"""Heart Failure Dataset""" from typing import List import datasets import pandas VERSION = datasets.Version("1.0.0") _BASE_FEATURE_NAMES = [ "age", "has_anaemia", "creatinine_phosphokinase_concentration_in_blood", "has_diabetes", "heart_ejection_fraction", "has_high_blood_pressure", "platelets_concentration_in_blood", "serum_creatinine_concentration_in_blood", "serum_sodium_concentration_in_blood", "sex", "is_smoker", "days_in_study", "is_dead" ] DESCRIPTION = "Heart Failure dataset." _HOMEPAGE = "https://www.kaggle.com/datasets/ulrikthygepedersen/heart_failures" _URLS = ("https://www.kaggle.com/datasets/ulrikthygepedersen/heart_failures") _CITATION = """""" # Dataset info urls_per_split = { "train": "https://huggingface.co/datasets/mstz/heart_failure/raw/main/heart_failure_clinical_records_dataset.csv", } features_types_per_config = { "death": { "age": datasets.Value("int8"), "has_anaemia": datasets.Value("bool"), "creatinine_phosphokinase_concentration_in_blood": datasets.Value("float64"), "has_diabetes": datasets.Value("bool"), "heart_ejection_fraction": datasets.Value("float64"), "has_high_blood_pressure": datasets.Value("bool"), "platelets_concentration_in_blood": datasets.Value("float64"), "serum_creatinine_concentration_in_blood": datasets.Value("float64"), "serum_sodium_concentration_in_blood": datasets.Value("float64"), "is_male": datasets.Value("bool"), "is_smoker": datasets.Value("bool"), "days_in_study": datasets.Value("int64"), "is_dead": datasets.ClassLabel(num_classes=2, names=("no", "yes")) } } features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} class HeartFailureConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(HeartFailureConfig, self).__init__(version=VERSION, **kwargs) self.features = features_per_config[kwargs["name"]] class HeartFailure(datasets.GeneratorBasedBuilder): # dataset versions DEFAULT_CONFIG = "death" BUILDER_CONFIGS = [ HeartFailureConfig(name="death", description="Binary classification, predict if the patient dies.") ] def _info(self): if self.config.name not in features_per_config: raise ValueError(f"Unknown configuration: {self.config.name}") info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, features=features_per_config[self.config.name]) return info def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: downloads = dl_manager.download_and_extract(urls_per_split) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), ] def _generate_examples(self, filepath: str): data = pandas.read_csv(filepath) data = self.preprocess(data, config=self.config.name) for row_id, row in data.iterrows(): data_row = dict(row) yield row_id, data_row def preprocess(self, data: pandas.DataFrame, config: str = "death") -> pandas.DataFrame: data.columns = _BASE_FEATURE_NAMES data = data.rename(columns={"sex": "is_male"}) data = data.astype({"has_anaemia": "bool", "has_diabetes": "bool", "has_high_blood_pressure": "bool", "is_male": "bool", "is_smoker": "bool"}) return data