Datasets:
Upload 3 files
Browse files- README.md +25 -1
- wall_following.csv +0 -0
- wall_following.py +232 -0
README.md
CHANGED
@@ -1,3 +1,27 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- wall_following
|
6 |
+
- tabular_classification
|
7 |
+
- binary_classification
|
8 |
+
- multiclass_classification
|
9 |
+
pretty_name: WallFollowing
|
10 |
+
size_categories:
|
11 |
+
- 1K<n<5K
|
12 |
+
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
|
13 |
+
- tabular-classification
|
14 |
+
configs:
|
15 |
+
- wall_following
|
16 |
---
|
17 |
+
# WallFollowing
|
18 |
+
The [WallFollowing dataset](https://archive-beta.ics.uci.edu/dataset/194/wall+following+robot+navigation+data) from the [UCI repository](https://archive-beta.ics.uci.edu/).
|
19 |
+
|
20 |
+
# Configurations and tasks
|
21 |
+
| **Configuration** | **Task** | **Description** |
|
22 |
+
|-----------------------|---------------------------|-------------------------|
|
23 |
+
| wall_following | Multiclass classification.| |
|
24 |
+
| wall_following_0 | Binary classification. | Is the instance of class 0? |
|
25 |
+
| wall_following_1 | Binary classification. | Is the instance of class 1? |
|
26 |
+
| wall_following_2 | Binary classification. | Is the instance of class 2? |
|
27 |
+
| wall_following_3 | Binary classification. | Is the instance of class 3? |
|
wall_following.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
wall_following.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""WallFollowing Dataset"""
|
2 |
+
|
3 |
+
from typing import List
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import datasets
|
7 |
+
|
8 |
+
import pandas
|
9 |
+
|
10 |
+
|
11 |
+
VERSION = datasets.Version("1.0.0")
|
12 |
+
|
13 |
+
_ENCODING_DICS = {}
|
14 |
+
|
15 |
+
DESCRIPTION = "WallFollowing dataset."
|
16 |
+
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/194/wall+following+robot+navigation+data"
|
17 |
+
_URLS = ("https://archive-beta.ics.uci.edu/dataset/194/wall+following+robot+navigation+data")
|
18 |
+
_CITATION = """
|
19 |
+
@misc{misc_wall-following_robot_navigation_data_194,
|
20 |
+
author = {Freire,Ananda, Veloso,Marcus & Barreto,Guilherme},
|
21 |
+
title = {{Wall-Following Robot Navigation Data}},
|
22 |
+
year = {2010},
|
23 |
+
howpublished = {UCI Machine Learning Repository},
|
24 |
+
note = {{DOI}: \\url{10.24432/C57C8W}}
|
25 |
+
}
|
26 |
+
"""
|
27 |
+
|
28 |
+
# Dataset info
|
29 |
+
urls_per_split = {
|
30 |
+
"train": "https://huggingface.co/datasets/mstz/wall_following/raw/main/wall_following.csv"
|
31 |
+
}
|
32 |
+
features_types_per_config = {
|
33 |
+
"wall_following": {
|
34 |
+
"US1": datasets.Value("float64"),
|
35 |
+
"US2": datasets.Value("float64"),
|
36 |
+
"US3": datasets.Value("float64"),
|
37 |
+
"US4": datasets.Value("float64"),
|
38 |
+
"US5": datasets.Value("float64"),
|
39 |
+
"US6": datasets.Value("float64"),
|
40 |
+
"US7": datasets.Value("float64"),
|
41 |
+
"US8": datasets.Value("float64"),
|
42 |
+
"US9": datasets.Value("float64"),
|
43 |
+
"US10": datasets.Value("float64"),
|
44 |
+
"US11": datasets.Value("float64"),
|
45 |
+
"US12": datasets.Value("float64"),
|
46 |
+
"US13": datasets.Value("float64"),
|
47 |
+
"US14": datasets.Value("float64"),
|
48 |
+
"US15": datasets.Value("float64"),
|
49 |
+
"US16": datasets.Value("float64"),
|
50 |
+
"US17": datasets.Value("float64"),
|
51 |
+
"US18": datasets.Value("float64"),
|
52 |
+
"US19": datasets.Value("float64"),
|
53 |
+
"US20": datasets.Value("float64"),
|
54 |
+
"US21": datasets.Value("float64"),
|
55 |
+
"US22": datasets.Value("float64"),
|
56 |
+
"US23": datasets.Value("float64"),
|
57 |
+
"US24": datasets.Value("float64"),
|
58 |
+
"class": datasets.ClassLabel(num_classes=4),
|
59 |
+
},
|
