"""Soybean Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = { "class": { value: i for i, value in enumerate(["diaporthe_stem_canker", "charcoal_rot", "rhizoctonia_root_rot", "phytophthora_rot", "brown_stem_rot", "powdery_mildew", "downy_mildew", "brown_spot", "bacterial_blight", "bacterial_pustule", "purple_seed_stain", "anthracnose", "phyllosticta_leaf_spot", "alternarialeaf_spot", "frog_eye_leaf_spot", "diaporthe_pod_&_stem_blight", "cyst_nematode", "2_4_d_injury", "herbicide_injury"]) } } _BASE_FEATURE_NAMES = [ "date", "plant_stand", "precip", "temp", "hail", "crop_hist", "area_damaged", "severity", "seed_tmt", "germination", "plant_growth", "leaves", "leafspots_halo", "leafspots_marg", "leafspot_size", "leaf_shread", "leaf_malf", "leaf_mild", "stem", "lodging", "stem_cankers", "canker_lesion", "fruiting_bodies", "external decay", "mycelium", "int_discolor", "sclerotia", "fruit_pods", "fruit spots", "seed", "mold_growth", "seed_discolor", "seed_size", "shriveling", "roots", "class", ] DESCRIPTION = "Soybean dataset." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990" _URLS = ("https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990") _CITATION = """ @misc{misc_soybean_(large)_90, author = {Michalski,R.S. & Chilausky,R.L.}, title = {{Soybean (Large)}}, year = {1988}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5JG6Z}} } """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/soybean/resolve/main/soybean.csv" } features_types_per_config = { "soybean": { "date": datasets.Value("string"), "plant_stand": datasets.Value("string"), "precip": datasets.Value("string"), "temp": datasets.Value("string"), "hail": datasets.Value("string"), "crop_hist": datasets.Value("string"), "area_damaged": datasets.Value("string"), "severity": datasets.Value("string"), "seed_tmt": datasets.Value("string"), "germination": datasets.Value("string"), "plant_growth": datasets.Value("string"), "leaves": datasets.Value("string"), "leafspots_halo": datasets.Value("string"), "leafspots_marg": datasets.Value("string"), "leafspot_size": datasets.Value("string"), "leaf_shread": datasets.Value("string"), "leaf_malf": datasets.Value("string"), "leaf_mild": datasets.Value("string"), "stem": datasets.Value("string"), "lodging": datasets.Value("string"), "stem_cankers": datasets.Value("string"), "canker_lesion": datasets.Value("string"), "fruiting_bodies": datasets.Value("string"), "external decay": datasets.Value("string"), "mycelium": datasets.Value("string"), "int_discolor": datasets.Value("string"), "sclerotia": datasets.Value("string"), "fruit_pods": datasets.Value("string"), "fruit spots": datasets.Value("string"), "seed": datasets.Value("string"), "mold_growth": datasets.Value("string"), "seed_discolor": datasets.Value("string"), "seed_size": datasets.Value("string"), "shriveling": datasets.Value("string"), "roots": datasets.Value("string"), "class": datasets.ClassLabel(num_classes=19, names=["diaporthe_stem_canker", "charcoal_rot", "rhizoctonia_root_rot", "phytophthora_rot", "brown_stem_rot", "powdery_mildew", "downy_mildew", "brown_spot", "bacterial_blight", "bacterial_pustule", "purple_seed_stain", "anthracnose", "phyllosticta_leaf_spot", "alternarialeaf_spot", "frog_eye_leaf_spot", "diaporthe_pod_&_stem_blight", "cyst_nematode", "2_4_d_injury", "herbicide_injury"]) } } for c in _ENCODING_DICS["class"].keys(): features_types_per_config[c] = { "date": datasets.Value("string"), "plant_stand": datasets.Value("string"), "precip": datasets.Value("string"), "temp": datasets.Value("string"), "hail": datasets.Value("string"), "crop_hist": datasets.Value("string"), "area_damaged": datasets.Value("string"), "severity": datasets.Value("string"), "seed_tmt": datasets.Value("string"), "germination": datasets.Value("string"), "plant_growth": datasets.Value("string"), "leaves": datasets.Value("string"), "leafspots_halo": datasets.Value("string"), "leafspots_marg": datasets.Value("string"), "leafspot_size": datasets.Value("string"), "leaf_shread": datasets.Value("string"), "leaf_malf": datasets.Value("string"), "leaf_mild": datasets.Value("string"), "stem": datasets.Value("string"), "lodging": datasets.Value("string"), "stem_cankers": datasets.Value("string"), "canker_lesion": datasets.Value("string"), "fruiting_bodies": datasets.Value("string"), "external decay": datasets.Value("string"), "mycelium": datasets.Value("string"), "int_discolor": datasets.Value("string"), "sclerotia": datasets.Value("string"), "fruit_pods": datasets.Value("string"), "fruit spots": datasets.Value("string"), "seed": datasets.Value("string"), "mold_growth": datasets.Value("string"), "seed_discolor": datasets.Value("string"), "seed_size": datasets.Value("string"), "shriveling": datasets.Value("string"), "roots": datasets.Value("string"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class SoybeanConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(SoybeanConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Soybean(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "soybean" binary_configurations = [SoybeanConfig(name=c, description=f"Is this instance of class {c}?") for c in _ENCODING_DICS["class"].keys()] BUILDER_CONFIGS = [SoybeanConfig(name="soybean", description="Soybean for binary classification.")] BUILDER_CONFIGS += binary_configurations def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath, header=None) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES data["class"] = data["class"].apply(lambda x: x.replace("-", "_")) for c in _ENCODING_DICS["class"].keys(): if self.config.name == c: data["class"] = data["class"].apply(lambda x: 1 if x == c else 0) break for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data[feature] = data[feature].apply(encoding_function) data = data.rename(columns={"instance migration_code_change_in_msa": "migration_code_change_in_msa"}) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")