "US21": datasets.Value("float64"),
82
+ "US22": datasets.Value("float64"),
83
+ "US23": datasets.Value("float64"),
84
+ "US24": datasets.Value("float64"),
85
+ "class": datasets.ClassLabel(num_classes=2),
86
+ },
87
+ "wall_following_1": {
88
+ "US1": datasets.Value("float64"),
89
+ "US2": datasets.Value("float64"),
90
+ "US3": datasets.Value("float64"),
91
+ "US4": datasets.Value("float64"),
92
+ "US5": datasets.Value("float64"),
93
+ "US6": datasets.Value("float64"),
94
+ "US7": datasets.Value("float64"),
95
+ "US8": datasets.Value("float64"),
96
+ "US9": datasets.Value("float64"),
97
+ "US10": datasets.Value("float64"),
98
+ "US11": datasets.Value("float64"),
99
+ "US12": datasets.Value("float64"),
100
+ "US13": datasets.Value("float64"),
101
+ "US14": datasets.Value("float64"),
102
+ "US15": datasets.Value("float64"),
103
+ "US16": datasets.Value("float64"),
104
+ "US17": datasets.Value("float64"),
105
+ "US18": datasets.Value("float64"),
106
+ "US19": datasets.Value("float64"),
107
+ "US20": datasets.Value("float64"),
108
+ "US21": datasets.Value("float64"),
109
+ "US22": datasets.Value("float64"),
110
+ "US23": datasets.Value("float64"),
111
+ "US24": datasets.Value("float64"),
112
+ "class": datasets.ClassLabel(num_classes=2),
113
+ },
114
+ "wall_following_2": {
115
+ "US1": datasets.Value("float64"),
116
+ "US2": datasets.Value("float64"),
117
+ "US3": datasets.Value("float64"),
118
+ "US4": datasets.Value("float64"),
119
+ "US5": datasets.Value("float64"),
120
+ "US6": datasets.Value("float64"),
121
+ "US7": datasets.Value("float64"),
122
+ "US8": datasets.Value("float64"),
123
+ "US9": datasets.Value("float64"),
124
+ "US10": datasets.Value("float64"),
125
+ "US11": datasets.Value("float64"),
126
+ "US12": datasets.Value("float64"),
127
+ "US13": datasets.Value("float64"),
128
+ "US14": datasets.Value("float64"),
129
+ "US15": datasets.Value("float64"),
130
+ "US16": datasets.Value("float64"),
131
+ "US17": datasets.Value("float64"),
132
+ "US18": datasets.Value("float64"),
133
+ "US19": datasets.Value("float64"),
134
+ "US20": datasets.Value("float64"),
135
+ "US21": datasets.Value("float64"),
136
+ "US22": datasets.Value("float64"),
137
+ "US23": datasets.Value("float64"),
138
+ "US24": datasets.Value("float64"),
139
+ "class": datasets.ClassLabel(num_classes=2),
140
+ },
141
+ "wall_following_3": {
142
+ "US1": datasets.Value("float64"),
143
+ "US2": datasets.Value("float64"),
144
+ "US3": datasets.Value("float64"),
145
+ "US4": datasets.Value("float64"),
146
+ "US5": datasets.Value("float64"),
147
+ "US6": datasets.Value("float64"),
148
+ "US7": datasets.Value("float64"),
149
+ "US8": datasets.Value("float64"),
150
+ "US9": datasets.Value("float64"),
151
+ "US10": datasets.Value("float64"),
152
+ "US11": datasets.Value("float64"),
153
+ "US12": datasets.Value("float64"),
154
+ "US13": datasets.Value("float64"),
155
+ "US14": datasets.Value("float64"),
156
+ "US15": datasets.Value("float64"),
157
+ "US16": datasets.Value("float64"),
158
+ "US17": datasets.Value("float64"),
159
+ "US18": datasets.Value("float64"),
160
+ "US19": datasets.Value("float64"),
161
+ "US20": datasets.Value("float64"),
162
+ "US21": datasets.Value("float64"),
163
+ "US22": datasets.Value("float64"),
164
+ "US23": datasets.Value("float64"),
165
+ "US24": datasets.Value("float64"),
166
+ "class": datasets.ClassLabel(num_classes=2),
167
+ }
168
+ }
169
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
170
+
171
+
172
+ class WallFollowingConfig(datasets.BuilderConfig):
173
+ def __init__(self, **kwargs):
174
+ super(WallFollowingConfig, self).__init__(version=VERSION, **kwargs)
175
+ self.features = features_per_config[kwargs["name"]]
176
+
177
+
178
+ class WallFollowing(datasets.GeneratorBasedBuilder):
179
+ # dataset versions
180
+ DEFAULT_CONFIG = "wall_following"
181
+ BUILDER_CONFIGS = [
182
+ WallFollowingConfig(name="wall_following", description="WallFollowing for multiclass classification."),
183
+ WallFollowingConfig(name="wall_following_0", description="WallFollowing for binary classification."),
184
+ WallFollowingConfig(name="wall_following_1", description="WallFollowing for binary classification."),
185
+ WallFollowingConfig(name="wall_following_2", description="WallFollowing for binary classification."),
186
+ WallFollowingConfig(name="wall_following_3", description="WallFollowing for binary classification."),
187
+
188
+ ]
189
+
190
+
191
+ def _info(self):
192
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
193
+ features=features_per_config[self.config.name])
194
+
195
+ return info
196
+
197
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
198
+ downloads = dl_manager.download_and_extract(urls_per_split)
199
+
200
+ return [
201
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
202
+ ]
203
+
204
+ def _generate_examples(self, filepath: str):
205
+ data = pandas.read_csv(filepath)
206
+ data = self.preprocess(data)
207
+
208
+ for row_id, row in data.iterrows():
209
+ data_row = dict(row)
210
+
211
+ yield row_id, data_row
212
+
213
+ def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
214
+ if self.config.name == "wall_following_0":
215
+ data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
216
+ elif self.config.name == "wall_following_1":
217
+ data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
218
+ elif self.config.name == "wall_following_2":
219
+ data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
220
+ elif self.config.name == "wall_following_3":
221
+ data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
222
+
223
+ for feature in _ENCODING_DICS:
224
+ encoding_function = partial(self.encode, feature)
225
+ data.loc[:, feature] = data[feature].apply(encoding_function)
226
+
227
+ return data[list(features_types_per_config[self.config.name].keys())]
228
+
229
+ def encode(self, feature, value):
230
+ if feature in _ENCODING_DICS:
231
+ return _ENCODING_DICS[feature][value]
232
+ raise ValueError(f"Unknown feature: {feature}")