60 |
+
"wall_following_0": {
|
61 |
+
"US1": datasets.Value("float64"),
|
62 |
+
"US2": datasets.Value("float64"),
|
63 |
+
"US3": datasets.Value("float64"),
|
64 |
+
"US4": datasets.Value("float64"),
|
65 |
+
"US5": datasets.Value("float64"),
|
66 |
+
"US6": datasets.Value("float64"),
|
67 |
+
"US7": datasets.Value("float64"),
|
68 |
+
"US8": datasets.Value("float64"),
|
69 |
+
"US9": datasets.Value("float64"),
|
70 |
+
"US10": datasets.Value("float64"),
|
71 |
+
"US11": datasets.Value("float64"),
|
72 |
+
"US12": datasets.Value("float64"),
|
73 |
+
"US13": datasets.Value("float64"),
|
74 |
+
"US14": datasets.Value("float64"),
|
75 |
+
"US15": datasets.Value("float64"),
|
76 |
+
"US16": datasets.Value("float64"),
|
77 |
+
"US17": datasets.Value("float64"),
|
78 |
+
"US18": datasets.Value("float64"),
|
79 |
+
"US19": datasets.Value("float64"),
|
80 |
+
"US20": datasets.Value("float64"),
|
81 |
+
"US21": datasets.Value("float64"),
|
82 |
+
"US22": datasets.Value("float64"),
|
83 |
+
"US23": datasets.Value("float64"),
|
84 |
+
"US24": datasets.Value("float64"),
|
85 |
+
"class": datasets.ClassLabel(num_classes=2),
|
86 |
+
},
|
87 |
+
"wall_following_1": {
|
88 |
+
"US1": datasets.Value("float64"),
|
89 |
+
"US2": datasets.Value("float64"),
|
90 |
+
"US3": datasets.Value("float64"),
|
91 |
+
"US4": datasets.Value("float64"),
|
92 |
+
"US5": datasets.Value("float64"),
|
93 |
+
"US6": datasets.Value("float64"),
|
94 |
+
"US7": datasets.Value("float64"),
|
95 |
+
"US8": datasets.Value("float64"),
|
96 |
+
"US9": datasets.Value("float64"),
|
97 |
+
"US10": datasets.Value("float64"),
|
98 |
+
"US11": datasets.Value("float64"),
|
99 |
+
"US12": datasets.Value("float64"),
|
100 |
+
"US13": datasets.Value("float64"),
|
101 |
+
"US14": datasets.Value("float64"),
|
102 |
+
"US15": datasets.Value("float64"),
|
103 |
+
"US16": datasets.Value("float64"),
|
104 |
+
"US17": datasets.Value("float64"),
|
105 |
+
"US18": datasets.Value("float64"),
|
106 |
+
"US19": datasets.Value("float64"),
|
107 |
+
"US20": datasets.Value("float64"),
|
108 |
+
"US21": datasets.Value("float64"),
|
109 |
+
"US22": datasets.Value("float64"),
|
110 |
+
"US23": datasets.Value("float64"),
|
111 |
+
"US24": datasets.Value("float64"),
|
112 |
+
"class": datasets.ClassLabel(num_classes=2),
|
113 |
+
},
|
114 |
+
"wall_following_2": {
|
115 |
+
"US1": datasets.Value("float64"),
|
116 |
+
"US2": datasets.Value("float64"),
|
117 |
+
"US3": datasets.Value("float64"),
|
118 |
+
"US4": datasets.Value("float64"),
|
119 |
+
"US5": datasets.Value("float64"),
|
120 |
+
"US6": datasets.Value("float64"),
|
121 |
+
"US7": datasets.Value("float64"),
|
122 |
+
"US8": datasets.Value("float64"),
|
123 |
+
"US9": datasets.Value("float64"),
|
124 |
+
"US10": datasets.Value("float64"),
|
125 |
+
"US11": datasets.Value("float64"),
|
126 |
+
"US12": datasets.Value("float64"),
|
127 |
+
"US13": datasets.Value("float64"),
|
128 |
+
"US14": datasets.Value("float64"),
|
129 |
+
"US15": datasets.Value("float64"),
|
130 |
+
"US16": datasets.Value("float64"),
|
131 |
+
"US17": datasets.Value("float64"),
|
132 |
+
"US18": datasets.Value("float64"),
|
133 |
+
"US19": datasets.Value("float64"),
|
134 |
+
"US20": datasets.Value("float64"),
|
135 |
+
"US21": datasets.Value("float64"),
|
136 |
+
"US22": datasets.Value("float64"),
|
137 |
+
"US23": datasets.Value("float64"),
|
138 |
+
"US24": datasets.Value("float64"),
|
139 |
+
"class": datasets.ClassLabel(num_classes=2),
|
140 |
+
},
|
141 |
+
"wall_following_3": {
|
142 |
+
"US1": datasets.Value("float64"),
|
143 |
+
"US2": datasets.Value("float64"),
|
144 |
+
"US3": datasets.Value("float64"),
|
145 |
+
"US4": datasets.Value("float64"),
|
146 |
+
"US5": datasets.Value("float64"),
|
147 |
+
