"""Planning: A Census Dataset""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "class" ] DESCRIPTION = "Planning dataset from the UCI ML repository." _HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Planning" _URLS = ("https://archive.ics.uci.edu/ml/datasets/Planning") _CITATION = """ @misc{misc_planning_relax_230, author = {Bhatt,Rajen}, title = {{Planning Relax}}, year = {2012}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5T023}} }""" # Dataset info urls_per_split = { "planning": {"train": "https://huggingface.co/datasets/mstz/planning/raw/main/plrx.csv"} } features_types_per_config = { "planning": { "V1": datasets.Value("float64"), "V2": datasets.Value("float64"), "V3": datasets.Value("float64"), "V4": datasets.Value("float64"), "V5": datasets.Value("float64"), "V6": datasets.Value("float64"), "V7": datasets.Value("float64"), "V8": datasets.Value("float64"), "V9": datasets.Value("float64"), "V10": datasets.Value("float64"), "V11": datasets.Value("float64"), "V12": datasets.Value("float64"), "class": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class PlanningConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(PlanningConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Planning(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "planning" BUILDER_CONFIGS = [ PlanningConfig(name="planning", description="Planning for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads[self.config.name]["train"]}) ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row