|
"""Soybean Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
_ENCODING_DICS = { |
|
"class": { |
|
value: i for i, value in enumerate(["diaporthe_stem_canker", |
|
"charcoal_rot", "rhizoctonia_root_rot", |
|
"phytophthora_rot", "brown_stem_rot", "powdery_mildew", |
|
"downy_mildew", "brown_spot", "bacterial_blight", |
|
"bacterial_pustule", "purple_seed_stain", "anthracnose", |
|
"phyllosticta_leaf_spot", "alternarialeaf_spot", |
|
"frog_eye_leaf_spot", "diaporthe_pod_&_stem_blight", |
|
"cyst_nematode", "2_4_d_injury", "herbicide_injury"]) |
|
} |
|
} |
|
_BASE_FEATURE_NAMES = [ |
|
"date", |
|
"plant_stand", |
|
"precip", |
|
"temp", |
|
"hail", |
|
"crop_hist", |
|
"area_damaged", |
|
"severity", |
|
"seed_tmt", |
|
"germination", |
|
"plant_growth", |
|
"leaves", |
|
"leafspots_halo", |
|
"leafspots_marg", |
|
"leafspot_size", |
|
"leaf_shread", |
|
"leaf_malf", |
|
"leaf_mild", |
|
"stem", |
|
"lodging", |
|
"stem_cankers", |
|
"canker_lesion", |
|
"fruiting_bodies", |
|
"external decay", |
|
"mycelium", |
|
"int_discolor", |
|
"sclerotia", |
|
"fruit_pods", |
|
"fruit spots", |
|
"seed", |
|
"mold_growth", |
|
"seed_discolor", |
|
"seed_size", |
|
"shriveling", |
|
"roots", |
|
"class", |
|
] |
|
|
|
DESCRIPTION = "Soybean dataset." |
|
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990" |
|
_URLS = ("https://archive-beta.ics.uci.edu/dataset/116/us+census+data+1990") |
|
_CITATION = """ |
|
@misc{misc_us_census_data_(1990)_116, |
|
author = {Meek,Meek, Thiesson,Thiesson & Heckerman,Heckerman}, |
|
title = {{US Census Data (1990)}}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C5VP42}} |
|
} |
|
""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/soybean/resolve/main/soybean.csv" |
|
} |
|
features_types_per_config = { |
|
"soybean": { |
|
"date": datasets.Value("string"), |
|
"plant_stand": datasets.Value("string"), |
|
"precip": datasets.Value("string"), |
|
"temp": datasets.Value("string"), |
|
"hail": datasets.Value("string"), |
|
"crop_hist": datasets.Value("string"), |
|
"area_damaged": datasets.Value("string"), |
|
"severity": datasets.Value("string"), |
|
"seed_tmt": datasets.Value("string"), |
|
"germination": datasets.Value("string"), |
|
"plant_growth": datasets.Value("string"), |
|
"leaves": datasets.Value("string"), |
|
"leafspots_halo": datasets.Value("string"), |
|
"leafspots_marg": datasets.Value("string"), |
|
"leafspot_size": datasets.Value("string"), |
|
"leaf_shread": datasets.Value("string"), |
|
"leaf_malf": datasets.Value("string"), |
|
"leaf_mild": datasets.Value("string"), |
|
"stem": datasets.Value("string"), |
|
"lodging": datasets.Value("string"), |
|
"stem_cankers": datasets.Value("string"), |
|
"canker_lesion": datasets.Value("string"), |
|
"fruiting_bodies": datasets.Value("string"), |
|
"external decay": datasets.Value("string"), |
|
"mycelium": datasets.Value("string"), |
|
"int_discolor": datasets.Value("string"), |
|
"sclerotia": datasets.Value("string"), |
|
"fruit_pods": datasets.Value("string"), |
|
"fruit spots": datasets.Value("string"), |
|
"seed": datasets.Value("string"), |
|
"mold_growth": datasets.Value("string"), |
|
"seed_discolor": datasets.Value("string"), |
|
"seed_size": datasets.Value("string"), |
|
"shriveling": datasets.Value("string"), |
|
"roots": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=19) |
|
} |
|
} |
|
for c in _ENCODING_DICS["class"].keys(): |
|
features_types_per_config[c] = { |
|
"date": datasets.Value("string"), |
|
"plant_stand": datasets.Value("string"), |
|
"precip": datasets.Value("string"), |
|
"temp": datasets.Value("string"), |
|
"hail": datasets.Value("string"), |
|
"crop_hist": datasets.Value("string"), |
|
"area_damaged": datasets.Value("string"), |
|
"severity": datasets.Value("string"), |
|
"seed_tmt": datasets.Value("string"), |
|
"germination": datasets.Value("string"), |
|
"plant_growth": datasets.Value("string"), |
|
"leaves": datasets.Value("string"), |
|
"leafspots_halo": datasets.Value("string"), |
|
"leafspots_marg": datasets.Value("string"), |
|
"leafspot_size": datasets.Value("string"), |
|
"leaf_shread": datasets.Value("string"), |
|
"leaf_malf": datasets.Value("string"), |
|
"leaf_mild": datasets.Value("string"), |
|
"stem": datasets.Value("string"), |
|
"lodging": datasets.Value("string"), |
|
"stem_cankers": datasets.Value("string"), |
|
"canker_lesion": datasets.Value("string"), |
|
"fruiting_bodies": datasets.Value("string"), |
|
"external decay": datasets.Value("string"), |
|
"mycelium": datasets.Value("string"), |
|
"int_discolor": datasets.Value("string"), |
|
"sclerotia": datasets.Value("string"), |
|
"fruit_pods": datasets.Value("string"), |
|
"fruit spots": datasets.Value("string"), |
|
"seed": datasets.Value("string"), |
|
"mold_growth": datasets.Value("string"), |
|
"seed_discolor": datasets.Value("string"), |
|
"seed_size": datasets.Value("string"), |
|
"shriveling": datasets.Value("string"), |
|
"roots": datasets.Value("string"), |
|
"class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
} |
|
|
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class SoybeanConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(SoybeanConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Soybean(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "soybean" |
|
binary_configurations = [SoybeanConfig(name=c, description=f"Is this instance of class {c}?") |
|
for c in _ENCODING_DICS["class"].keys()] |
|
BUILDER_CONFIGS = [SoybeanConfig(name="soybean", description="Soybean for binary classification.")] |
|
BUILDER_CONFIGS += binary_configurations |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data = self.preprocess(data) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: |
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
for c in _ENCODING_DICS["class"].keys(): |
|
if self.config.name == c: |
|
data["class"] = data["class"].apply(lambda x: 1 if x == c else 0) |
|
break |
|
|
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data[feature] = data[feature].apply(encoding_function) |
|
|
|
data = data.rename(columns={"instance migration_code_change_in_msa": "migration_code_change_in_msa"}) |
|
|
|
|
|
return data[list(features_types_per_config[self.config.name].keys())] |
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|