"US6": datasets.Value("float64"),
|
148 |
+
"US7": datasets.Value("float64"),
|
149 |
+
"US8": datasets.Value("float64"),
|
150 |
+
"US9": datasets.Value("float64"),
|
151 |
+
"US10": datasets.Value("float64"),
|
152 |
+
"US11": datasets.Value("float64"),
|
153 |
+
"US12": datasets.Value("float64"),
|
154 |
+
"US13": datasets.Value("float64"),
|
155 |
+
"US14": datasets.Value("float64"),
|
156 |
+
"US15": datasets.Value("float64"),
|
157 |
+
"US16": datasets.Value("float64"),
|
158 |
+
"US17": datasets.Value("float64"),
|
159 |
+
"US18": datasets.Value("float64"),
|
160 |
+
"US19": datasets.Value("float64"),
|
161 |
+
"US20": datasets.Value("float64"),
|
162 |
+
"US21": datasets.Value("float64"),
|
163 |
+
"US22": datasets.Value("float64"),
|
164 |
+
"US23": datasets.Value("float64"),
|
165 |
+
"US24": datasets.Value("float64"),
|
166 |
+
"class": datasets.ClassLabel(num_classes=2),
|
167 |
+
}
|
168 |
+
}
|
169 |
+
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
|
170 |
+
|
171 |
+
|
172 |
+
class WallFollowingConfig(datasets.BuilderConfig):
|
173 |
+
def __init__(self, **kwargs):
|
174 |
+
super(WallFollowingConfig, self).__init__(version=VERSION, **kwargs)
|
175 |
+
self.features = features_per_config[kwargs["name"]]
|
176 |
+
|
177 |
+
|
178 |
+
class WallFollowing(datasets.GeneratorBasedBuilder):
|
179 |
+
# dataset versions
|
180 |
+
DEFAULT_CONFIG = "wall_following"
|
181 |
+
BUILDER_CONFIGS = [
|
182 |
+
WallFollowingConfig(name="wall_following", description="WallFollowing for multiclass classification."),
|
183 |
+
WallFollowingConfig(name="wall_following_0", description="WallFollowing for binary classification."),
|
184 |
+
WallFollowingConfig(name="wall_following_1", description="WallFollowing for binary classification."),
|
185 |
+
WallFollowingConfig(name="wall_following_2", description="WallFollowing for binary classification."),
|
186 |
+
WallFollowingConfig(name="wall_following_3", description="WallFollowing for binary classification."),
|
187 |
+
|
188 |
+
]
|
189 |
+
|
190 |
+
|
191 |
+
def _info(self):
|
192 |
+
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
|
193 |
+
features=features_per_config[self.config.name])
|
194 |
+
|
195 |
+
return info
|
196 |
+
|
197 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
198 |
+
downloads = dl_manager.download_and_extract(urls_per_split)
|
199 |
+
|
200 |
+
return [
|
201 |
+
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
|
202 |
+
]
|
203 |
+
|
204 |
+
def _generate_examples(self, filepath: str):
|
205 |
+
data = pandas.read_csv(filepath)
|
206 |
+
data = self.preprocess(data)
|
207 |
+
|
208 |
+
for row_id, row in data.iterrows():
|
209 |
+
data_row = dict(row)
|
210 |
+
|
211 |
+
yield row_id, data_row
|
212 |
+
|
213 |
+
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
|
214 |
+
if self.config.name == "wall_following_0":
|
215 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
|
216 |
+
elif self.config.name == "wall_following_1":
|
217 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
|
218 |
+
elif self.config.name == "wall_following_2":
|
219 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
|
220 |
+
elif self.config.name == "wall_following_3":
|
221 |
+
data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
|
222 |
+
|
223 |
+
for feature in _ENCODING_DICS:
|
224 |
+
encoding_function = partial(self.encode, feature)
|
225 |
+
data.loc[:, feature] = data[feature].apply(encoding_function)
|
226 |
+
|
227 |
+
return data[list(features_types_per_config[self.config.name].keys())]
|
228 |
+
|
229 |
+
def encode(self, feature, value):
|
230 |
+
if feature in _ENCODING_DICS:
|
231 |
+
return _ENCODING_DICS[feature][value]
|
232 |
+
raise ValueError(f"Unknown feature: {feature}")
|