"""Nursery Dataset""" from typing import List from functools import partial import datasets import pandas VERSION = datasets.Version("1.0.0") _ENCODING_DICS = {} DESCRIPTION = "Nursery dataset." _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/69/molecular+biology+nursery+junction+gene+sequences" _URLS = ("https://archive-beta.ics.uci.edu/dataset/69/molecular+biology+nursery+junction+gene+sequences") _CITATION = """ @misc{misc_nursery_76, author = {Rajkovic,Vladislav}, title = {{Nursery}}, year = {1997}, howpublished = {UCI Machine Learning Repository}, note = {{DOI}: \\url{10.24432/C5P88W}} } """ # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/nursery/raw/main/nursery.data" } features_types_per_config = { "nursery": { "parents_attitude": datasets.Value("string"), "current_nursery_status": datasets.Value("string"), "form": datasets.Value("string"), "number_of_children": datasets.Value("int8"), "housing_status": datasets.Value("string"), "is_family_financially_stable": datasets.Value("bool"), "social_status": datasets.Value("string"), "health_status": datasets.Value("string"), "recommendation": datasets.ClassLabel(num_classes=5, names=("not recommended", "recommended", "priority recommendation", "highly recommended", "specifically recommended")) }, "nursery_binary": { "parents_attitude": datasets.Value("string"), "current_nursery_status": datasets.Value("string"), "form": datasets.Value("string"), "number_of_children": datasets.Value("int8"), "housing_status": datasets.Value("string"), "is_family_financially_stable": datasets.Value("bool"), "social_status": datasets.Value("string"), "health_status": datasets.Value("string"), "recommendation": datasets.ClassLabel(num_classes=2, names=("no", "yes")) }, } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class NurseryConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(NurseryConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class Nursery(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "nursery" BUILDER_CONFIGS = [ NurseryConfig(name="nursery", description="Nursery for multiclass classification."), NurseryConfig(name="nursery_binary", description="Nursery for binary classification.") ] def _info(self): info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data = self.preprocess(data) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: if self.config.name == "nursery_binary": data["recommendation"] = data["recommendation"].apply(lambda x: 1 if x > 0 else 0) for feature in _ENCODING_DICS: encoding_function = partial(self.encode, feature) data.loc[:, feature] = data[feature].apply(encoding_function) return data[list(features_types_per_config[self.config.name].keys())] def encode(self, feature, value): if feature in _ENCODING_DICS: return _ENCODING_DICS[feature][value] raise ValueError(f"Unknown feature: {feature}")